JPH0989633A - Measuring method for layer height level - Google Patents

Measuring method for layer height level

Info

Publication number
JPH0989633A
JPH0989633A JP25056495A JP25056495A JPH0989633A JP H0989633 A JPH0989633 A JP H0989633A JP 25056495 A JP25056495 A JP 25056495A JP 25056495 A JP25056495 A JP 25056495A JP H0989633 A JPH0989633 A JP H0989633A
Authority
JP
Japan
Prior art keywords
furnace
filling layer
melting furnace
height level
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25056495A
Other languages
Japanese (ja)
Inventor
Yuichi Yamakawa
裕一 山川
Koichi Tezuka
浩一 手塚
Tsuneo Matsudaira
恒夫 松平
Sunao Nakamura
直 中村
Yasuo Suzuki
康夫 鈴木
Tomohiro Yoshida
朋広 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25056495A priority Critical patent/JPH0989633A/en
Publication of JPH0989633A publication Critical patent/JPH0989633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring method in which a layer height level can be measured by a method wherein a plurality of stages of transmitting-receiving antennas of microwaves are installed so as to face the furnace-body side face of a waste gasification melting furnace and an irregularity in the intensity of a signal which is transmitted and propagated inside the furnace is found. SOLUTION: A filling layer by coke as a lump-shaped carbon substance and by wastes is formed in a melting furnace body, the high-temperature air is supplied into the coke filling layer via a main tuyere and a subtuyere, the wastes which is put into the melting furnace body are gasified and burned, and incombustibles are melted. At this time, the upper part of the filling layer is set to a fluidic state. Then, a plurality of stages of transmitting-receiving antennas of microwaves are installed so as to face the side face of the furnace body. In this manner, the transmission intensity of the microwaves between the plurality of faced antennas is changed continuously or meandered periodically. Thereby, the arrival position of the layer height level of the filling layer is discriminated and measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,マイクロウェ−ブ
の透過強度による廃棄物ガス化溶融炉の層高レベルの測
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a high level of a bed in a waste gasification and melting furnace by using a transmission strength of a microwave.

【0002】[0002]

【従来の技術】従来ガンマ線による層高計測がなされて
いる。これは、充填物がガンマ線を吸収することによる
減衰を計測することによって、そのレベルの充填物の有
無を判定する方法である。
2. Description of the Related Art Conventionally, layer height measurement has been performed by gamma rays. This is a method of determining the presence or absence of the filling material at that level by measuring the attenuation caused by the filling material absorbing gamma rays.

【0003】[0003]

【数1】 [Equation 1]

【0004】I:受信機で検出されるガンマ線の量 I0 :定数 ρ:充填物の線吸収係数(1/m) x:発信器〜受信器間の距離(m) アメリシウム241のガンマ線を、例えば鉱石やコーク
スの有無によって減衰が変化するので、その変化により
そのレベルに充填物があるかどうか判定する。
I: Amount of gamma rays detected by the receiver I 0 : Constant ρ: Linear absorption coefficient of packing (1 / m) x: Distance between transmitter and receiver (m) Gamma rays of Americium 241 For example, since the attenuation changes depending on the presence of ore or coke, the change determines whether there is packing at that level.

【0005】[0005]

【発明が解決しようとする課題】しかし,ガス化溶融炉
では、流動状態にある廃棄物のガンマ線に対する吸収係
数が小さく、殆どゼロなので、充填物の有無によって僅
かしか変化せず、層高測定ができない。そこで,本発明
は流動状態にある層高のレベル測定方法を提供すること
を課題とするものである。
However, in the gasification melting furnace, the absorption coefficient of gamma rays of the waste in the fluidized state is small and almost zero. Can not. Therefore, an object of the present invention is to provide a method for measuring the level of the bed height in a fluid state.

【0006】[0006]

【課題を解決するための手段】本発明の層高レベルの測
定方法は,廃棄物ガス化溶融炉の炉体側面に対向してマ
イクロウェ−ブの発信・受信アンテナを複数段設け、炉
内を伝播・透過する信号の強度、バラツキから層高レベ
ル及び流動状態を求めることを特徴とするものである。
According to the method for measuring a high level of a bed according to the present invention, a plurality of microwave transmitting / receiving antennas are provided so as to face a side surface of a furnace of a waste gasification and melting furnace. It is characterized in that the layer high level and the flow state are obtained from the intensity and variation of the signal propagating / transmitting.

【0007】[0007]

【発明の実施の形態】図1は本発明方法を実施するため
の装置の全体構成の一例の説明図である。廃棄物ガス化
溶融炉は,炉本体に塊状炭素物質であるコークスと廃棄
物の充填層を形成すると共に,このコークス充填層内に
主羽口と副羽口を介して高温空気を供給し,溶融炉本体
内に投入される廃棄物をガス化及び燃焼させ,不燃物を
溶融するようになっている。この際,充填層の上部は流
動状態になっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram showing an example of the overall configuration of an apparatus for carrying out the method of the present invention. The waste gasification and melting furnace forms a packed bed of coke, which is a lumpy carbon material, and waste in the furnace body, and supplies high temperature air into the coke packed bed through the main tuyere and the sub-tuyere, The waste that is put into the melting furnace body is gasified and burned to melt the incombustibles. At this time, the upper part of the packed bed is in a fluid state.

