JPH0988505A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPH0988505A
JPH0988505A JP24349295A JP24349295A JPH0988505A JP H0988505 A JPH0988505 A JP H0988505A JP 24349295 A JP24349295 A JP 24349295A JP 24349295 A JP24349295 A JP 24349295A JP H0988505 A JPH0988505 A JP H0988505A
Authority
JP
Japan
Prior art keywords
blade
turbine
fiber
thickness
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24349295A
Other languages
Japanese (ja)
Inventor
Yoichi Kadohara
陽一 門原
Takashi Maie
孝 真家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Original Assignee
SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK filed Critical SENSHIN ZAIRYO RIYOU GAS JIENEREETA KENKYUSHO KK
Priority to JP24349295A priority Critical patent/JPH0988505A/en
Publication of JPH0988505A publication Critical patent/JPH0988505A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce non-steady heat stress which is generated during the operation of a turbine blade made of fiber reinforced ceramics by orienting fiber for reinforcement in the direction of the thickness of the blade or in the direction of rotation of a turbine. SOLUTION: A platform on a basic end side of a moving blade 11 made of fiber reinforcing ceramics is fitted and attached in a groove formed on outer periphery of a disc 10. Fiber 13 for reinforcement to be embedded in a matrix section 12 is oriented in the direction of the thickness of the blade as well as the direction of radius of a turbine (Z direction). The direction of the thickness of the blade means the orthogonal direction to an outer peripheral face of the blade, namely, the direction of normal. The orientation amount in the direction of the thickness of the blade of the fiber 13 for reinforcement is set to 50 to 100%, of the orientation amount in the direction of radius of the turbine (Z direction). Since the fiber 13 for reinforcement is oriented in the direction of the thickness of the blade as well as the direction of radius of the turbine, heat transfer rate of a heat flow passage in the direction of the thickness of the blade which is the closest to an outer surface of the blade is increased comparatively, and heat transfer in this direction becomes easy. Accordingly, it is possible to relax temperature distribution at the non-steady time and reduce heat stress greatly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、タービン翼に係
わり、特に、繊維強化セラミックス製のタービン翼に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine blade, and more particularly to a turbine blade made of fiber reinforced ceramics.

【0002】[0002]

【従来の技術】最近、耐熱性に優れしかも強度的にも優
れることから、FRC(繊維強化セラミックス)製のタ
ービン翼が開発されている。タービン動翼をFRCで製
作する場合の強化用繊維の配向は、回転中に遠心力のた
めタービン半径方向へ大きな引張り応力が生じる関係
上、このような遠心応力に対応するため、図6に示すよ
うにZ方向、図7に示すように2次元織物を積層させて
製作するYZ方向とするのが一般的である。
2. Description of the Related Art Recently, turbine blades made of FRC (fiber reinforced ceramics) have been developed because they are excellent in heat resistance and strength. The orientation of the reinforcing fibers when the turbine blade is manufactured by FRC corresponds to such a centrifugal stress because a large tensile stress is generated in the radial direction of the turbine due to the centrifugal force during the rotation, and therefore the orientation is shown in FIG. Generally, the Z direction is used, and the YZ direction, in which two-dimensional fabrics are laminated as shown in FIG. 7, is used.

【0003】ここで、図6および図7において、Xはタ
ービン回転方向、Yはタービン軸方向、Zはタービン半
径方向であり、それらは互いに直交している。なお、こ
れらの図においてFは強化用繊維を示す。また、タービ
ン静翼においては、厚物FRCの製作の容易さから、繊
維方向がYZ2次元織物の積層材を用いることが多い。
Here, in FIGS. 6 and 7, X is a turbine rotation direction, Y is a turbine axis direction, and Z is a turbine radial direction, which are orthogonal to each other. In these figures, F represents a reinforcing fiber. Further, in the turbine vane, a laminated material having a YZ two-dimensional woven fabric in the fiber direction is often used because of the ease of manufacturing the thick FRC.

