JPH0987799A - Thick steel plate excellent in scale peeling resistance and its production - Google Patents

Thick steel plate excellent in scale peeling resistance and its production

Info

Publication number
JPH0987799A
JPH0987799A JP7249249A JP24924995A JPH0987799A JP H0987799 A JPH0987799 A JP H0987799A JP 7249249 A JP7249249 A JP 7249249A JP 24924995 A JP24924995 A JP 24924995A JP H0987799 A JPH0987799 A JP H0987799A
Authority
JP
Japan
Prior art keywords
rolling
scale
less
temperature
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7249249A
Other languages
Japanese (ja)
Other versions
JP3233836B2 (en
Inventor
Manabu Hoshino
学 星野
Yutaka Tsuchida
豊 土田
Naoki Saito
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP24924995A priority Critical patent/JP3233836B2/en
Publication of JPH0987799A publication Critical patent/JPH0987799A/en
Application granted granted Critical
Publication of JP3233836B2 publication Critical patent/JP3233836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate, excellent in scale peeling resistance, and to provide a method for producing it. SOLUTION: This thick steel plate has a composition containing 0.03-0.25% C, 0.05-<0.50% Si, 0.05-1.60% Mn, and 0.005-0.10% Al, and moreover, the color tone of scale at the surface of the steel plate is <=0.5 by a*-value. Further, at least one element, selected from a second element group consisting of Nb, V, Ti, Cu, Ni, Cr, Mo, and B and a third element group consisting of Ca and REM, can be incorporated into the above steel. This steel plate can be produced by subjecting a steel, where the above components are added, to heating at 1050-1300 deg.C and then to rolling under specific conditions where temp. and draft are respectively controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐スケール剥離性
に優れる厚鋼板、及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thick steel plate having excellent scale peeling resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】建設機械、コンクリート型枠、造船、橋
梁の分野では、業界全体の大きな課題として、製造コ
スト削減(製造ラインの自動化、加工作業の効率化の徹
底)、製品外観の改善、職場の衛生状態改善(特に
若年層の製造業離れの深刻化を受け、これに対する対
策)の3つがある。これらの分野において大量に使用さ
れる厚鋼板(主に板厚6〜25mm)の表面には、赤ス
ケールと呼ばれる赤く細かいスケールが多量に付着して
いる。この赤スケールは鋼板加工時に容易に鋼板から剥
離し、微粉末となって舞い上がるため、鋼板表面に書い
た罫書き線が消えること等による作業効率の低下、製造
ライン自動化の妨げ、労働衛生上の対策、さらにはコン
クリート型枠として使用時には製品外観の劣化等を招く
ため大きな問題となっている。このため、上記分野にお
いては、鋼板表面に剥離しやすい赤スケールがほとんど
存在しない、耐スケール剥離性に優れる厚鋼板への要求
が非常に強い。
2. Description of the Related Art In the fields of construction machinery, concrete formwork, shipbuilding, and bridges, major issues for the industry as a whole are reduction of manufacturing costs (automation of manufacturing lines, thorough efficiency of processing work), improvement of product appearance, workplace There are three measures to improve the sanitary condition of the country (especially measures against this due to the seriousness of the young manufacturing industry leaving the manufacturing industry). A large amount of red fine scale called red scale adheres to the surface of thick steel plates (mainly plate thickness 6 to 25 mm) used in large quantities in these fields. This red scale easily peels off from the steel sheet during the processing of the steel sheet and rises up as fine powder, which reduces the work efficiency due to the disappearance of the scoring lines drawn on the steel sheet surface, hinders the automation of the production line, and impairs occupational health. This is a big problem because it causes deterioration of the appearance of the product when it is used as a countermeasure for concrete formwork. Therefore, in the above-mentioned field, there is a strong demand for a thick steel sheet which has almost no red scale that easily peels off on the surface of the steel sheet and has excellent scale peeling resistance.

【0003】さらに、建設機械を中心に上記分野におい
ては厚鋼板の切断加工に際しては、レーザ切断が急速に
普及しているが、赤スケール厚鋼板は安定してレーザ切
断加工できない。これは、赤スケール厚鋼板はミクロに
見ればスケールが剥離した部分が多数あることにより、
レーザ切断時にセルフバーニングが起こるためであり、
ミクロに見ても均一な厚みのスケールを有する耐スケー
ル剥離性に優れる厚鋼板であれば、安定したレーザ切断
加工が期待できる。
Further, laser cutting is rapidly prevailing in cutting thick steel plates in the above-mentioned fields centering on construction machinery, but red scale thick steel plates cannot be stably laser cut. This is because the red scale thick steel plate has a large number of parts where the scale has peeled off when viewed microscopically,
This is because self-burning occurs during laser cutting,
A stable laser cutting process can be expected if it is a thick steel plate having a uniform scale even in a microscopic scale and excellent in scale peeling resistance.

【0004】しかしながら、厚鋼板の製造工程において
は、圧延時に高温での滞留時間が長い、圧延後に巻
き取ることなく冷却するために冷却時にスケール及び地
鉄の酸化が進みやすい、等の製造工程の特徴上、鋼表面
のスケールは非常に赤スケール化しやすく、耐スケール
剥離性に優れる厚鋼板を、安価に、安定して製造し得る
方法は確立されていない。
However, in the manufacturing process of the thick steel plate, the residence time at high temperature during rolling is long, and the scale and base iron are easily oxidized during cooling because they are cooled without rolling after rolling. Characteristically, the scale on the steel surface is very likely to become red scale, and a method capable of inexpensively and stably producing a thick steel sheet excellent in scale peeling resistance has not been established.

