JPH0988686A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH0988686A
JPH0988686A JP24004195A JP24004195A JPH0988686A JP H0988686 A JPH0988686 A JP H0988686A JP 24004195 A JP24004195 A JP 24004195A JP 24004195 A JP24004195 A JP 24004195A JP H0988686 A JPH0988686 A JP H0988686A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
deterioration
deterioration recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24004195A
Other languages
Japanese (ja)
Inventor
Hitoshi Onodera
仁 小野寺
Takaharu Yakushiji
敬治 薬師寺
Katsunori Hiasa
勝訓 日浅
Sukenori Momoshima
祐憲 百島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP24004195A priority Critical patent/JPH0988686A/en
Publication of JPH0988686A publication Critical patent/JPH0988686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively apply the deterioration recovery process to a catalyst metal without deteriorating the operating property of an engine. SOLUTION: This exhaust emission control device for an engine is provided with an exhaust emission control catalyst 101 installed on the exhaust system of the engine, a deterioration recovery process operating area judging means 102 judging the deterioration recovery process operating area where the exhaust temperature exceeds a prescribed value, an air-fuel ratio detecting means 103 detecting the air-fuel ratio of the engine, and a deterioration recovery processing means 104 applying the proportional integration control to approximate the air-fuel ratio of the air-fuel mixture fed to the engine to a target value on the rich side from the theoretical air-fuel ratio in the deterioration recovery process operating area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、触媒を用いた内燃機関
の排気浄化装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an exhaust gas purification device for an internal combustion engine using a catalyst.

【0002】[0002]

【従来の技術】自動車用内燃機関等にあっては、排気を
清浄化するため、空燃比を理論空燃比となるようにフィ
ードバック制御するとともに、排気通路にHC,COの
酸化と、NOの還元を同時に行う三元触媒を設置したシ
ステムが、広く実用化されている。
2. Description of the Related Art In an automobile internal combustion engine or the like, in order to purify exhaust gas, feedback control is performed so that an air-fuel ratio becomes a stoichiometric air-fuel ratio, and HC and CO are oxidized and NO is reduced in an exhaust passage. A system equipped with a three-way catalyst that simultaneously performs the above is widely put into practical use.

【0003】この三元触媒に用いられる触媒金属として
一般的なロジウム(Rh)と白金(Pt)は、メタル状
態で触媒作用を発揮するが、理論空燃比よりリーン側の
空燃比である高温のリーン排気雰囲気に晒されると酸化
してしまい、触媒性能が一時的に低下する、いわゆる一
時劣化を起こす。この一時劣化は、高温リーン排気雰囲
気に晒すことで進行するが、高温リッチ排気雰囲気に晒
すことで還元され回復する特性がある。
Rhodium (Rh) and platinum (Pt), which are general catalytic metals used in this three-way catalyst, exert a catalytic action in a metal state, but at a high temperature which is an air-fuel ratio leaner than the theoretical air-fuel ratio. When exposed to a lean exhaust atmosphere, it oxidizes, causing a so-called temporary deterioration in which catalytic performance is temporarily reduced. This temporary deterioration progresses when exposed to a high-temperature lean exhaust atmosphere, but it has a characteristic that it is reduced and recovered when exposed to a high-temperature rich exhaust atmosphere.

【0004】こうした特性を利用して、触媒の劣化度合
が所定値を越えたときに、空燃比をリッチ化する劣化回
復処理を行う従来装置がある(例えば、特開平5−80
7363号、特開平5−808383号公報、参照)。
Utilizing such characteristics, there is a conventional apparatus for performing deterioration recovery processing for enriching the air-fuel ratio when the degree of deterioration of the catalyst exceeds a predetermined value (for example, Japanese Patent Laid-Open No. 5-80).
7363, Japanese Patent Application Laid-Open No. 5-808383).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、こうし
た従来装置で行われる劣化回復処理は、空燃比を理論空
燃比よりかなりリッチ側にオープン制御するが、機関の
運転性を悪化させるばかりか、図5に示すように、空燃
比をリッチ側にオープン制御した方が、空燃比をリッチ
側にフィードバック制御した場合に比べて、触媒転化率
の回復が遅れることが判明した。
However, in the deterioration recovery process performed by such a conventional device, the air-fuel ratio is open-controlled to be considerably richer than the stoichiometric air-fuel ratio, but not only the drivability of the engine is deteriorated, but also FIG. As shown in, it was found that the open control of the air-fuel ratio to the rich side delays the recovery of the catalyst conversion rate compared to the case where the air-fuel ratio is feedback-controlled to the rich side.

