JPH0989869A - Simple analyzing method for cyan in process waste water and waste water-treating method using the method - Google Patents

Simple analyzing method for cyan in process waste water and waste water-treating method using the method

Info

Publication number
JPH0989869A
JPH0989869A JP23934595A JP23934595A JPH0989869A JP H0989869 A JPH0989869 A JP H0989869A JP 23934595 A JP23934595 A JP 23934595A JP 23934595 A JP23934595 A JP 23934595A JP H0989869 A JPH0989869 A JP H0989869A
Authority
JP
Japan
Prior art keywords
color
solution
waste water
cyan
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23934595A
Other languages
Japanese (ja)
Inventor
Hisanari Inoue
久成 井上
Shigeru Sugawara
尉 菅原
Harutoshi Kubota
晴俊 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23934595A priority Critical patent/JPH0989869A/en
Publication of JPH0989869A publication Critical patent/JPH0989869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply and correctly measure a concentration of cyan, by collecting a sample waste water in a flask, adding zeolite, sulfuric acid, hydroxylamine hydrochloride solution, etc., to the sample waste water, heating the sample waste water and making generated vapor come in direct touch with a color-producing liquid. SOLUTION: A rubber plug with a U-tube is set to an Erlenmeyer flask (distillation vessel) of, for example, 100ml capacity, and the U-tube is inserted in a test tube (color- producing container) while one side of the U-tube is arranged as a blow tube. Approximately 50ml of a sample solution (waste water) including cyan is collected in the flask, to which sulfuric acid solution and 5% hydroxylamine hydrochloride solution, 10% EDTA solution and zeolite are added. The flask is then heated until a fraction after boiling is about 10ml. The vapor generated by the heating is sent through the blow tube into the color-producing container to which 500mg picric acid-coloring reagent and 1ml water are added, whereby the vapor is brought in touch with a color- producing liquid. The color-producing amount is compared with a color sample, so that a concentration of cyan in the sample solution is detected. In this manner, the unnecessary excessive consumption of sodium hypochlorite is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は処理排水中のシアン
を簡易に分析し、その結果により工程処理廃水に添加す
る次亜塩素酸塩の量を調整する廃水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater treatment method in which cyanide in treated wastewater is simply analyzed and the amount of hypochlorite added to process wastewater is adjusted based on the result.

【0002】[0002]

【従来の技術】亜鉛製錬所の廃水やメッキ工場の排水中
にはシアンが含まれることが多く、ほとんどの場合シア
ン除去工程が設けられている。しかし、多くの場合、最
終工程で処理廃水に次亜塩素酸ナトリウムなどの次亜塩
素酸塩を添加し、排水基準を確実に下回るようにするの
が一般的である。
2. Description of the Related Art Cyan is often contained in the waste water of a zinc smelter or the waste water of a plating plant, and in most cases, a cyanide removing step is provided. However, in many cases, it is common to add a hypochlorite such as sodium hypochlorite to the treated wastewater in the final step to make sure that it falls below the wastewater standard.

【0003】ところで、次亜塩素酸塩を添加する前の工
程処理廃水中のシアン濃度は通常極めて希薄であり、高
くても排出基準前後とされている。それにもかかわらず
次亜塩素酸塩溶液を添加するのは、微量のシアンをさら
に分解して排水中のシアン濃度を低下させて公害防止に
万全を期すためである。事実、いずれの企業もこの目的
を達成するために管理上限値を排出基準値よりかなり下
に定めている。
By the way, the concentration of cyanide in the process-treated waste water before the addition of hypochlorite is usually extremely low, and even if it is high, it is around the emission standard. Nevertheless, the reason why the hypochlorite solution is added is that the trace amount of cyanide is further decomposed to reduce the concentration of cyanide in the waste water, and it is necessary to prevent pollution. In fact, both companies set control limits well below emission standards to achieve this goal.

【0004】この次亜塩素酸塩の添加量は、通常処理排
水中の全シアン濃度を求め、この濃度に基づき調整する
が、通常かなりの安全率をかけ、決定し、過剰に添加し
ている。というのは、この排水中の全シアンの分析には
手間がかかり、頻繁に測定することができないからであ
る。
The amount of the hypochlorite added is usually determined by obtaining the total cyanide concentration in the treated wastewater and adjusting based on this concentration, but it is usually determined by taking a considerable safety factor, and is added excessively. . This is because the analysis of all cyanides in this wastewater is laborious and cannot be measured frequently.