【0005】赤スケールに対する従来の主な対策として
は、圧延時のデスケーリング水の高圧力化等のデスケー
リング装置の能力向上が検討されている。デスケーリン
グ装置の能力向上以外の従来技術として、特開平5−3
9523号公報には、主としてSi添加量と圧延温度を
規制することにより赤スケールの発生を抑制する技術が
開示されているが、その他に耐スケール剥離性に優れる
厚鋼板を製造可能と考えられる従来技術は見当たらな
い。
As a conventional main measure against the red scale, improvement of the capacity of the descaling device, such as increasing the pressure of the descaling water during rolling, is being studied. As a conventional technique other than improving the capacity of a descaling device, Japanese Patent Laid-Open No. 5-3
Japanese Patent No. 9523 discloses a technique for suppressing the generation of red scale by mainly controlling the amount of Si added and the rolling temperature, but in addition, it is considered that a thick steel sheet excellent in scale peeling resistance can be manufactured conventionally. No technology is found.

【0006】デスケーリング装置の改善および新設には
多額の設備投資が必要となるため製造コストの増加を招
く。デスケーリング装置の能力向上以外の対策として、
特開平5−39523号公報に開示された技術は、0.
5%以上のSi添加が必要であることから、安価な耐ス
ケール剥離性に優れる厚鋼板への要求には答えられな
い。
A large amount of capital investment is required to improve and newly install the descaling device, resulting in an increase in manufacturing cost. As a measure other than improving the capacity of the descaling device,
The technique disclosed in Japanese Patent Laid-Open No. 5-39523 is 0.
Since it is necessary to add Si in an amount of 5% or more, it is not possible to meet the demand for an inexpensive thick steel sheet having excellent scale peeling resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、建設機械、コンクリート型枠、造船、橋梁
の分野の大きな課題である製造コスト削減に大きく貢献
することができる、耐スケール剥離性に優れる厚鋼板、
および同鋼板を、安価に、安定して製造する方法を提供
することである。
The problem to be solved by the present invention is that it can greatly contribute to the reduction of manufacturing cost, which is a major problem in the fields of construction machinery, concrete formwork, shipbuilding, and bridges. Steel plate with excellent properties,
Another object of the present invention is to provide a method for inexpensively and stably manufacturing the steel sheet.

【0008】[0008]

【課題を解決するための手段】本発明は、以上の課題を
解決するためになされたものであって、その要旨は次の
通りである。 (1) 重量%にて、C:0.03〜0.25%、S
i:0.05〜0.50%未満、Mn:0.05〜1.
60%、Al:0.005〜0.10%、残部がFe及
び不可避的不純物からなり、かつ鋼板表面のスケールの
色調がa* 値にて0.5以下である、耐スケール剥離性
に優れる厚鋼板。
The present invention has been made to solve the above problems, and its gist is as follows. (1) C: 0.03 to 0.25%, S in weight%
i: 0.05 to less than 0.50%, Mn: 0.05 to 1.
60%, Al: 0.005 to 0.10%, the balance consisting of Fe and inevitable impurities, and the color tone of the scale on the surface of the steel sheet is 0.5 or less in a * value, which is excellent in scale peeling resistance. Thick steel plate.

【0009】(2) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%、(b)Nb:0.001〜0.20%、V:0.
001〜0.30%、Ti:0.001〜0.20%、
Cu:0.05〜1.50%、Ni:0.05〜1.5
0%、Cr:0.05〜1.00%、Mo:0.05〜
1.00%、B:0.0003〜0.003%、よりな
る群から選ばれる少なくとも1種の元素を含有し、残部
がFe及び不可避的不純物からなり、かつ鋼板表面のス
ケールの色調がa*値にて0.5以下である、耐スケー
ル剥離性に優れる厚鋼板。
(2) In weight%, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, (b) Nb: 0.001 to 0.20%, V: 0.
001 to 0.30%, Ti: 0.001 to 0.20%,
Cu: 0.05 to 1.50%, Ni: 0.05 to 1.5
0%, Cr: 0.05 to 1.00%, Mo: 0.05 to
1.00%, B: 0.0003 to 0.003%, containing at least one element selected from the group consisting of, the balance consisting of Fe and inevitable impurities, and the scale of the steel sheet surface having a color tone of a. * A thick steel plate with a value of 0.5 or less and excellent scale peeling resistance.

【0010】(3) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%、(b)Nb:0.001〜0.20%、V:0.
001〜0.30%、Ti:0.001〜0.20%、
Cu:0.05〜1.50%、Ni:0.05〜1.5
0%、Cr:0.05〜1.00%、Mo:0.05〜
1.00%、B:0.0003〜0.003%、よりな
る群から選ばれる少なくとも1種の元素と、(c)C
a:0.0003〜0.010%、REM:0.001
〜0.030%、よりなる群から選ばれる少なくとも1
種の元素とを含有し、残部がFe及び不可避的不純物か
らなり、かつ鋼板表面のスケールの色調がa* 値にて
0.5以下である、耐スケール剥離性に優れる厚鋼板。
(3) In% by weight, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, (b) Nb: 0.001 to 0.20%, V: 0.
001 to 0.30%, Ti: 0.001 to 0.20%,
Cu: 0.05 to 1.50%, Ni: 0.05 to 1.5
0%, Cr: 0.05 to 1.00%, Mo: 0.05 to
At least one element selected from the group consisting of 1.00%, B: 0.0003 to 0.003%, and (c) C.
a: 0.0003 to 0.010%, REM: 0.001
~ 0.030%, at least 1 selected from the group consisting of
A thick steel sheet which contains various elements, the balance consisting of Fe and unavoidable impurities, and has a scale color tone on the steel sheet surface of 0.5 or less in terms of a * value, which is excellent in scale peeling resistance.