【0008】そして,炉体側面にマイクロウェ−ブの発
信・受信アンテナが対向して複数段設けられている。取
付け位置の上限は装入物が最も高く堆積すると思われる
高さが望ましく(朝顔下部もしくは朝顔下),下は副羽
口下が下限である。取付け位置は、その中間ならばどの
高さでも、何段でもよい。
A plurality of microwave transmitting / receiving antennas are provided facing each other on the side surface of the furnace body. The upper limit of the mounting position is desired to be the height at which the charge is considered to be highest (according to the lower part of the morning glory or below the morning glory), and the lower limit is below the secondary tuyere. The mounting position may be any height or any number of steps in the middle.

【0009】こうして、対向する複数のアンテナ間での
マイクロウェ−ブの透過強度の変化を連続して、または
周期的に測定することにより、充填層の層高レベルの到
達位置を判別・測定する。
Thus, the arrival position of the filling layer at the layer high level is determined and measured by continuously or periodically measuring the change in the transmission intensity of the microwave between the plurality of opposing antennas. .

【0010】図2(a)は測定結果の一例である。しか
し,信号が非常にバラツキ,このままでは層高の判断は
難しい。そこで,この信号を処理して,頻度分布の最も
多いレベルを表示させたのが(b)である。このように
信号処理により層高判断が明確にしかも安定的に行え
る。
FIG. 2A shows an example of the measurement result. However, the signals are extremely variable, and it is difficult to determine the height of the bed if the signals remain as they are. Therefore, this signal is processed to display the level with the highest frequency distribution in (b). In this way, the signal processing enables clear and stable determination of the layer height.

【0011】なお、マイクロウェ−ブの使用波長は、廃
棄物ガス化溶融炉に対して最適値があり、流動層上部に
ダストが滞留しているため、波長が短いとダストにより
信号が減衰され、伝播・透過信号の検出が困難となり、
測定できず、一方、波長が長すぎると、比較的密度の低
い流動層表面を透過し、やはり測定できない。
The wavelength used by the microwave has an optimum value for the waste gasification and melting furnace, and dust is retained in the upper part of the fluidized bed. Therefore, if the wavelength is short, the signal is attenuated by the dust. , It becomes difficult to detect the propagation / transmission signal,
On the other hand, if the wavelength cannot be measured, on the other hand, if the wavelength is too long, the light passes through the surface of the fluidized bed having a relatively low density, and the measurement cannot be performed.

【0012】又、波長が長い場合には、信号の送受信を
行うアンテナが大きくなり、設置が困難となる。そこ
で、ダスト中の伝播特性及びアンテナ形状の制限によ
り、15〜20GHz(波長15〜20mm9)とするこ
とが望ましい。
Further, if the wavelength is long, the antenna for transmitting and receiving signals becomes large, which makes installation difficult. Therefore, it is desirable to set the frequency to 15 to 20 GHz (wavelength 15 to 20 mm9) due to the propagation characteristics in dust and the shape of the antenna.

【0013】なお、同様の測定は、レーザや超音波でも
可能であるが、レーザではダストで光散乱されたり、超
音波ではガスの熱変動で振動が不安定となるので、マイ
クロウェ−ブが最も実用的である。
The same measurement can be performed with a laser or an ultrasonic wave. However, the laser causes light scattering by dust, and the ultrasonic wave causes unstable vibration due to thermal fluctuations of the gas. Most practical.

【0014】図3は測定信号の頻度分布,信号強度と炉
内状態の関係を示したものである。(a)は,信号強度
は大きく,空間を測定してることを示している。(b)
は、信号強度は弱く,粒子密度の大きい層を測定してる
ことを示している。流動状態は、この2つの場合が交互
に起きており、一番下の分布(c)のようになる。この
図(c)の分布を示す段を層高とする。これにより、層
高管理が安定的に行え、また分布形状により流動状態が
把握できる。
FIG. 3 shows the relationship between the frequency distribution of the measured signal, the signal strength and the state inside the furnace. (A) shows that the signal strength is high and the space is being measured. (B)
Indicates that the layer with weak signal intensity and high particle density is being measured. In the flow state, these two cases occur alternately, and the distribution (c) at the bottom is obtained. The step showing the distribution of FIG. 7C is defined as the layer height. As a result, the height of the bed can be stably controlled, and the flow state can be grasped by the distribution shape.

【0015】また、各段の分布を相対的に比較すること
により、流動状態を把握することができる。例えば、一
番上ばかりか中段も図(c)の分布を示す場合、中段レ
ベルまで流動が生じている、等の判断ができる。これは
信号処理により初めて行えることである。
Further, the flow state can be grasped by relatively comparing the distributions of the respective stages. For example, when the distribution shown in FIG. 6C is displayed not only at the top but also in the middle, it can be determined that the flow has occurred up to the middle level. This can only be done by signal processing.