【0004】[0004]

【発明が解決しようとする課題】ところで、一般的にF
RCは、ボイドの存在によりマトリックス部の熱伝導率
が大きく低下するため、各方向への繊維の配分によって
熱力学的に異方性を生じる。したがって、これまでのタ
ービン動翼の繊維配向では、翼厚さ方向あるいはタービ
ン回転方向(X方向)への熱伝導率は、タービン半径方
向と翼弦長あるいはタービン軸方向(Y方向)へのそれ
に比べ大きく低下する。特に、タービン翼のように肉厚
が大きく変化する形状において、前述した繊維配向を有
する場合、厚肉部分の熱量は、距離が短い翼厚さ方向へ
は低熱伝導率であるため、また、熱伝導率の高い翼弦長
方向へは長距離のため、移動が困難となり、翼中央部分
は外表面の温度変化に追従できず、この部分と外表面部
分との間で大きな温度勾配を生じる。このようなメカニ
ズムによって生じる熱応力は、遠心応力の2倍程度にも
なる場合がある。
By the way, in general, F
Since RC has a large decrease in the thermal conductivity of the matrix due to the presence of voids, the distribution of fibers in each direction causes thermodynamic anisotropy. Therefore, in the conventional fiber orientation of turbine blades, the thermal conductivity in the blade thickness direction or the turbine rotation direction (X direction) is the same as that in the turbine radial direction and the chord length or the turbine axial direction (Y direction). Compared to a large decrease In particular, in a shape such as a turbine blade where the wall thickness changes greatly, when the fiber orientation described above is used, the heat quantity of the thick wall portion has a low thermal conductivity in the blade thickness direction with a short distance. Because of the long distance in the chord length direction, which has high conductivity, it becomes difficult to move, and the central portion of the blade cannot follow the temperature change of the outer surface, and a large temperature gradient is generated between this portion and the outer surface portion. The thermal stress generated by such a mechanism may be about twice the centrifugal stress.

【0005】図8は、一般的な形状のFRC製タービン
動翼において、繊維配向をタービン半径方向(Z方向)
へのみとした場合の非定常熱応力解析結果を示すもので
ある。この翼の場合、遠心応力は130MPaであるの
に対し、図より発生熱応力は200MPaとなってお
り、遠心応力の約1.5倍の熱応力が発生することがわ
かる。
FIG. 8 shows the fiber orientation of a turbine blade made of FRC having a general shape with the fiber orientation in the turbine radial direction (Z direction).
It shows the results of unsteady thermal stress analysis in the case of using only. In the case of this blade, the centrifugal stress is 130 MPa, whereas the thermal stress generated is 200 MPa, which indicates that the thermal stress is about 1.5 times the centrifugal stress.

【0006】本発明は上記事情に鑑みてなされたもの
で、運転中に生じる非定常熱応力を低減することができ
るタービン翼を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a turbine blade capable of reducing unsteady thermal stress generated during operation.

【0007】[0007]

【課題を解決するための手段】係る目的を達成するため
に、本願発明では、繊維強化セラミックス製のタービン
翼において、強化用繊維を翼厚さ方向あるいはタービン
回転方向へも配向する構成としている。さらに、翼の厚
さ方向あるいはタービン回転方向への強化用繊維の配向
量を、タービン半径方向への配向量の50〜100%に
設定するのが好ましい。
In order to achieve the above object, in the present invention, in a turbine blade made of fiber-reinforced ceramics, reinforcing fibers are oriented in the blade thickness direction or the turbine rotation direction. Further, it is preferable to set the orientation amount of the reinforcing fibers in the blade thickness direction or the turbine rotation direction to 50 to 100% of the orientation amount in the turbine radial direction.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1は本発明が適用されたタービ
ン動翼を示す。図中符号10は円板、11は円板10の
外周に形成された溝に、基端側のプラットフォームを嵌
合されて取り付けられた動翼である。この動翼11はF
RC製である。マトリックス部12中に埋設される強化
用繊維13は、タービン半径方向(Z方向)の他、翼厚
さ方向へも配向されている。ここで、翼厚さ方向とは、
略翼の外周面に直交する方向つまり法線方向をいう。強
化用繊維13の翼厚さ方向への配向量は、タービン半径
方向(Z方向)への配向量の50〜100%に設定され
ている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a turbine rotor blade to which the present invention is applied. In the figure, reference numeral 10 is a disk, and 11 is a moving blade attached to a groove formed on the outer periphery of the disk 10 by fitting a platform on the base end side. This moving blade 11 is F
It is made of RC. The reinforcing fibers 13 embedded in the matrix portion 12 are oriented not only in the turbine radial direction (Z direction) but also in the blade thickness direction. Here, the blade thickness direction is
A direction that is substantially perpendicular to the outer peripheral surface of the blade, that is, a normal direction. The amount of orientation of the reinforcing fibers 13 in the blade thickness direction is set to 50 to 100% of the amount of orientation in the turbine radial direction (Z direction).