【0011】(4) 重量%にて、C:0.03〜0.
25%、Si:0.05〜0.50%未満、Mn:0.
05〜1.60%、Al:0.005〜0.10%、残
部がFe及び不可避的不純物からなり、加熱温度を10
50〜1300℃とし、圧延の最終パスのロール噛み込
み温度をTF (℃)、仕上圧延での最終3パスの平均圧
下率をRF (%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
(4) C: 0.03 to 0.
25%, Si: 0.05 to less than 0.50%, Mn: 0.
05 to 1.60%, Al: 0.005 to 0.10%, the balance consisting of Fe and unavoidable impurities, and a heating temperature of 10
When the rolling biting temperature of the final pass of rolling is TF (° C.) and the average rolling reduction of the final three passes of finishing rolling is R F (%), 880 ≦ T F ≦ 980 ( ℃) 21 ≤ R F ≤ 40 (%) R F ≥ 155-3T F / 20 (%) Rolling under the conditions that satisfy the three formulas at the same time, and air-cooling after rolling to obtain a scale with a thickness of 20 to 60 µm. A method for producing a thick steel sheet having excellent scale peeling resistance, comprising:

【0012】(5) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%を含有し、さらに、(b)Nb:0.001〜0.
20%、V:0.001〜0.30%、Ti:0.00
1〜0.20%、Cu:0.05〜1.50%、Ni:
0.05〜1.50%、Cr:0.05〜1.00%、
Mo:0.05〜1.00%、B:0.0003〜0.
003%、よりなる群から選ばれる少なくとも1種の元
素を含有し、残部がFe及び不可避的不純物からなり、
加熱温度を1050〜1300℃とし、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
(5) In% by weight, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, and (b) Nb: 0.001 to 0.
20%, V: 0.001 to 0.30%, Ti: 0.00
1 to 0.20%, Cu: 0.05 to 1.50%, Ni:
0.05 to 1.50%, Cr: 0.05 to 1.00%,
Mo: 0.05-1.00%, B: 0.0003-0.
003%, containing at least one element selected from the group consisting of, the balance consisting of Fe and unavoidable impurities,
When the heating temperature is 1050 to 1300 ° C., the roll biting temperature in the final pass of rolling is T F (° C.), and the average rolling reduction of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 980 (° C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) Rolling is carried out under the condition of simultaneously satisfying the three formulas, and after air-cooling after rolling, 20-60 μm A method for producing a thick steel sheet having excellent scale peeling resistance, characterized by having a thickness scale.

【0013】(6) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%を含有し、さらに、(b)Nb:0.001〜0.
20%、V:0.001〜0.30%、Ti:0.00
1〜0.20%、Cu:0.05〜1.50%、Ni:
0.05〜1.50%、Cr:0.05〜1.00%、
Mo:0.05〜1.00%、B:0.0003〜0.
003%、よりなる群から選ばれる少なくとも1種の元
素と、(c)Ca:0.0003〜0.010%、RE
M:0.001〜0.030%、よりなる群から選ばれ
る少なくとも1種の元素とを含有し、残部がFe及び不
可避的不純物からなり、加熱温度を1050〜1300
℃とし、圧延の最終パスのロール噛み込み温度をT
F (℃)、仕上圧延での最終3パスの平均圧下率をRF
(%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
(6) In weight%, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, and (b) Nb: 0.001 to 0.
20%, V: 0.001 to 0.30%, Ti: 0.00
1 to 0.20%, Cu: 0.05 to 1.50%, Ni:
0.05 to 1.50%, Cr: 0.05 to 1.00%,
Mo: 0.05-1.00%, B: 0.0003-0.
003%, at least one element selected from the group consisting of (c) Ca: 0.0003 to 0.010%, RE
M: 0.001 to 0.030%, containing at least one element selected from the group consisting of, the balance consisting of Fe and unavoidable impurities, and heating temperature of 1050 to 1300
℃ and the roll entrapment temperature of the final pass of rolling is T
F (° C), the average rolling reduction of the final 3 passes in finish rolling is R F
(%), 880 ≤ T F ≤ 980 (° C) 21 ≤ R F ≤ 40 (%) R F ≥ 155-3T F / 20 (%) rolling under the conditions that simultaneously satisfy the three formulas, A method for producing a thick steel sheet having excellent scale peeling resistance, which comprises a scale having a thickness of 20 to 60 μm by rolling and then air cooling.

【0014】(7) 重量%にて、C:0.03〜0.
25%、Si:0.05〜0.50%未満、Mn:0.
05〜1.60%、Al:0.005〜0.10%、残
部がFe及び不可避的不純物からなり、加熱温度を10
50〜1300℃とし、圧延の最終パスのロール噛み込
み温度をTF (℃)、仕上圧延での最終3パスの平均圧
下率をRF (%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
(7) C: 0.03 to 0.
25%, Si: 0.05 to less than 0.50%, Mn: 0.
05 to 1.60%, Al: 0.005 to 0.10%, the balance consisting of Fe and unavoidable impurities, and a heating temperature of 10
When the rolling biting temperature of the final pass of rolling is TF (° C.) and the average rolling reduction of the final three passes of finish rolling is R F (%), 880 ≦ T F ≦ 1020 ( C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) 3 conditions are simultaneously rolled, and after rolling, 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.