【0006】本発明は上記の点に着目し、機関の運転性
を悪化させることなく、触媒金属の劣化回復処理を有効
に行うことを目的とする。
The present invention focuses on the above points, and an object thereof is to effectively carry out the deterioration recovery process of the catalyst metal without deteriorating the drivability of the engine.

【0007】[0007]

【課題を解決するための手段】請求項1記載の内燃機関
の排気浄化装置は、図10に示すように、機関の排気系
に設置される排気浄化用の触媒101と、排気温度が所
定値を越える劣化回復処理運転域を判定する劣化回復処
理運転域判定手段102と、機関の空燃比を検出する空
燃比検出手段103と、劣化回復処理運転域にあるとき
に、機関に供給される混合気の空燃比を理論空燃比より
リッチ側の目標値に近づけるように比例積分制御を行う
劣化回復処理手段104と、を備える。
As shown in FIG. 10, an exhaust gas purification apparatus for an internal combustion engine according to claim 1 has an exhaust gas purification catalyst 101 installed in an exhaust system of the engine and an exhaust gas temperature of a predetermined value. Deterioration recovery processing operation range determining means 102 for determining a deterioration recovery processing operation range, an air-fuel ratio detecting means 103 for detecting an air-fuel ratio of the engine, and a mixture supplied to the engine when in the deterioration recovery processing operation range. Deterioration recovery processing means 104 for performing proportional-plus-integral control so that the air-fuel ratio of air becomes closer to the target value on the rich side of the theoretical air-fuel ratio.

【0008】[0008]

【作用】請求項1記載の内燃機関の排気浄化装置におい
て、排気温度が所定値を越える劣化回復処理運転域に、
機関に供給される混合気の空燃比を理論空燃比よりリッ
チ側の目標値に近づけるように比例積分制御を行い、触
媒に導かれる排気の空燃比を目標値を中心としてある周
波数で変動させることにより、排気温度を低下させると
ともに、永久劣化が進んでいない触媒金属の一時劣化回
復が有効に行われる。この結果、燃費悪化や排気エミッ
ションの悪化を抑えられるとともに、触媒の寿命延長が
はかられる。
In the exhaust gas purification device for an internal combustion engine according to claim 1, in the deterioration recovery processing operation range in which the exhaust gas temperature exceeds a predetermined value,
Performing proportional-plus-integral control to bring the air-fuel ratio of the air-fuel mixture supplied to the engine closer to the target value on the rich side of the theoretical air-fuel ratio, and varying the air-fuel ratio of the exhaust gas guided to the catalyst around the target value at a certain frequency. As a result, the exhaust gas temperature is lowered, and the temporary deterioration recovery of the catalyst metal whose permanent deterioration has not progressed is effectively performed. As a result, deterioration of fuel consumption and deterioration of exhaust emission can be suppressed, and the life of the catalyst can be extended.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1に示すように、エンジン7の吸気通路
8には燃料噴射弁5が取付けられ、コントローラ4から
の信号に応じて燃料を噴射する。
As shown in FIG. 1, a fuel injection valve 5 is attached to an intake passage 8 of an engine 7 and injects fuel in response to a signal from a controller 4.

【0011】排気通路9には排気中のHC,COの酸化
と、NOxの還元を同時に行う三元触媒1が設置され
る。三元触媒1は、アルミナ等からなる担体に触媒金属
として、ロジウム(Rh)、白金(Pt)、パラジウム
(Pd)を担持させ、その他セリア等を担持させて構成
される。
The exhaust passage 9 is provided with a three-way catalyst 1 that simultaneously oxidizes HC and CO in the exhaust gas and reduces NOx. The three-way catalyst 1 is configured by supporting rhodium (Rh), platinum (Pt), palladium (Pd) as a catalyst metal on a carrier made of alumina or the like, and also supporting ceria or the like.

【0012】三元触媒1の上流には、O2センサ2が設
置される。O2センサ2は排気中の酸素濃度に応じた信
号を出力する。
An O 2 sensor 2 is installed upstream of the three-way catalyst 1. The O 2 sensor 2 outputs a signal corresponding to the oxygen concentration in the exhaust gas.