【0005】全シアン分析法の公定法であるJIS−K
0102では、数時間を要する前処理で工場排水中のシ
アンを蒸留分離し、得た分離液を用いてピリジン−ピラ
ゾロン吸光光度法、4−ピリジンカルボン酸−ピラロゾ
ン吸光光度法、イオン電極法などにより全シアン濃度を
測定するが、これは以下の理由による。
JIS-K, which is an official method of all-cyan analysis
In 0102, cyanide in factory wastewater was separated by distillation in a pretreatment that required several hours, and the obtained separation liquid was used for pyridine-pyrazolone absorptiometry, 4-pyridinecarboxylic acid-pyralozone absorptiometry, ion electrode method and the like. The total cyan density is measured for the following reasons.

【0006】すなわち、処理排水といえども、その中に
存在する極微量のシアンに対して過剰の重金属類、例え
ば鉄や亜鉛といった重金属類が存在しており、その結
果、シアンのかなりの部分は金属シアノ錯体として存在
する。このため、イオン電極を用いて、あるいは各種の
比色法をそのまま用いても正確な全シアン濃度を知るこ
とはできないからである。
That is, even in the treated wastewater, an excessive amount of heavy metals, for example, heavy metals such as iron and zinc, are present with respect to the extremely small amount of cyanide present therein, and as a result, a considerable part of cyanide is present. It exists as a metal cyano complex. Therefore, it is not possible to know the exact total cyan density by using the ion electrode or by directly using various colorimetric methods.

【0007】[0007]

【発明が解決しようとする課題】以上述べた状況より、
通常、処理排水中の全シアン濃度の分析は、大過剰の次
亜塩素酸塩を添加していることもあり、1〜2週間に1
回の測定で済ますのが通常となっていた。というのは、
全シアンの測定頻度の増加はそれのみのための人員の確
保が必要となり、製造コストを押し上げる結果となるか
らである。とはいえ、昨今のコストダウンの要請は厳し
く、これに答えるためには、大過剰の次亜塩素酸塩の添
加すら問題視されるに至っている。
[Problems to be Solved by the Invention]
Usually, analysis of total cyanide concentration in treated effluent requires that a large excess of hypochlorite may be added, so that 1 to 2 weeks
It was usually done with a single measurement. I mean,
This is because the increase in the measurement frequency of all cyan is necessary to secure personnel only for that, which results in increasing the manufacturing cost. However, recent demands for cost reduction are strict, and in order to meet this demand, even the addition of a large excess of hypochlorite has been regarded as a problem.

【0008】本発明は、このような状況を解決すべくな
されたものであり、簡便な全シアンの分析を可能とする
方法の提供とこの方法を用いた廃水処理方法の提供を課
題とするものである。
The present invention has been made to solve such a situation, and it is an object of the present invention to provide a method that enables a simple analysis of all cyanides and a wastewater treatment method using this method. Is.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の簡易分析方法は、蒸留用フラスコと発色用容器とを
構成部品とする装置を用いるものであり、試料廃水を蒸
留用フラスコに採取し、該フラスコにフッ石と硫酸と塩
酸ヒドロキシルアミン溶液とEDTA溶液とを添加し、
発色容器中にピクリンサン発色液を入れ、次いで該フラ
スコを加熱し、発生した蒸気を直接発色容器中の発色液
と接触させ、蒸留終了後発色容器中の溶液量を一定とし
た後、比色法により検出しシアン量を求め、これにより
廃水中の全シアン濃度を求めるものである。
The simple analysis method of the present invention for solving the above problems uses an apparatus having a distillation flask and a coloring container as components, and collects sample waste water into the distillation flask. Then, fluorite, sulfuric acid, hydroxylamine hydrochloride solution and EDTA solution were added to the flask,
Put the picrinsan coloring solution in the coloring container, then heat the flask, directly contact the generated vapor with the coloring liquid in the coloring container, and after the distillation, make the amount of the solution in the coloring container constant, and then use the colorimetric method. The total cyan concentration in the wastewater is obtained by detecting the amount of cyanide by detecting the amount of cyanide.

【0010】そして、本発明の操業方法は前記簡易分析
方法の値に応じて工程処理廃水に添加する次亜塩素酸塩
量を変化させるものである。
The operating method of the present invention changes the amount of hypochlorite added to the process-treated wastewater according to the value of the simple analysis method.