【0015】(8) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%を含有し、さらに、(b)Nb:0.001〜0.
20%、V:0.001〜0.30%、Ti:0.00
1〜0.20%、Cu:0.05〜1.50%、Ni:
0.05〜1.50%、Cr:0.05〜1.00%、
Mo:0.05〜1.00%、B:0.0003〜0.
003%、よりなる群から選ばれる少なくとも1種の元
素を含有し、残部がFe及び不可避的不純物からなり、
加熱温度を1050〜1300℃とし、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
(8) In% by weight, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, and (b) Nb: 0.001 to 0.
20%, V: 0.001 to 0.30%, Ti: 0.00
1 to 0.20%, Cu: 0.05 to 1.50%, Ni:
0.05 to 1.50%, Cr: 0.05 to 1.00%,
Mo: 0.05-1.00%, B: 0.0003-0.
003%, containing at least one element selected from the group consisting of, the balance consisting of Fe and unavoidable impurities,
When the heating temperature is 1050 to 1300 ° C., the roll biting temperature in the final pass of rolling is T F (° C.), and the average rolling reduction of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 1020 (° C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) Rolling is performed under the condition that the three formulas are simultaneously satisfied, and after rolling, 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.

【0016】(9) 重量%にて、(a)C:0.03
〜0.25%、Si:0.05〜0.50%未満、M
n:0.05〜1.60%、Al:0.005〜0.1
0%を含有し、さらに、(b)Nb:0.001〜0.
20%、V:0.001〜0.30%、Ti:0.00
1〜0.20%、Cu:0.05〜1.50%、Ni:
0.05〜1.50%、Cr:0.05〜1.00%、
Mo:0.05〜1.00%、B:0.0003〜0.
003%、よりなる群から選ばれる少なくとも1種の元
素と、(c)Ca:0.0003〜0.010%、RE
M:0.001〜0.030%、よりなる群から選ばれ
る少なくとも1種の元素とを含有し、残部がFe及び不
可避的不純物からなり、加熱温度を1050〜1300
℃とし、圧延の最終パスのロール噛み込み温度をT
F (℃)、仕上圧延での最終3パスの平均圧下率をRF
(%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
(9) In weight%, (a) C: 0.03
~ 0.25%, Si: 0.05-less than 0.50%, M
n: 0.05-1.60%, Al: 0.005-0.1
0%, and (b) Nb: 0.001 to 0.
20%, V: 0.001 to 0.30%, Ti: 0.00
1 to 0.20%, Cu: 0.05 to 1.50%, Ni:
0.05 to 1.50%, Cr: 0.05 to 1.00%,
Mo: 0.05-1.00%, B: 0.0003-0.
003%, at least one element selected from the group consisting of (c) Ca: 0.0003 to 0.010%, RE
M: 0.001 to 0.030%, containing at least one element selected from the group consisting of, the balance consisting of Fe and unavoidable impurities, and heating temperature of 1050 to 1300
℃ and the roll entrapment temperature of the final pass of rolling is T
F (° C), the average rolling reduction of the final 3 passes in finish rolling is R F
(%), 880 ≤ T F ≤ 1020 (° C) 21 ≤ R F ≤ 40 (%) R F ≥ 155-3T F / 20 (%) Rolling under the conditions that simultaneously satisfy the three formulas, After rolling 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.

【0017】本発明者らは、上記の課題に対し、数多く
の実験を行なった結果、耐スケール剥離性と鋼板表面の
スケールの色調との間には強い相関があり、厚鋼板の耐
スケール剥離性を良好とするには、鋼板表面のスケール
の色調を色差計による色差値(a* 値)にて0.5以下
とすることが有効であることを新規に知見した。
The inventors of the present invention have conducted a number of experiments to solve the above problems. As a result, there is a strong correlation between the scale peeling resistance and the color tone of the scale on the surface of the steel sheet, and the scale peeling resistance of the thick steel sheet is confirmed. It was newly found that it is effective to make the color tone of the scale of the steel sheet surface to be 0.5 or less in terms of the color difference value (a * value) by a color difference meter in order to improve the property.

【0018】さらには、そのような耐スケール剥離性に
優れる厚鋼板を製造する方法として、圧延時の温度を高
くすることと、圧下率を大きくすることが有効であり、
この製造方法によれば、製造コストの増加を招く特別な
装置、および特別な合金元素の添加等を必要とせず、安
価に、安定して耐スケール剥離性に優れる厚鋼板を製造
可能であることを新規に知見し、本発明を成したもので
ある。
Further, as a method for producing such a thick steel sheet having excellent resistance to scale delamination, it is effective to increase the temperature during rolling and increase the rolling reduction.
According to this manufacturing method, it is possible to manufacture a thick steel plate that is stable, excellent in scale peeling resistance at low cost, without requiring a special device that causes an increase in manufacturing cost, and addition of a special alloy element. The present invention was made by newly discovering the above.