【0013】コントローラ4は、エンジン冷却水温度を
検出する水温センサ12から検出信号、図示しないアイ
ドルスイッチから信号、吸入空気量Qの検出信号、回転
数N等の検出信号等を入力して、基本燃料噴射量Tpを
算出するとともに、O2センサ2の検出信号を入力し
て、所定のストイキ域で燃料噴射量が理論空燃比(1
4.6)を中心とした狭い範囲に収まるようにフィード
バック制御する。
The controller 4 inputs a detection signal from the water temperature sensor 12 for detecting the engine cooling water temperature, a signal from an idle switch (not shown), a detection signal of the intake air amount Q, a detection signal of the rotational speed N, etc. The fuel injection amount Tp is calculated, and the detection signal of the O 2 sensor 2 is input so that the fuel injection amount is the theoretical air-fuel ratio (1
Feedback control is performed so that it falls within a narrow range around 4.6).

【0014】燃料噴射制御は、検出された吸入空気量Q
とエンジン回転数Nとに基づいて基本噴射量Tpを Tp=K・Q/N ‥‥(1) ただし、K;定数 なる式から演算した後、この基本噴射量Tpを検出され
た冷却水温Tw、スロットル開度TVO、排気中の酸素
濃度等に基づいて次式のように補正し、燃料噴射量Ti
を演算する。
Fuel injection control is performed by detecting the detected intake air amount Q.
And the engine speed N, the basic injection amount Tp is calculated as follows: Tp = K · Q / N (1) where K; constant, and then the basic injection amount Tp is detected. , The throttle opening TVO, the oxygen concentration in the exhaust gas, etc.
Is calculated.

【0015】 Ti=Tp×(1+KTW+KAS+KAI+KMR)×KFC+TS ‥‥(2) ただし、KTW;水温増量補正係数 KAS;始動および始動後増量補正係数 KAI;アイドル後増量補正係数 KMR;高負荷時の増量補正係数 KFC;フューエルカット補正係数 TS;バッテリ電圧補正分 この演算された燃料噴射量Tiに対応するパルス信号を
各燃料噴射弁5に出力し、燃料噴射制御を行う。
Ti = Tp × (1 + K TW + K AS + K AI + K MR ) × K FC + T S (2) However, K TW ; water temperature increase correction coefficient K AS ; start and post-start increase correction coefficient K AI ; idle Post-increase correction coefficient K MR ; increase correction coefficient at high load K FC ; fuel cut correction coefficient T S ; battery voltage correction amount A pulse signal corresponding to the calculated fuel injection amount Ti is output to each fuel injection valve 5. , Fuel injection control is performed.

【0016】なお、吸気通路8には排気通路9からの一
部の排気を還流する排気還流通路14が接続され、コン
トローラ4を介して排気還流制御弁15が運転条件に応
じて排気の還流量を制御し、排気中のNOxを減少させ
る。
An exhaust gas recirculation passage 14 for recirculating a part of the exhaust gas from the exhaust passage 9 is connected to the intake passage 8, and an exhaust gas recirculation control valve 15 via a controller 4 controls the exhaust gas recirculation amount according to operating conditions. To reduce NOx in the exhaust gas.

【0017】ところで、触媒金属の劣化形態は、触媒金
属の酸化反応または還元反応により起こる一時劣化と、
こうした一時劣化とは別にウォッシュコートの熱変形に
よる比表面積の減少や触媒金属の分散度の減少等の物理
的な要因により触媒転化率が低下する永久劣化がある。
By the way, the deterioration form of the catalyst metal includes temporary deterioration caused by the oxidation reaction or reduction reaction of the catalyst metal.
In addition to such temporary deterioration, there is permanent deterioration in which the catalyst conversion rate decreases due to physical factors such as a decrease in specific surface area due to thermal deformation of the washcoat and a decrease in dispersity of the catalyst metal.

【0018】ロジウム(Rh)、白金(Pt)は、メタ
ル状態で触媒作用を発揮するが、理論空燃比よりリーン
側の空燃比で高温のリーン排気雰囲気に晒されると、ロ
ジウムまたは白金が酸化してしまい、触媒性能が一時的
に低下する、いわゆる一時劣化を起こす。
Rhodium (Rh) and platinum (Pt) exert a catalytic action in a metal state, but when exposed to a high temperature lean exhaust atmosphere at an air-fuel ratio leaner than the theoretical air-fuel ratio, rhodium or platinum is oxidized. As a result, the catalyst performance temporarily deteriorates, so-called temporary deterioration occurs.