【0009】上記構成のタービン動翼であると、強化用
繊維13をタービン半径方向(Z方向)の他、翼厚さ方
向へも配向しているので、翼外表面に最も近い翼厚さ方
向への熱流路の熱伝達率が比較的高くなり、この方向へ
の熱の移動が容易となるため、非定常時の温度分布が緩
和され、熱応力は大幅に低減される。
In the turbine rotor blade having the above structure, the reinforcing fibers 13 are oriented not only in the turbine radial direction (Z direction) but also in the blade thickness direction. Therefore, the blade thickness direction closest to the blade outer surface is obtained. Since the heat transfer coefficient of the heat flow path to the heat transfer path is relatively high and the heat can be easily transferred in this direction, the temperature distribution in the non-steady state is relaxed and the heat stress is significantly reduced.

【0010】図2は、翼厚さ方向とタービン半径方向へ
各々全体重量の20%ずつ強化用繊維を配向した場合の
タービン動翼の熱応力解析結果を示すものである。この
解析では、発生熱応力は120MPa程度であり、従来
の繊維配向で発生する熱応力(前記図8で既に説明した
もの)の60〜70%程度まで発生熱応力が低減されて
いるのが解る。
FIG. 2 shows the thermal stress analysis results of the turbine rotor blade when the reinforcing fibers are oriented in the blade thickness direction and the turbine radial direction by 20% of the total weight. In this analysis, it can be seen that the generated thermal stress is about 120 MPa, and the generated thermal stress is reduced to about 60 to 70% of the thermal stress generated in the conventional fiber orientation (the one already described in FIG. 8). .

【0011】図3は、総Vf値(全体重量に対して強化
用繊維重量が占める割合)を40%とし、翼厚さ方向、
翼弦長方向等への繊維配向量を変化させた場合の最大発
生熱応力の比較を示すものである。この図から、翼厚さ
方向への繊維割合を増加させると、発生熱応力の減少量
が大きいことが解る。しかしながら、タービン動翼の場
合には熱応力の他に遠心応力が加わる。この場合、単純
に翼厚さ方向の繊維配向割合を増加させると、FRCの
Vf値には製法上の上限があるため、遠心応力方向のV
f値が減少し、タービン半径方向への強度が低下する。
この現象は、破断応力に対するマージンが減少するとい
う結果をもたらすため、タービン動翼の場合には、抗遠
心応力と抗熱応力のバランスを考えた繊維配向が必要と
なる。
FIG. 3 shows that the total Vf value (the ratio of the reinforcing fiber weight to the total weight) is 40%, the blade thickness direction,
It is a comparison of the maximum thermal stresses generated when the fiber orientation amount in the chord length direction is changed. From this figure, it is understood that when the fiber ratio in the blade thickness direction is increased, the amount of decrease in the generated thermal stress is large. However, in the case of turbine blades, centrifugal stress is applied in addition to thermal stress. In this case, if the fiber orientation ratio in the blade thickness direction is simply increased, the Vf value of the FRC has an upper limit in the manufacturing method, so that V in the centrifugal stress direction is increased.
The f value decreases, and the strength in the radial direction of the turbine decreases.
This phenomenon results in a decrease in the margin against fracture stress, and therefore, in the case of turbine blades, fiber orientation that balances anti-centrifugal stress and anti-thermal stress is required.

【0012】図4は、総Vf値を40%とし、翼厚さ方
向、翼弦長方向等への繊維配向量を変化させた場合の各
繊維配向状態における主応力と破断応力の比を示す。主
応力とは熱応力に遠心応力を加味した値であり、主応力
/破断応力が1以上となると翼は破断する。この図よ
り、タービン半径方向への繊維配向量100に対し、5
0〜100程度の強化用繊維を翼厚さ方向へ配向したも
のが、破断応力に対し大きなマージンを有していること
が解る。
FIG. 4 shows the ratio of the principal stress to the breaking stress in each fiber orientation state when the total Vf value is 40% and the fiber orientation amount in the blade thickness direction, the chord length direction, etc. is changed. . The principal stress is a value obtained by adding centrifugal stress to thermal stress, and when the principal stress / breaking stress is 1 or more, the blade breaks. From this figure, for 100 fiber orientations in the radial direction of the turbine, 5
It can be seen that the reinforcing fibers of about 0 to 100 oriented in the blade thickness direction have a large margin for the breaking stress.