【0019】[0019]

【発明の実施の形態】本発明における成分限定理由を述
べる。Cは強度確保のため0.03%以上の添加が必要
であり、多量添加は母材靭性を劣化させると共に溶接熱
影響部を硬化させ溶接性を劣化させるため、その上限を
0.25%とする。Siは鋼の脱酸のため0.05%以
上の添加が必要であり、多量添加は圧延時のデスケーリ
ング性を劣化させ、スケール押し込み疵が発生しやすく
なること、およびコスト上昇を招くことから、その上限
を0.50%未満とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the components in the present invention will be described. C needs to be added in an amount of 0.03% or more to secure the strength, and a large amount of addition deteriorates the base metal toughness and hardens the weld heat affected zone to deteriorate the weldability, so the upper limit is set to 0.25%. To do. Since Si needs to be added in an amount of 0.05% or more for deoxidizing the steel, a large amount of addition deteriorates the descaling property during rolling, scale indentation flaws are likely to occur, and cost rises. The upper limit is less than 0.50%.

【0020】Mnは鋼中に含まれるSを固定し靭性を良
好にするために0.05%以上の添加が必要であり、多
量添加は製造コストの増加を招くと同時に靭性も劣化さ
せるため、その上限を1.60%とする。Alは鋼の脱
酸のため0.005%以上の添加が必要であり、多量添
加は靭性を著しく劣化させるため、その上限を0.10
%とする。
Mn needs to be added in an amount of 0.05% or more in order to fix S contained in steel and improve toughness, and addition of a large amount causes an increase in manufacturing cost and also deteriorates toughness. The upper limit is 1.60%. Al is required to be added in an amount of 0.005% or more for deoxidizing steel, and addition of a large amount significantly deteriorates toughness, so the upper limit is set to 0.10.
%.

【0021】本発明においては、用いる鋼は、上記した
元素に加えて、主として高強度化を図るために、Nb:
0.001〜0.20%、V:0.001〜0.30
%、Ti:0.001〜0.20%、Cu:0.05〜
1.50%、Ni:0.05〜1.50%、Cr:0.
05〜1.00%、Mo:0.05〜1.00%、B:
0.0003〜0.003%、よりなる群から選ばれる
少なくとも1種の元素を含有することができる。
In the present invention, in addition to the above-mentioned elements, the steel used is Nb:
0.001 to 0.20%, V: 0.001 to 0.30
%, Ti: 0.001 to 0.20%, Cu: 0.05 to
1.50%, Ni: 0.05 to 1.50%, Cr: 0.
05-1.00%, Mo: 0.05-1.00%, B:
At least one element selected from the group consisting of 0.0003 to 0.003% can be contained.

【0022】Nb、V、Tiは鋼中に炭窒化物として析
出し強度を高める効果に加え、鋼のミクロ組織を細粒化
することにより強度と母材靭性、溶接熱影響部の靭性を
共に向上させる効果を有する。各元素とも、これらの効
果を得るには0.001%以上の添加が必要であり、多
量添加は溶接熱影響部の靭性を大幅に劣化させるため、
その上限をNbは0.20%、Vは0.30%、Tiは
0.20%とする。
Nb, V, and Ti have the effect of precipitating in the steel as carbonitrides and increasing the strength, and by making the microstructure of the steel finer, the strength, the base metal toughness, and the toughness of the heat-affected zone of welding are both Has the effect of improving. For each element, 0.001% or more must be added to obtain these effects, and addition of a large amount significantly deteriorates the toughness of the weld heat affected zone.
The upper limits of Nb are 0.20%, V is 0.30%, and Ti is 0.20%.

【0023】Cuは強度及び耐食性を向上させる効果を
有する。これらの効果を得るには0.05%以上の添加
が必要であり、多量添加はスラブの熱間割れ発生の原因
となるため、その上限を1.50%とする。Niは強度
と靭性を共に向上させる効果を有する。この効果を得る
には0.05%以上の添加が必要であり、多量添加は経
済性を著しく損なうため、その上限を1.50%とす
る。
Cu has the effect of improving strength and corrosion resistance. In order to obtain these effects, addition of 0.05% or more is necessary, and addition of a large amount causes the occurrence of hot cracking of the slab, so the upper limit is made 1.50%. Ni has the effect of improving both strength and toughness. To obtain this effect, it is necessary to add 0.05% or more, and addition of a large amount significantly impairs economic efficiency, so the upper limit is made 1.50%.

【0024】Crは焼入れ性を高める効果、焼戻し軟化
抵抗を高める効果、及び耐食性を向上させる効果を有す
る。これらの効果を得るには0.05%以上の添加添加
が必要であり、多量添加は溶接熱影響部の靭性を劣化さ
せることから、その上限を1.00%とする。
Cr has the effect of enhancing the hardenability, the effect of enhancing the resistance to temper softening, and the effect of improving the corrosion resistance. To obtain these effects, addition of 0.05% or more is necessary, and addition of a large amount deteriorates the toughness of the weld heat affected zone, so the upper limit is made 1.00%.

【0025】Moは焼入れ性を高める効果、及び焼戻し
軟化抵抗を高める効果を有する。これらの効果を得るた
めには、0.05%以上の添加が必要であり、多量添加
は溶接熱影響部の靭性を劣化させることから、その上限
を1.00%とする。
Mo has the effect of increasing the hardenability and the effect of increasing the temper softening resistance. In order to obtain these effects, addition of 0.05% or more is necessary, and addition of a large amount deteriorates the toughness of the weld heat affected zone, so the upper limit is made 1.00%.

【0026】Bは焼入れ性を著しく向上させ、強度を高
める効果を有する。この効果を得るためには0.000
3%以上の添加が必要であり、多量添加は溶接熱影響部
を硬化させることにより溶接性を大幅に劣化させるため
0.003%をその上限とする。
B has the effect of significantly improving the hardenability and increasing the strength. 0.000 to obtain this effect
It is necessary to add 3% or more. If a large amount is added, the weld heat-affected zone is hardened and the weldability is significantly deteriorated, so 0.003% is made the upper limit.