【0019】図4は、空燃比を理論空燃比よりリッチ側
の目標値に近づけるように比例積分制御する運転を30
分間に渡って継続した場合において、排気中のCOの転
化率ηを測定した結果を示している。これにより、三元
触媒1の上流側の排気温度が650〜700°C以上で
あり、かつ空燃比A/Fが14.6以下のリッチ領域で
回復する特性がある。
FIG. 4 shows an operation in which proportional-integral control is performed so that the air-fuel ratio approaches a target value on the rich side of the stoichiometric air-fuel ratio.
It shows the result of measuring the conversion rate η of CO in the exhaust gas when the operation was continued for a minute. As a result, there is a characteristic that the exhaust temperature on the upstream side of the three-way catalyst 1 recovers in a rich region where the exhaust gas temperature is 650 to 700 ° C. or higher and the air-fuel ratio A / F is 14.6 or lower.

【0020】図5は、空燃比をリッチ側にオープン制御
した場合と、空燃比をリッチ側にフィードバック制御し
た場合のそれぞれにおいて、排気温度を一定にしたまま
運転しながら触媒転化率を測定した結果を示す。これに
より、空燃比をリッチ側にフィードバック制御した場合
の方が、空燃比をリッチ側にオープン制御した場合に比
べて、速やかに触媒転化率が回復することがわかる。
FIG. 5 shows the results of measuring the catalyst conversion rate while operating with the exhaust temperature kept constant, in each of the case where the air-fuel ratio is open-controlled to the rich side and the case where the air-fuel ratio is feedback-controlled to the rich side. Indicates. Thus, it can be seen that the catalyst conversion rate is recovered more quickly when the air-fuel ratio is feedback-controlled to the rich side than when the air-fuel ratio is open-controlled to the rich side.

【0021】上記した実験結果に着目して、所定の高排
気温時であり、かつ所定の高負荷時にある劣化処理運転
域において、O2センサ2の検出信号に基づいて燃料噴
射量が理論空燃比よりリッチ側の所定値を中心とした狭
い範囲に収まるようにフィードバック制御する。
Paying attention to the above experimental results, the fuel injection amount is theoretically empty based on the detection signal of the O 2 sensor 2 in the deterioration processing operation range where the exhaust gas temperature is high and the load is high. Feedback control is performed so as to be within a narrow range centered on a predetermined value on the rich side of the fuel ratio.

【0022】図2のフローチャートは、劣化回復処理を
行うルーチンを示しており、コントローラ4において一
定周期毎に実行される。
The flowchart of FIG. 2 shows a routine for performing deterioration recovery processing, which is executed by the controller 4 at regular intervals.

【0023】まず、ステップA1でアイドルスイッチが
OFFになっているかアイドル以外の運転時かどうかを
判定する。
First, in step A1, it is determined whether the idle switch is off or the operation is other than idle.

【0024】続いて、ステップA2に進んで吸入空気量
Oaが所定値QHTMPより大きい高排気温時かどうかを判
定する。
Next, at step A2, it is judged if the intake air amount Oa is at a high exhaust temperature higher than a predetermined value Q HTMP .

【0025】続いて、ステップA3に進んで高負荷時の
増量補正係数KMRが1.0より大きいかどうかを判定す
る。
Subsequently, the routine proceeds to step A3, where it is judged whether or not the increase correction coefficient K MR under high load is larger than 1.0.

【0026】高負荷時の増量補正係数KMRが1.0より
小さいと判定された場合、ステップA4にて所定の遅延
時間DYHTMP(例えば4秒)が経過した後に、ステップ
A5に進んで、三元触媒1の劣化回復処理として、空燃
比をリッチ側の目標値に近づけるように比例積分制御を
行う。
When it is determined that the increase correction coefficient K MR at high load is smaller than 1.0, after a predetermined delay time D YHTMP (for example, 4 seconds) has elapsed in step A4, the process proceeds to step A5, As the deterioration recovery process for the three-way catalyst 1, proportional-integral control is performed so that the air-fuel ratio approaches the target value on the rich side.

【0027】高負荷時の増量補正係数KMRが1.0以上
と判定された場合、ステップA6に進んで高負荷時の増
量補正係数KMRを用いて空燃比をオープン制御しつつ、
ステップA7において高負荷時の増量補正係数KMR
1.0以下と判定された場合、すぐにステップA5に進
んで、三元触媒1の劣化回復処理を行う。
When it is determined that the increase correction coefficient K MR under high load is 1.0 or more, the process proceeds to step A6, in which the air-fuel ratio is open-controlled using the increase correction coefficient K MR under high load,
When it is determined in step A7 that the increase correction coefficient K MR at high load is 1.0 or less, the process immediately proceeds to step A5, and the deterioration recovery process of the three-way catalyst 1 is performed.