【0013】本解析は、翼厚さ方向と翼弦長方向への配
向に行われたが、繊維配向をタービン回転方向(X方
向)、タービン軸方向(Y方向)とした場合には、図5
に示すように翼厚さに相当するタービン回転方向(X方
向)への配向が熱応力低減に有効であることが知られて
おり、この方向への配向量もやはりタービン半径方向
(Z方向)配向量の50〜100%程度が最も熱応力低
減効果が高い。なお、図5に示すものは本発明の実施の
他の形態を示すものであり、マトリックス部12中に埋
設される強化用繊維13は、タービン半径方向(Z方
向)の他、タービン回転方向(X方向)へも配向されて
いる。
This analysis was conducted in the blade thickness direction and the blade chord length direction. However, when the fiber orientation is the turbine rotation direction (X direction) and the turbine axis direction (Y direction), 5
It is known that orientation in the turbine rotation direction (X direction) corresponding to the blade thickness is effective in reducing thermal stress, as shown in Fig. 4, and the orientation amount in this direction is also the turbine radial direction (Z direction). About 50 to 100% of the orientation amount has the highest effect of reducing thermal stress. 5 shows another embodiment of the present invention, in which the reinforcing fibers 13 embedded in the matrix portion 12 include the turbine radial direction (Z direction) and the turbine rotation direction ( It is also oriented in the X direction).

【0014】なお、上記した発明の実施の形態では、タ
ービン動翼を例に挙げて説明したが、本発明は、これに
限られることなく、タービン静翼にも適用することがで
きるのは言うまでもない。
In the embodiment of the invention described above, the turbine moving blade is described as an example, but it goes without saying that the present invention is not limited to this and can be applied to a turbine stationary blade. Yes.

【0015】[0015]

【発明の効果】請求項1記載の発明によれば、強化用繊
維をタービン半径方向の他、翼厚さ方向へも配向してい
るので、翼外表面に最も近い翼厚さ方向への熱流路の熱
伝達率が比較的高くなり、非定常時の温度分布が緩和さ
れることとなる。この結果、非定常熱応力を大幅に低減
することが可能となる。
According to the invention of claim 1, since the reinforcing fibers are oriented not only in the turbine radial direction but also in the blade thickness direction, the heat flow in the blade thickness direction closest to the blade outer surface is obtained. The heat transfer coefficient of the passage becomes relatively high, and the temperature distribution during non-steady state is relaxed. As a result, it becomes possible to significantly reduce the unsteady thermal stress.

【0016】請求項2記載の発明によれば、タービン回
転方向はおおよそ翼厚さに相当するので、請求項1記載
の発明と同様に、非定常熱応力を大幅に低減することが
可能となる。
According to the invention described in claim 2, since the turbine rotating direction corresponds approximately to the blade thickness, it is possible to greatly reduce the unsteady thermal stress as in the invention described in claim 1. .

【0017】請求項3記載の発明によれば、翼の厚さ方
向あるいはタービン回転方向への強化用繊維の配向量
を、タービン半径方向への配向量の50〜100%に設
定しているので、抗遠心応力と抗熱応力のバランスが良
好となり、より一層強度的に優れたタービン翼を得るこ
とができる。
According to the third aspect of the invention, the orientation amount of the reinforcing fibers in the blade thickness direction or the turbine rotation direction is set to 50 to 100% of the orientation amount in the turbine radial direction. As a result, the balance between the anti-centrifugal stress and the anti-heat stress becomes good, and it is possible to obtain a turbine blade that is more excellent in strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す平面図。FIG. 1 is a plan view showing an embodiment of the present invention.

【図2】タービン動翼の熱応力解析結果を示す図。FIG. 2 is a diagram showing a thermal stress analysis result of a turbine rotor blade.

【図3】繊維配向による発生熱応力の差異を示す図。FIG. 3 is a diagram showing a difference in generated thermal stress depending on fiber orientation.

【図4】総Vf40%の場合の繊維配向の破断応力に対
する主応力の比を示す図。
FIG. 4 is a diagram showing a ratio of principal stress to breaking stress of fiber orientation in the case of total Vf of 40%.

【図5】本発明の実施の他の形態を示す平面図。FIG. 5 is a plan view showing another embodiment of the present invention.

【図6】従来のFRC製タービン動翼における強化用繊
維の配向例を示す図。
FIG. 6 is a view showing an example of orientation of reinforcing fibers in a conventional FRC turbine blade.

【図7】従来のFRC製タービン動翼における強化用繊
維の他の配向例を示す図。
FIG. 7 is a diagram showing another example of orientation of reinforcing fibers in a conventional FRC turbine blade.

【図8】従来のタービン動翼における繊維配向による発
生熱応力の差異を示す図。
FIG. 8 is a diagram showing a difference in thermal stress generated due to fiber orientation in a conventional turbine rotor blade.