【0027】更に、本発明においては、鋼は、上記元素
に加えて、又は上記元素とは別に、主として靭性の向上
のために、Ca:0.0003〜0.010%、及びR
EM:0.001〜0.030%よりなる群から選ばれ
る少なくとも1種の元素を含有することができる。
Further, in the present invention, in the steel, in addition to the above elements or separately from the above elements, mainly for improving the toughness, Ca: 0.0003 to 0.010%, and R
EM: At least one element selected from the group consisting of 0.001 to 0.030% can be contained.

【0028】Ca及びREMは、鋼材の機械的性質の異
方性の改善と耐ラメラティア特性の向上の効果を有す
る。これらの効果を得るには、Caは0.0003%以
上、REMは0.001%以上の添加が必要であり、両
元素ともに、多量添加は靭性を劣化させるため、その上
限をCaは0.010%、REMは0.030%とす
る。
Ca and REM have the effects of improving the anisotropy of the mechanical properties of steel and improving the anti-lamella tear property. In order to obtain these effects, it is necessary to add Ca in an amount of 0.0003% or more and REM in an amount of 0.001% or more. Since the addition of a large amount of both elements deteriorates the toughness, the upper limit of Ca is 0. 010% and REM 0.030%.

【0029】厚鋼板の耐スケール剥離性に及ぼす鋼板表
面のスケールの色調の影響を図1に示す。鋼板表面のス
ケールの色調はJISZ8722に準拠して色彩色差計
にて測定した、鋼板表面の任意の5〜10箇所のa*
(色の表示方法はJISZ8729に準拠)の平均値を
用いて評価した。
FIG. 1 shows the influence of the color tone of the scale on the surface of the steel sheet on the scale peeling resistance of the thick steel sheet. The color tone of the scale on the surface of the steel sheet was evaluated using an average value of a * values (color display method conforms to JIS Z8729) at any 5 to 10 points on the surface of the steel sheet measured by a color difference meter according to JIS Z8722. did.

【0030】耐スケール剥離性は、スケール表面の5.
0cmx10.0cmの50.0cm2の長方形部分に
透明粘着テープを貼り付け、テープの上から0.1kg
f/cm2の圧力を加えてテープの粘着面とスケールを
よく接触させた後にテープを剥離し、テープに付着した
剥離スケールの面積率を測定し、この面積率をスケール
剥離率として評価した。図1より、鋼板表面のスケール
の色調をa* 値にて0.5以下とすることで耐スケール
剥離性が顕著に良好となることがわかる。
The scale peeling resistance is 5.
Affix the transparent adhesive tape to the rectangular area of 00.0x10.0cm and 50.0cm2, and apply 0.1kg from the top of the tape.
A pressure of f / cm2 was applied to bring the adhesive surface of the tape into good contact with the scale, and then the tape was peeled off. The area ratio of the peeled scale adhering to the tape was measured, and this area ratio was evaluated as the scale peeling rate. From FIG. 1, it can be seen that the scale peeling resistance is remarkably improved by setting the color tone of the scale on the surface of the steel sheet to 0.5 or less in terms of a * value.

【0031】以下では、鋼板表面のスケールの色調がa
* 値にて0.5以下であり、耐スケール剥離性に優れる
厚鋼板を、その外観上の特徴から、「青スケール厚鋼
板」と表現し、スケールの色調をa* 値にて0.5以下
とすることを「青スケール化する」と表現する。
Below, the color tone of the scale on the surface of the steel sheet is a
A thick steel plate with an * value of 0.5 or less and excellent scale peeling resistance is expressed as "blue scale thick steel plate" based on its external appearance, and the color tone of the scale is 0.5 in terms of a * value. The following is referred to as "blue scale conversion".

【0032】次に、加熱条件と圧延条件について述べ
る。本発明における製造方法の一番のポイントは圧延条
件の制御であり、これを満足するために1050℃以上
の温度での加熱が必要である。スケール押し込み疵の発
生を抑制するために加熱温度の上限を1300℃とす
る。加熱時のスラブの在炉時間については、スラブ温度
を均一に1050℃以上とするために120分程度が必
要であり、長時間の加熱は製造コストの増加を招くた
め、300分程度までとするのが望ましい。
Next, heating conditions and rolling conditions will be described. The most important point of the manufacturing method in the present invention is the control of rolling conditions, and heating at a temperature of 1050 ° C. or higher is necessary to satisfy this. The upper limit of the heating temperature is set to 1300 ° C. in order to suppress the generation of scale indentation. Regarding the slab in-furnace time at the time of heating, it takes about 120 minutes to uniformly bring the slab temperature to 1050 ° C. or higher, and the heating for a long time causes an increase in manufacturing cost, so it is set to about 300 minutes. Is desirable.

【0033】圧延後に空冷して製造する場合の圧延条件
について図2で説明する。図2は圧延後に空冷して製造
する場合の、厚鋼板のスケール状態に及ぼす圧延温度と
圧下率の影響を示す図である。圧延温度としては、仕上
圧延の最終のパスのロール噛み込み温度(以下、圧延仕
上温度TF とする)が最も重要な因子であり、圧下率と
しては、仕上圧延の最終3パスの平均圧下率(以下、仕
上圧下率RF とする)が最も重要な因子である。
The rolling conditions in the case of manufacturing by air cooling after rolling will be described with reference to FIG. FIG. 2 is a diagram showing the influence of the rolling temperature and the rolling reduction on the scale state of the thick steel plate in the case of manufacturing after cooling by air cooling. As the rolling temperature, the roll biting temperature of the final pass of finish rolling (hereinafter, referred to as rolling finish temperature T F ) is the most important factor, and as the rolling reduction, the average rolling reduction of the final three passes of finishing rolling is used. (Hereinafter, referred to as finish rolling reduction R F ) is the most important factor.