【0028】図3のフローチャートはコントローラ4に
おいて実行される空燃比フィードバック制御のプログラ
ムを示しており、これは一定周期毎に実行される。
The flowchart of FIG. 3 shows a program for air-fuel ratio feedback control executed by the controller 4, which is executed at regular intervals.

【0029】まず、ステップS1にて、エンジン回転数
N、スロットル開度TVO、冷却水温度TW、吸気量Q
を読込む。
First, in step S1, engine speed N, throttle opening TVO, cooling water temperature TW, intake air amount Q
Read in.

【0030】ステップS2で、これらの検出値に基づい
て基本燃料噴射量Tpを演算する。
In step S2, the basic fuel injection amount Tp is calculated based on these detected values.

【0031】ステップS3で、現在の運転条件が予め設
定された空燃比フィードバック制御領域内であるか否か
を判定し、領域内であればステップS4に進み、領域外
であればステップS20に進んで、空燃比補正係数αを
100%とし、続いてステップS21に進んで、フラッ
グFlugVをリセットし、ステップS11で今回の基
本燃料噴射量TpをBTpに保管する。
In step S3, it is determined whether or not the current operating condition is within the preset air-fuel ratio feedback control region. If it is within the region, the process proceeds to step S4, and if it is outside the region, the process proceeds to step S20. Then, the air-fuel ratio correction coefficient α is set to 100%, the process then proceeds to step S21, the flag FlagV is reset, and the current basic fuel injection amount Tp is stored in BTp in step S11.

【0032】ステップS4で、O2センサ出力VO2を読
込み、ステップS5でVO2と所定値VSLとを比較し
て、排気の空燃比が理論空燃比よりリッチかリーンかを
判定する。
In step S4, the O 2 sensor output VO 2 is read, and in step S5 VO 2 is compared with a predetermined value VSL to determine whether the air-fuel ratio of the exhaust gas is richer or leaner than the theoretical air-fuel ratio.

【0033】VO2が所定値VSLより小さいリーン判
定時に、ステップS6に進んで、フラッグFlugVO
を参照し、排気空燃比がリッチからリーンに反転するリ
ーン反転時を検出する。この反転が検出された場合、ス
テップS7に進んで、後述する空燃比補正制御係数の演
算を行う。
When VO 2 is judged to be leaner than the predetermined value VSL, the routine proceeds to step S6, where the flag FlagVO
Referring to, the lean air-fuel ratio when the exhaust air-fuel ratio is inverted from rich to lean is detected. When this reversal is detected, the process proceeds to step S7, and the air-fuel ratio correction control coefficient to be described later is calculated.

【0034】リーン反転時、ステップS8に進んで、エ
ンジン回転数Nと基本燃料噴射量Tpに応じて予め設定
されたマップに基づいてリッチ反転時の比例制御分Pl
を検索し、ステップS9に進んで空燃比補正係数αにこ
の比例制御分Plを加算する。
During lean reversal, the routine proceeds to step S8, where the proportional control amount Pl during rich reversal is set based on a map preset according to the engine speed N and the basic fuel injection amount Tp.
Is searched for, and the proportional control amount Pl is added to the air-fuel ratio correction coefficient α in step S9.

【0035】リーン反転時でない場合、ステップS12
に進んで、空燃比補正制御係数のリーン時積分制御分I
lを読込み、ステップS13に進んで空燃比補正係数α
にこの積分制御分Ilを加算する。
If it is not lean inversion, step S12.
To the lean-time integral control component I of the air-fuel ratio correction control coefficient I.
1 is read, and the routine proceeds to step S13, where the air-fuel ratio correction coefficient α
Is added to the integral control component Il.

【0036】このようにして空燃比補正係数αが決定さ
れた後、ステップS10に進んで、今回のリッチ・リー
ン判定結果をフラッグFlugVOに保存し、ステップ
S11で今回の基本燃料噴射量TpをBTpに保管す
る。
After the air-fuel ratio correction coefficient α is determined in this way, the routine proceeds to step S10, where the rich / lean determination result of this time is stored in the flag FlagVO, and the basic fuel injection amount Tp of this time is BTp in step S11. Store in.