【0016】図4は,本発明の操業への適用例である
が,操業開始12時間後より本発明方法を取り入れた結
果,今まで炉内温度に頼っていたため,ふらついていた
操業が,層高さを一定に保つような装入を行うことによ
り,安定的な操業が行えるようになった。
FIG. 4 shows an example of application of the present invention to operation. As a result of incorporating the method of the present invention from 12 hours after the start of operation, the operation which had been staggering because of relying on the temperature in the furnace until now Stable operation has become possible by charging so that the height is kept constant.

【0017】[0017]

【発明の効果】流動状態にある層高レベルの測定を安定
して行えるようになった。
EFFECTS OF THE INVENTION It has become possible to stably measure a high level of a bed in a fluidized state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するための装置の全体構成の
一例の説明図。
FIG. 1 is an explanatory diagram showing an example of the overall configuration of an apparatus for carrying out the method of the present invention.

【図2】測定結果の一例の説明図。FIG. 2 is an explanatory diagram of an example of measurement results.

【図3】測定信号の強度と頻度分布と炉内状況の関係を
示した説明図。
FIG. 3 is an explanatory diagram showing the relationship between the intensity and frequency distribution of the measurement signal and the situation inside the furnace.

【図4】操業経緯の説明図。FIG. 4 is an explanatory diagram of the operation history.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 直 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鈴木 康夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 吉田 朋広 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Nakamura 1-2, Marunouchi, Chiyoda-ku, Tokyo Japan Steel Pipe Co., Ltd. (72) Yasuo Suzuki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Date Inside the Steel Pipe Co., Ltd. (72) Inventor Tomohiro Yoshida 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Steel Pipe Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物ガス化溶融炉の炉体側面に対向し
てマイクロウェ−ブの発信・受信アンテナを複数段設
け、炉内を伝播・透過する信号の強度、バラツキから層
高レベル及び流動状態を求めることを特徴とする層高レ
ベルの測定方法。
1. A plurality of microwave transmitting / receiving antennas are provided so as to face a side surface of a furnace of a waste gasification and melting furnace, and the strength and level of a signal propagating / transmitting in the furnace is increased and the layer height level is changed. A method for measuring a bed high level, which is characterized by obtaining a fluidized state.
JP25056495A 1995-09-28 1995-09-28 Measuring method for layer height level Pending JPH0989633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25056495A JPH0989633A (en) 1995-09-28 1995-09-28 Measuring method for layer height level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25056495A JPH0989633A (en) 1995-09-28 1995-09-28 Measuring method for layer height level

Publications (1)

Publication Number Publication Date
JPH0989633A true JPH0989633A (en) 1997-04-04

Family

ID=17209775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25056495A Pending JPH0989633A (en) 1995-09-28 1995-09-28 Measuring method for layer height level

Country Status (1)

Country Link
JP (1) JPH0989633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287007A (en) * 2017-01-09 2018-07-17 山东省水利勘测设计院 A kind of intelligent water-level instrumentation based on Data fusion technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287007A (en) * 2017-01-09 2018-07-17 山东省水利勘测设计院 A kind of intelligent water-level instrumentation based on Data fusion technique
CN108287007B (en) * 2017-01-09 2020-07-07 山东省水利勘测设计院 Intelligent water level monitor based on data fusion technology

Similar Documents

Publication Publication Date Title
EP0349165B1 (en) Acoustic detection and measurement of the change in wall thickness of a reactor
US9212956B2 (en) Ultrasonic temperature measurement device
US7665362B2 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
EP0266192B1 (en) Passive acoustic power spectra to monitor and control processing
JP3023516B2 (en) Method and apparatus for quickly and accurately measuring the density of pneumatically transported solids using a combination of two density measuring means
US5571974A (en) Method and apparatus for the measurement of particle flow in a pipe
US4422326A (en) Method of ascertaining the state inside melting furnace for radioactive waste
JPH0989633A (en) Measuring method for layer height level
US4004219A (en) Method for measuring the conditions inside a metal covered furnace during its operation
US4843894A (en) Measurement of sizes of falling particles
JP3855639B2 (en) Profile measurement method of blast furnace interior entrance surface
RU2145261C1 (en) Apparatus for continuous measuring of quantity of coal in ball mill cavity
JPH0989632A (en) Measuring method for layer height by reflected waves
JPS6013009A (en) Method and device for measuring blast furnace charge
JPS6055252A (en) Detection of boundary and grain size of material charged in blast furnace
JP2005121568A (en) Method of sensing layer height level of waste gasified melting furnace
JPH09263809A (en) Method for measuring distance to charged material surface in blast furnace and instrument therefor
JPH0989627A (en) Measuring method for layer height by in-furnace differential pressure
JPH07286996A (en) Ultrasonic wave diagnosis method for undefined shape refractory body lining
SU1186649A1 (en) Method of monitoring carbon content in converter bath
Abernethy et al. On‐Line Measurement of Mass Flow of Pneumatically Conveyed Solids
JPH03134109A (en) Method for measuring layer height of charged material in smelting furnace
JPH11181509A (en) Method for measuring descending velocity of charged material in blast furnace
GB2257786A (en) Liquid steel impurity detector
Okada et al. Dead-man temperature distribution measurement in a blast furnace by acoustic CT method