【0034】例えば、仕上圧延として、7パスの圧延を
20%、25%、30%、30%、30%、
35%、35%の各圧下率にて行なった場合、仕上
圧下率RF は(30%+35%+35%)/3=
33.3%となる。図2の4種類のマーク(○、△、
×、□)は、各々、表1に示すスケール状態を意味し、
○及び△を直線にて囲んだ範囲が本発明の圧延条件範囲
である。
For example, as finish rolling, 7-pass rolling is 20%, 25%, 30%, 30%, 30%,
When the rolling reductions of 35% and 35% are performed, the finish rolling reduction R F is (30% + 35% + 35%) / 3 =
It becomes 33.3%. The four types of marks (○, △,
X, □) mean the scale states shown in Table 1, respectively,
The range surrounded by a straight line is the rolling condition range of the present invention.

【0035】[0035]

【表1】 [Table 1]

【0036】スケール状態に及ぼす圧延仕上温度TF
影響は大きく、高温とすることで青スケール化すること
ができる。従来は20%程度以下の仕上圧下率RF にて
圧延しているが、この場合、圧延仕上温度TF を930
℃以上としなければ青スケール厚鋼板が得られない。圧
延仕上温度TF を980℃より高温にすると、圧延後の
空冷中にスケールに微小なフクレが発生し、鋼板表面外
観が劣化するため、圧延仕上温度TF の上限を980℃
とする。
The effect of the rolling finish temperature T F on the scale state is large, and blue scale can be obtained by increasing the temperature. Conventionally, rolling is performed at a finish reduction R F of about 20% or less, but in this case, the rolling finish temperature T F is 930.
If it is not higher than ℃, blue scale thick steel plate cannot be obtained. If the rolling finish temperature T F is higher than 980 ° C., minute blisters are generated on the scale during air cooling after rolling, and the surface appearance of the steel sheet deteriorates. Therefore, the upper limit of the rolling finish temperature T F is 980 ° C.
And

【0037】スケール色調に及ぼす仕上圧下率RF の影
響はさらに大きく、仕上圧下率RFを大きくすることで
顕著に青スケール化することができる。従来の20%程
度以下の仕上圧下率RF にて青スケール厚鋼板を製造す
るには圧延仕上温度TF を930℃以上としなげればな
らないが、厚鋼板の中でも板厚6〜25mm程度の比較的
板厚が薄い厚鋼板は圧延時の鋼板表面の温度低下が速い
ため、圧延仕上温度TF を安定して930℃以上とする
ことは非常に困難であった。しかしながら、仕上圧下率
F を30%程度に大きくすることで、青スケール厚鋼
板が得られる圧延仕上温度範囲が880℃以上と大幅に
低温側に拡大できるため、青スケール厚鋼板の安定製造
が可能となった。
The effect of the finish reduction rate R F on the scale color tone is even greater, and by increasing the finish reduction rate R F , a remarkable blue scale can be obtained. In order to produce a blue scale thick steel plate with a finish reduction R F of about 20% or less, a rolling finish temperature T F of 930 ° C. or higher is required, but among the thick steel plates, the plate thickness is about 6 to 25 mm. Since a steel plate having a relatively small plate thickness rapidly lowers the temperature of the steel plate surface during rolling, it was very difficult to stably set the rolling finishing temperature T F to 930 ° C. or higher. However, by increasing the finishing reduction ratio R F to about 30%, the rolling finish temperature range in which the blue scale thick steel sheet can be obtained can be significantly expanded to 880 ° C. or higher, and thus the stable production of the blue scale thick steel sheet can be achieved. It has become possible.

【0038】さらに、圧延仕上温度TF をより低温とで
きることで、所望の薄いスケール厚を得ることができ、
圧延後に空冷して製造した場合においても、スケール厚
を20μmとすることが可能である。圧延機能力から、
仕上圧下率RF の上限を40%とする。
Furthermore, since the rolling finishing temperature T F can be made lower, a desired thin scale thickness can be obtained,
The scale thickness can be set to 20 μm even in the case of manufacturing by air cooling after rolling. From the rolling ability,
The upper limit of the finish rolling reduction R F is set to 40%.

【0039】圧延後に空冷して製造する場合の厚鋼板の
スケール厚については、20μmを下限とし、微小なフ
クレ発生のない上限のスケール厚である60μmをその
上限とする。また、図2に○マークで示したように、
880≦TF ≦980(℃)、21≦RF ≦40
(%)、RF ≧160−3TF /20(%)の3条件
を同時に満足する圧延条件範囲は、青スケール厚鋼板の
安定製造にとり、より好ましい条件範囲である。
Regarding the scale thickness of the thick steel plate in the case of manufacturing by air cooling after rolling, the lower limit is 20 μm, and the upper limit is 60 μm, which is the upper limit scale thickness without minute blistering. In addition, as shown by the circle mark in FIG.
880 ≦ T F ≦ 980 (° C.), 21 ≦ R F ≦ 40
(%) And R F ≧ 160 −3 T F / 20 (%) are the rolling condition ranges that satisfy the three conditions at the same time, which are more preferable condition ranges for stable production of blue scale thick steel sheet.