【0037】一方、VO2が所定値VSLより大きいリ
ッチ判定時に、ステップS14に進んで、フラッグFl
ugVOを参照し、排気空燃比がリーンからリッチに反
転するリッチ反転時を検出する。
On the other hand, when VO 2 is richer than the predetermined value VSL, the routine proceeds to step S14, where the flag Fl is set.
With reference to ugVO, a rich inversion time when the exhaust air-fuel ratio is inverted from lean to rich is detected.

【0038】リッチ反転時、ステップS15に進んで、
エンジン回転数Nと基本燃料噴射量Tpに応じて予め設
定されたマップに基づいてリーン反転時の比例制御分P
rを検索し、ステップS16に進んで空燃比補正係数α
からこの比例制御分Prを減算する。
At the time of rich inversion, the process proceeds to step S15,
The proportional control amount P at the time of lean reversal based on a map preset according to the engine speed N and the basic fuel injection amount Tp
r is searched, and the routine proceeds to step S16, where the air-fuel ratio correction coefficient α
This proportional control amount Pr is subtracted from.

【0039】リッチ反転時でない場合、ステップS18
に進んで、空燃比補正制御係数のリッチ時積分制御分I
rを読込み、ステップS19に進んで空燃比補正係数α
からこの積分制御分Irを減算する。
When it is not the time of rich inversion, step S18
To the rich-time integral control component I of the air-fuel ratio correction control coefficient I.
r is read, and the routine proceeds to step S19, where the air-fuel ratio correction coefficient α
This integral control component Ir is subtracted from.

【0040】このようにして空燃比補正係数αが決定さ
れた後、ステップS17で、今回のリーン・リッチ判定
結果をフラッグFlugVOに保存し、ステップS11
で今回の基本燃料噴射量TpをBTpに保管する。
After the air-fuel ratio correction coefficient α is determined in this way, the lean / rich determination result of this time is stored in the flag FlagVO in step S17, and step S11
Then, the basic fuel injection amount Tp of this time is stored in BTp.

【0041】コントローラ4は、上記ルーチンで算出さ
れた空燃比補正係数αに基づいて、燃料噴射量を前記
(2)式で算出する。
The controller 4 calculates the fuel injection amount by the equation (2) based on the air-fuel ratio correction coefficient α calculated in the above routine.

【0042】図8に示すように、通常運転時において、
空燃比がリーン側になった場合、O2センサ2の出力が
λ=1となるスライスレベルより小さくなると、始めに
空燃比補正係数αを比例制御分Plだけステップ状に下
げて、それから積分制御分Ilの傾きで徐々に下げて空
燃比を濃くするように制御する。こうして、空燃比がリ
ッチ側になった場合、O2センサ2の出力が理論空燃比
相当のスライスレベルより大きくなると、空燃比補正係
数αを始めに比例制御分Prだけステップ状に下げて、
それから積分制御分Irの傾きで徐々に下げて空燃比を
薄くするように制御する。この制御を繰り返すことによ
り実際の空燃比を理論空燃比の付近に保つことができ
る。
As shown in FIG. 8, during normal operation,
When the air-fuel ratio becomes leaner and the output of the O 2 sensor 2 becomes smaller than the slice level at which λ = 1, the air-fuel ratio correction coefficient α is first lowered stepwise by the proportional control amount Pl, and then the integral control is performed. It is controlled so that the air-fuel ratio is made thicker by gradually lowering it with the inclination of the minute Il. Thus, when the air-fuel ratio is on the rich side and the output of the O 2 sensor 2 becomes larger than the slice level corresponding to the theoretical air-fuel ratio, the air-fuel ratio correction coefficient α is first lowered by the proportional control amount Pr in a stepwise manner.
Then, the air-fuel ratio is controlled to be gradually reduced by gradually lowering the slope of the integral control amount Ir. By repeating this control, the actual air-fuel ratio can be maintained near the stoichiometric air-fuel ratio.

【0043】これに対して、三元触媒1の劣化回復処理
時においては、スライスレベルをリッチ側に移行させ
て、空燃比をリッチ側のスライスレベルを中心として所
定周波数で変動させる。
On the other hand, during the deterioration recovery process of the three-way catalyst 1, the slice level is shifted to the rich side, and the air-fuel ratio is changed at a predetermined frequency with the slice level on the rich side as the center.