【0011】[0011]

【発明の実施の形態】本発明の簡易分析法において、蒸
留用フラスコに採取する試料排水量は、該試料中に含ま
れる全シアン量が250マイクログラム以下とすること
が好ましい。これは、発色試薬量、蒸留時間などの関係
からくる制約であり、これを外すと簡便性が損なわれる
ことになる。なお、通常採取する試料排水量は50ミリリッ
トル程度である。
BEST MODE FOR CARRYING OUT THE INVENTION In the simplified analysis method of the present invention, the amount of drainage of a sample collected in a distillation flask is preferably such that the total amount of cyanide contained in the sample is 250 micrograms or less. This is a constraint due to the relationship such as the amount of coloring reagent and the distillation time, and removal of this impairs the convenience. In addition, the amount of drainage of the sample that is normally collected is about 50 milliliters.

【0012】硫酸、塩酸ヒドロキシルアミン、EDTA
はいずれも金属シアノ錯体として存在していた各種金属
イオン等の妨害イオンを安定的に溶液中に保持し、シア
ンを留出しやすくさせるためであり、通常対象シアン量
に対して大過剰に加える。
Sulfuric acid, hydroxylamine hydrochloride, EDTA
In order to stably hold interfering ions such as various metal ions existing as the metal cyano complex in the solution and facilitate the distillation of cyanide, is usually added in a large excess with respect to the target cyanide amount.

【0013】シアンの蒸留は留分が10ミリリットル程度とな
るようにすればよい。試料排水中の全シアン量が250
マイクログラム以下であれば、この間に完全に金属シア
ノ錯体は分解され、シアンは蒸留されるからである。よ
って、蒸留用容器と発色用容器とを直結しない場合には
流出量が10ミリリットルとなった時点で蒸留を停止すればよ
い。
The distillation of cyan may be carried out so that the fraction is about 10 ml. The total amount of cyanide in the sample drainage is 250
This is because if the amount is less than microgram, the metal cyano complex is completely decomposed and cyan is distilled during this period. Therefore, when the distillation container and the coloring container are not directly connected, the distillation may be stopped when the outflow amount reaches 10 ml.

【0014】このように蒸留された留分には必ずしもシ
アンのみが含まれているわけではないが、少なくともシ
アンと錯イオンを形成する金属イオンは存在しない。そ
のため、この留出分とピクリンサン発色液とを接触させ
れば留出分中のシアンは発色する。この発色量を予め求
めた色見本と比較すれば試料排水中のシアン濃度を求め
ることが可能となる。色見本と比較するために本発明の
方法では、発色容器中の液の量を一定とする。
The fraction thus distilled does not always contain only cyan, but at least metal ions forming complex ions with cyan do not exist. Therefore, if this distillate is brought into contact with the picrinsan color-developing liquid, cyan in the distillate will develop color. By comparing this amount of color development with a color sample obtained in advance, it becomes possible to obtain the cyan concentration in the sample drainage. In the method of the present invention for comparison with a color sample, the amount of liquid in the color development container is constant.

【0015】本発明の操業方法は、本発明の分析方法に
より検出したシアン濃度が管理限界値以下の所望の値と
なるように次亜塩素酸塩の添加量を調整するものであ
り、シアン濃度の検出頻度は当該廃水処理設備の能力に
応じ適宜決めればよい。
In the operating method of the present invention, the amount of hypochlorite added is adjusted so that the cyan concentration detected by the analytical method of the present invention becomes a desired value below the control limit value. The detection frequency may be appropriately determined according to the capacity of the wastewater treatment facility.

【0016】[0016]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
Next, the present invention will be further described with reference to examples.

【0017】(実施例1)容量100ミリリットルの三角フラ
スコを蒸留用容器とし、この容器にU字管付きゴム栓を
し、U字管の一方を吹き込み管として発色用容器として
の試験管内に挿入した。
(Embodiment 1) An Erlenmeyer flask with a capacity of 100 ml was used as a distillation container, a rubber stopper with a U-shaped tube was attached to this container, and one of the U-shaped tubes was blown into a test tube as a coloring container. did.

【0018】三角フラスコに50ミリリットルの各種のシアン
濃度の試料溶液をそれぞれ分取し、(1+10)硫酸溶
液を2ミリリットルを添加し、5%塩酸ヒドロキシルアミン溶
液1ミリリットルを添加し、10%EDTA溶液1ミリリットルを加
え、フッ石10ヶを加えた。そして、発色用容器内に炭
酸ナトリウムにピクリン酸エタノール溶液を吸着乾燥さ
せたピクリンサン発色試薬500mgと水1ミリリットルとを
加え、吹き込み管の先端が容器内の発色試薬内に浸漬さ
れるようにした。
50 ml of each sample solution having various cyan concentrations was taken into an Erlenmeyer flask, 2 ml of (1 + 10) sulfuric acid solution was added, 1 ml of 5% hydroxylamine hydrochloride solution was added, and 10% EDTA solution was added. 1 ml was added and 10 fluorspars were added. Then, 500 mg of picrinsan coloring reagent obtained by adsorbing and drying the picric acid ethanol solution on sodium carbonate and 1 ml of water were added to the coloring container so that the tip of the blowing tube was immersed in the coloring reagent in the container.