【符号の説明】[Explanation of symbols]

10 円板 11 タービン動翼 12 マトリックス部 13 強化用繊維 10 Disc 11 Turbine Blade 12 Matrix 13 Fiber for Reinforcement

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真家 孝 東京都西多摩郡瑞穂町殿ケ谷229番地 石 川島播磨重工業株式会社瑞穂工場内株式会 社先進材料利用ガスジェネレータ研究所瑞 穂分室内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Maie 229 Togaya, Mizuho-cho, Nishitama-gun, Tokyo Ishi Kawashima Harima Heavy Industries Ltd. Mizuho Plant Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化セラミックス製のタービン翼で
あって、 強化用繊維(13)が翼厚さ方向へも配向されているこ
とを特徴とするタービン翼。
1. A turbine blade made of fiber-reinforced ceramics, characterized in that the reinforcing fibers (13) are also oriented in the blade thickness direction.
【請求項2】 繊維強化セラミックス製のタービン翼で
あって、 強化用繊維(13)がタービン回転方向(X)へも配向
されていることを特徴とするタービン翼。
2. A turbine blade made of fiber-reinforced ceramics, characterized in that the reinforcing fibers (13) are also oriented in the turbine rotation direction (X).
【請求項3】 請求項1または2記載のタービン翼にお
いて、 前記翼の厚さ方向あるいはタービン回転方向への強化用
繊維の配向量が、タービン半径方向(Z)への配向量の
50〜100%に設定されていることを特徴とするター
ビン翼。
3. The turbine blade according to claim 1 or 2, wherein an amount of orientation of the reinforcing fibers in a thickness direction of the blade or a direction of rotation of the turbine is 50 to 100 which is an amount of orientation in a turbine radial direction (Z). Turbine blades characterized by being set to%.
JP24349295A 1995-09-21 1995-09-21 Turbine blade Pending JPH0988505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24349295A JPH0988505A (en) 1995-09-21 1995-09-21 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24349295A JPH0988505A (en) 1995-09-21 1995-09-21 Turbine blade

Publications (1)

Publication Number Publication Date
JPH0988505A true JPH0988505A (en) 1997-03-31

Family

ID=17104701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24349295A Pending JPH0988505A (en) 1995-09-21 1995-09-21 Turbine blade

Country Status (1)

Country Link
JP (1) JPH0988505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240797A (en) * 2004-02-23 2005-09-08 General Electric Co <Ge> USE OF BIASED FABRIC TO IMPROVE PROPERTIES OF SiC/SiC CERAMIC COMPOSITE FOR TURBINE ENGINE COMPONENT
WO2018027166A3 (en) * 2016-08-04 2018-07-26 The Regents Of The University Of Michigan Fiber-reinforced 3d printing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240797A (en) * 2004-02-23 2005-09-08 General Electric Co <Ge> USE OF BIASED FABRIC TO IMPROVE PROPERTIES OF SiC/SiC CERAMIC COMPOSITE FOR TURBINE ENGINE COMPONENT
WO2018027166A3 (en) * 2016-08-04 2018-07-26 The Regents Of The University Of Michigan Fiber-reinforced 3d printing
US10406750B2 (en) 2016-08-04 2019-09-10 The Regents Of The University Of Michigan Fiber-reinforced 3D printing

Similar Documents

Publication Publication Date Title
US4040770A (en) Transition reinforcement of composite blade dovetails
US3883267A (en) Blades made of composite fibrous material, for fluid dynamic machines
US4022547A (en) Composite blade employing biased layup
JP5322398B2 (en) Method and turbine blade for reducing stress in a turbine bucket
US5490764A (en) Unshrouded blading for high bypass turbofan engines
US7563071B2 (en) Pin-loaded mounting apparatus for a refractory component in a combustion turbine engine
US3762835A (en) Foreign object damage protection for compressor blades and other structures and related methods
US8011882B2 (en) Vane assembly
US7942639B2 (en) Hybrid bucket dovetail pocket design for mechanical retainment
Cox et al. Crack bridging in the fatigue of fibrous composites
US2669383A (en) Rotor blade
RU2626523C1 (en) Long hollow wide chord fan blade and method of its manufacture
US7419363B2 (en) Turbine blade with ceramic tip
Watanabe et al. The application of ceramic matrix composite to low pressure turbine blade
EP0526057A1 (en) Layup of composite fan blades/vanes
US3044746A (en) Fluid-flow machinery blading
JPH0988505A (en) Turbine blade
JP2002161893A (en) Axial fan
US5158435A (en) Impeller stress improvement through overspeed
GB2345943A (en) Crowning contacting surfaces in gas turbine engine blade mounting
JP2006046074A (en) Vacuum pump
Żak et al. Dynamics and control of a rotor using an integrated SMA/composite active bearing actuator
JP6205137B2 (en) A configuration to reduce interlaminar stress for composite turbine elements.
JPS6193279A (en) Runner in turbine
JP4016648B2 (en) Blisk

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000711