【0044】このようにして、排気がある程度高温とな
りうる所定の劣化処理運転域(図6参照)で、空燃比A
/Fを理論空燃比よりリッチ側の目標値(14,4)に
近づける比例積分制御を行い、その運転状態を一定時間
例えば10〜30分間連続して行うことにより、三元触
媒1の劣化を有効に回復させるとともに、排気温度を低
下させる。
In this way, the air-fuel ratio A in the predetermined deterioration treatment operation range (see FIG. 6) where the exhaust gas can reach a high temperature to some extent.
/ F is controlled to approach the target value (14, 4) on the rich side of the theoretical air-fuel ratio, and the operating state is continuously maintained for a certain period of time, for example, 10 to 30 minutes, so that the deterioration of the three-way catalyst 1 is prevented. It effectively recovers and lowers the exhaust temperature.

【0045】この結果、燃費悪化や排気エミッションの
悪化を抑えられるとともに、永久劣化が進んでいない触
媒金属の一時劣化回復が適確に行われ、図8、図9に示
すように、三元触媒1の寿命延長がはかられる。
As a result, it is possible to suppress deterioration of fuel consumption and deterioration of exhaust emission, and to properly perform temporary deterioration recovery of the catalyst metal that has not deteriorated permanently. As shown in FIGS. 8 and 9, the three-way catalyst is used. The life of 1 can be extended.

【0046】[0046]

【発明の効果】以上説明したように請求項1記載の内燃
機関の排気浄化装置は、排気温度が所定値を越える劣化
回復処理運転域に、機関に供給される混合気の空燃比を
理論空燃比よりリッチ側の目標値に近づけるように比例
積分制御を行い、触媒に導かれる排気の空燃比を目標値
を中心としてある周波数で変動させる構成により、永久
劣化が進んでいない触媒金属の一時劣化回復が有効に行
われ、燃費悪化や排気エミッションの悪化を抑えられる
とともに、触媒の寿命延長がはかられる。
As described above, in the exhaust gas purifying apparatus for an internal combustion engine according to the first aspect, the stoichiometric air-fuel ratio of the air-fuel mixture supplied to the engine is set in the deterioration recovery operation region where the exhaust temperature exceeds a predetermined value. Temporary deterioration of the catalyst metal that has not progressed permanently due to the configuration in which the proportional-integral control is performed so that it approaches the target value on the rich side of the fuel ratio, and the air-fuel ratio of the exhaust gas guided to the catalyst is changed at a certain frequency centered on the target value. Recovery is effectively performed, fuel consumption deterioration and exhaust emission deterioration can be suppressed, and the life of the catalyst can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示すシステム図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】同じく触媒劣化回復処理に入る制御内容を示す
フローチャート。
FIG. 2 is a flowchart showing the control contents of the catalyst deterioration recovery process.

【図3】同じく触媒劣化回復処理を行う制御内容を示す
フローチャート。
FIG. 3 is a flow chart showing control contents for similarly performing catalyst deterioration recovery processing.

【図4】排気温度と空燃比に対する触媒転化性能の関係
を示す特性図。
FIG. 4 is a characteristic diagram showing a relationship of catalyst conversion performance with respect to exhaust temperature and air-fuel ratio.

【図5】リッチフィードバック制御とリッチオープン制
御における触媒転化性能を示す特性図。
FIG. 5 is a characteristic diagram showing catalyst conversion performance in rich feedback control and rich open control.

【図6】劣化回復処理運転域を示す設定図。FIG. 6 is a setting diagram showing a deterioration recovery processing operation range.

【図7】空燃比の制御例を示すタイミングチャート。FIG. 7 is a timing chart showing an example of air-fuel ratio control.

【図8】車両の走行距離に対する触媒転化性能の関係を
示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between catalyst conversion performance and vehicle mileage.

【図9】車両の走行距離に対する触媒転化性能の関係を
示す特性図。
FIG. 9 is a characteristic diagram showing a relationship between catalyst conversion performance and traveling distance of a vehicle.