【0019】蒸留容器を加熱し、沸騰後留分が10ミリリッ
トル程度になるまで加熱を続けた。本実施例では15分で
目的を達した。その後発色用容器の内容物を20ミリリットル
とし、色見本と比較し、試料溶液中のシアン濃度を求め
た。この結果と、別途試料溶液のシアン濃度をJIS−
K0102により求めた結果との関係を表1に示した。
The distillation vessel was heated, and after boiling, the heating was continued until the distillate content reached about 10 ml. In this example, the purpose was reached in 15 minutes. After that, the content of the coloring container was adjusted to 20 ml and compared with a color sample to determine the cyan concentration in the sample solution. This result and the cyan concentration of the sample solution are separately specified in JIS-
Table 1 shows the relationship with the results obtained by K0102.

【0020】 表1より、低濃度側では本発明の簡易方法とJIS−K
0102法との差は認められず、高濃度側で若干の差が
認められることがわかる。しかし、この差は実用上ほと
んど問題ないといえる。
[0020] From Table 1, on the low concentration side, the simplified method of the present invention and JIS-K
It can be seen that no difference from the 0102 method is observed and a slight difference is observed on the high concentration side. However, it can be said that this difference has practically no problem.

【0021】(実施例2)本発明の分析方法で一日一回
処理排水中のシアン濃度を測定しつつ、該測定値が0.
5ppm以下となるように添加する次亜塩素酸ナトリウ
ム量を調整しつつ2ヶ月の操業を行った。その結果、濃
度12.5%の次亜塩素酸ナトリウムの平均添加量は6
00ミリリットル/分であった。なお、処理排水量は約400
0m3/日であった。
(Example 2) While the cyan concentration in the treated wastewater was measured once a day by the analysis method of the present invention, the measured value was 0.
The operation was carried out for 2 months while adjusting the amount of sodium hypochlorite added so as to be 5 ppm or less. As a result, the average addition amount of sodium hypochlorite with a concentration of 12.5% was 6
It was 00 ml / min. The amount of treated wastewater is about 400.
It was 0 m 3 / day.

【0022】(従来例)2週間に1回JIS−K010
2に従い処理排水中のシアン濃度を測定し、この測定値
を目安とし、この測定値が0.1ppm以下となるよう
に次亜塩素酸ナトリウム添加量を調節しつつ2ヶ月間の
操業を行った。その結果、濃度12.5%の次亜塩素酸
ナトリウムの平均添加量は1400ミリリットル/分となって
いた。なお、処理廃水量は約4000m3/日であっ
た。
(Conventional example) JIS-K010 once every two weeks
The cyanide concentration in the treated effluent was measured according to 2, and the measured value was used as a guide, and the operation was performed for 2 months while adjusting the amount of sodium hypochlorite added so that the measured value was 0.1 ppm or less. . As a result, the average addition amount of sodium hypochlorite having a concentration of 12.5% was 1400 ml / min. The amount of treated wastewater was about 4000 m 3 / day.

【0023】この場合、0.1ppm以下となるように
せざるを得なかったのは、シアン濃度の変動が把握でき
ないため、確実に排水基準値を守るために安全をみなけ
ればならなかったからである。
In this case, the reason why the concentration has to be set to 0.1 ppm or less is that the fluctuation of the cyan concentration cannot be grasped, and therefore it is necessary to take safety measures in order to surely comply with the drainage standard value. .

【0024】[0024]