【図10】請求項1記載の発明のレーム対応図。FIG. 10 is a diagram corresponding to a ram of the invention according to claim 1;

【符号の説明】[Explanation of symbols]

1 三元触媒 2 O2センサ 4 コントローラ 5 燃料噴射弁 7 エンジン 9 排気通路 101 触媒 102 劣化回復処理運転域判定手段 103 空燃比検出手段 104 劣化回復処理手段DESCRIPTION OF SYMBOLS 1 Three-way catalyst 2 O 2 sensor 4 Controller 5 Fuel injection valve 7 Engine 9 Exhaust passage 101 Catalyst 102 Deterioration recovery processing operation range determination means 103 Air-fuel ratio detection means 104 Deterioration recovery processing means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 ZAB F02D 45/00 ZAB 314 314R (72)発明者 百島 祐憲 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02D 45/00 ZAB F02D 45/00 ZAB 314 314R (72) Inventor Yukinori Mojima Shima, Yokohama 2 Takaracho, Kanagawa-ku Nissan Motor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機関の排気系に設置される排気浄化用の触
媒と、 排気温度が所定値を越える劣化回復処理運転域を判定す
る劣化回復処理運転域判定手段と、 機関の空燃比を検出する空燃比検出手段と、 劣化回復処理運転域にあるときに、機関に供給される混
合気の空燃比を理論空燃比よりリッチ側の目標値に近づ
けるように比例積分制御を行う劣化回復処理手段と、 を備えたことを特徴とする内燃機関の排気浄化装置。
1. A catalyst for purifying exhaust gas, which is installed in an exhaust system of an engine, deterioration recovery processing operation range determining means for determining a deterioration recovery processing operation range in which an exhaust temperature exceeds a predetermined value, and an air-fuel ratio of the engine is detected. Air-fuel ratio detection means and deterioration recovery processing means for performing proportional-integral control so that the air-fuel ratio of the air-fuel mixture supplied to the engine is closer to the target value on the rich side than the theoretical air-fuel ratio when in the deterioration recovery processing operation range. An exhaust emission control device for an internal combustion engine, comprising:
JP24004195A 1995-09-19 1995-09-19 Exhaust emission control device for internal combustion engine Pending JPH0988686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24004195A JPH0988686A (en) 1995-09-19 1995-09-19 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24004195A JPH0988686A (en) 1995-09-19 1995-09-19 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0988686A true JPH0988686A (en) 1997-03-31

Family

ID=17053600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24004195A Pending JPH0988686A (en) 1995-09-19 1995-09-19 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0988686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027239A1 (en) * 1997-11-24 1999-06-03 Engelhard Corporation Engine management strategy to improve the ability of a catalyst to withstand severe operating environments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027239A1 (en) * 1997-11-24 1999-06-03 Engelhard Corporation Engine management strategy to improve the ability of a catalyst to withstand severe operating environments
US6021638A (en) * 1997-11-24 2000-02-08 Engelhard Corporation Engine management strategy to improve the ability of a catalyst to withstand severe operating enviroments

Similar Documents

Publication Publication Date Title
JP3663896B2 (en) Engine exhaust purification system
EP1264978B1 (en) Desulphating of nitrogen oxide trapping catalyst
EP1559892B1 (en) Nitrogen oxide purifying system and method an for internal combustion engine
JP4186259B2 (en) Exhaust gas purification device for internal combustion engine
JP4061995B2 (en) Exhaust gas purification device for internal combustion engine
JP3820625B2 (en) Air-fuel ratio control device for internal combustion engine
JP3674358B2 (en) Exhaust gas purification device for internal combustion engine
JP2002332830A (en) Exhaust emission control device of internal combustion engine
JP4273797B2 (en) Exhaust gas purification device for internal combustion engine
JPH0988686A (en) Exhaust emission control device for internal combustion engine
JPH07247833A (en) Exhaust emission control device for internal combustion engine
JP3358485B2 (en) Exhaust purification system for lean burn internal combustion engine
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JPH1162666A (en) Exhaust emission control device for internal combustion engine
JP3401955B2 (en) Exhaust gas purification device for internal combustion engine
JP2000027687A (en) Exhaust emission control device for internal combustion engine
JPH08144802A (en) Air-fuel ratio controller for internal combustion engine
JPH0797941A (en) Controlling method for lean-burning type internal combustion engine
JPH08144748A (en) Exhaust emission control device for internal combustion engine
JPH07185344A (en) Device for purifying exhaust gas of internal combustion engine
JP2000204929A (en) Catalyst deterioration detecting device of internal combustion engine
JP2000337131A (en) Exhaust emission control system for internal combustion engine
JPH06200751A (en) Exhaust emission control device for engine
JPH0329982B2 (en)
JP3470405B2 (en) Air-fuel ratio controller for lean-burn engines

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A02 Decision of refusal

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A02