【発明の効果】以上述べたように、本発明の簡易分析方
法は極めて簡単であり、かつ正確といえる。その結果、
本発明の簡易分析方法を用いた排水管理方法に従えば、
不必要な過剰の次亜塩素酸ナトリウムの消費が防止でき
る。
As described above, the simple analysis method of the present invention is extremely simple and accurate. as a result,
According to the wastewater management method using the simple analysis method of the present invention,
Unnecessary excessive consumption of sodium hypochlorite can be prevented.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸留用フラスコと発色用容器とを構成
部品とする装置を用いるものであり、試料廃水を蒸留用
フラスコに採取し、該フラスコにフッ石と硫酸と塩酸ヒ
ドロキシルアミン溶液とEDTA溶液とを添加し、発色
容器中にピクリンサン発色液を入れ、次いで該フラスコ
を加熱し、発生した蒸気を直接発色容器中の発色液と接
触させ、蒸留終了後発色容器中の溶液量を一定とした
後、比色法により検出しシアン量を求め、これにより廃
水中の全シアン濃度を求めることを特徴とする工程処理
廃水中のシアンの簡易分析方法。
1. An apparatus comprising a distillation flask and a coloring container as components, wherein sample wastewater is collected in a distillation flask, and fluorite, sulfuric acid, hydroxylamine hydrochloride solution and EDTA solution are put in the flask. Was added, and the picrinsan color-developing solution was placed in the color-developing container, then the flask was heated, and the generated vapor was brought into direct contact with the color-developing solution in the color-developing container to keep the amount of the solution in the color-developing container constant after distillation. After that, a simple analysis method of cyanide in the process-treated wastewater is characterized in that the amount of cyanide is detected by a colorimetric method and the total cyanide concentration in the wastewater is obtained from this.
【請求項2】 請求項1記載の簡易分析方法の値に応
じて工程処理廃水に添加する次亜塩素酸塩量を調整させ
ることを特徴とする廃水処理方法。
2. A wastewater treatment method, characterized in that the amount of hypochlorite added to the process-treated wastewater is adjusted according to the value of the simple analysis method according to claim 1.
JP23934595A 1995-09-19 1995-09-19 Simple analyzing method for cyan in process waste water and waste water-treating method using the method Pending JPH0989869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23934595A JPH0989869A (en) 1995-09-19 1995-09-19 Simple analyzing method for cyan in process waste water and waste water-treating method using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23934595A JPH0989869A (en) 1995-09-19 1995-09-19 Simple analyzing method for cyan in process waste water and waste water-treating method using the method

Publications (1)

Publication Number Publication Date
JPH0989869A true JPH0989869A (en) 1997-04-04

Family

ID=17043366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23934595A Pending JPH0989869A (en) 1995-09-19 1995-09-19 Simple analyzing method for cyan in process waste water and waste water-treating method using the method

Country Status (1)

Country Link
JP (1) JPH0989869A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017962A (en) * 2013-06-12 2015-01-29 鹿島建設株式会社 Cyanogen concentration measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015017962A (en) * 2013-06-12 2015-01-29 鹿島建設株式会社 Cyanogen concentration measurement method

Similar Documents

Publication Publication Date Title
McAvoy et al. Comparison between pyrocatechol violet and 8‐Hydroxyquinoline procedures for determining aluminum fractions
Bunting Determination of soluble silica in very low concentrations
CN109085049A (en) COD detection method in a kind of sewage and recycled water
KR20110015501A (en) Method and apparatus for measurement of bromate ion
Knežević et al. ETAAS determination of aluminium and copper in dialysis concentrates after microcolumn chelating ion-exchange preconcentration
CN1374520A (en) Method for measuring chemical oxygen requirement and its apparatus
US20210270794A1 (en) Method of determining chemical oxygen demand (cod) for high chloride samples
Goulden et al. Determination of submicrogram levels of phenol in water
Clark et al. Simplified measures of copper fractions in wine: colorimetric and filtration‐based approaches
Spencer et al. Azomethine H colorimetric method for determining dissolved boron in water
JPH0989869A (en) Simple analyzing method for cyan in process waste water and waste water-treating method using the method
Brunt Rapid determination of sulfide in waste waters by continuous flow analysis and gas diffusion and a potentiometric detector
TWI811365B (en) Fluorine concentration measuring method, fluorine concentration measuring device, water treatment method, and water treatment device
Mushahida-Al-Noor et al. Micro-organic ion-associate phase extraction/micro-volume back-extraction for the preconcentration and GF-AAS Determination of cadmium, nickel and lead in environmental water
JP3172745B2 (en) Method for measuring peroxodisulfuric acid in wastewater
CN1045019C (en) Water quality and hardness measuring method
CN105000650A (en) Chemical method for using complexing agents to remove hexavalent chromium in wastewater
CN106442363A (en) Method for determination of arsenic content in wastewater
Liebermann et al. Development of the FACTS procedure for combined forms of chlorine and ozone in aqueous solutions
JPH05256844A (en) Method for measuring concentration of ammonium within liquid
DE10321357B4 (en) Method and device for the quantitative determination of individual substances in gas mixtures obtained by oxidative or reductive mineralization of organic compounds
JP6869511B2 (en) Analysis method and pretreatment method
McKee Status of Analytical Methods for Cyanide
RU2193773C2 (en) Method for determining quality of milk and diary produce
JP2001201495A (en) Method for quantifying total cyanogen in aqueous solution containing cyano-complex