【0040】次に、圧延終了後30秒以内に5℃/sec
以上の冷却速度にて加速冷却を開始し、鋼板表面温度が
500℃以上750℃以下の温度範囲にて加速冷却を停
止し、空冷する工程にて製造する場合の圧延条件、及び
加速冷却条件について述べる。圧延直後に強制冷却を行
なう場合は、圧延仕上温度を1020℃としてもスケー
ルにフクレが発生しない。圧延中の鋼板の温度低下のた
め圧延仕上温度を安定して1020℃より高くすること
は難しいため、圧延仕上温度の上限を1020℃とす
る。
Next, within 30 seconds after completion of rolling, 5 ° C./sec
About the rolling condition and the accelerated cooling condition when starting the accelerated cooling at the above cooling rate, stopping the accelerated cooling in the temperature range of the steel sheet surface temperature of 500 ° C. or more and 750 ° C. or less, and manufacturing in the air cooling step Describe. When forced cooling is performed immediately after rolling, no blistering occurs on the scale even when the rolling finishing temperature is 1020 ° C. Since it is difficult to stably raise the rolling finish temperature to higher than 1020 ° C due to the temperature decrease of the steel sheet during rolling, the upper limit of the rolling finish temperature is set to 1020 ° C.

【0041】この加速冷却はスケールの成長を抑制し、
スケール厚の薄い青スケール厚鋼板を得る目的で行な
う。圧延終了時は880℃以上であり、スケール成長速
度が大きいため圧延終了後30秒以内に加速冷却を開始
し、鋼板表面温度を5℃/sec以上の冷却速度にて急激
に低下せしめた後に、スケール成長速度が十分に遅い7
50℃以下の温度にて加速冷却を停止する。
This accelerated cooling suppresses scale growth,
The purpose is to obtain a blue scale thick steel plate with a thin scale thickness. At the end of rolling, the temperature is 880 ° C or higher, and since the scale growth rate is high, accelerated cooling is started within 30 seconds after the end of rolling, and the steel plate surface temperature is rapidly reduced at a cooling rate of 5 ° C / sec or higher. Scale growth rate is slow enough 7
The accelerated cooling is stopped at a temperature of 50 ° C or lower.

【0042】冷却速度が5℃/sec 未満ではスケールの
成長を抑制する効果が不十分であるため冷却速度の下限
を5℃/sec とする。加速冷却の停止温度が500℃よ
り低温となると良好な鋼板形状が得られないため、その
下限を500℃とする。この加速冷却の具体的な手法と
しては、水冷およびファンによる強制空冷などがある。
If the cooling rate is less than 5 ° C./sec, the effect of suppressing scale growth is insufficient, so the lower limit of the cooling rate is set to 5 ° C./sec. If the stop temperature of the accelerated cooling is lower than 500 ° C, a good steel plate shape cannot be obtained, so the lower limit is set to 500 ° C. Specific methods of this accelerated cooling include water cooling and forced air cooling with a fan.

【0043】次に、青スケールが付与された鋼材を安定
して製造するために圧延温度と圧下率の制御が重要とな
る理由、および耐スケール剥離性を付与するための具体
的な方法につき述べる。青スケール鋼を安定して製造す
るために圧延温度と圧下率の制御が重要となる理由につ
き以下に述べる。赤スケールが発生する原因について鋭
意研究を重ねた結果、赤スケールは微粉末状のヘマタイ
ト(Fe2 3 )であり、この微粉末状のヘマタイト
は、圧延中に0.1〜10μm程度の微細なサイズに破
砕されたウスタイト(FeO)、およびマグネタイト
(Fe3 4 )が圧延後の冷却中に酸化されヘマタイト
の微粉末となったもの、および圧延中に破砕されたヘマ
タイトであることが明らかとなった。
Next, the reason why it is important to control the rolling temperature and the rolling reduction in order to stably produce a steel material provided with a blue scale, and a specific method for providing scale peeling resistance will be described. . The reason why the control of the rolling temperature and the rolling reduction is important for stable production of blue scale steel will be described below. As a result of extensive studies on the cause of the generation of red scale, the red scale is fine powder hematite (Fe 2 O 3 ), and this fine powder hematite has a fineness of about 0.1 to 10 μm during rolling. It is clear that wustite (FeO) and magnetite (Fe 3 O 4 ) crushed to various sizes were oxidized into fine powder of hematite during cooling after rolling, and hematite crushed during rolling. Became.

【0044】そして、この圧延中のスケールの破砕を抑
制する手法につき、鋭意研究を重ねた結果、本発明に到
達したものであり、その要旨は下記の6点である。 圧延中にスケールを破砕させないためには、圧延仕
上温度TF を高温とすることが有効である。 この理由は、圧延時の温度が十分に高温であれば、
スケールは地鉄と同等の延性を持つことにより、破砕す
る前に塑性変形することが可能であることによる。
Then, as a result of extensive research on the method of suppressing the crushing of the scale during the rolling, the present invention has been achieved, and the gist thereof is the following 6 points. In order to prevent the scale from being crushed during rolling, it is effective to set the rolling finishing temperature T F to a high temperature. The reason for this is that if the temperature during rolling is sufficiently high,
This is because the scale has the same ductility as that of base steel, so that it can be plastically deformed before crushing.

【0045】 しかしながら、従来の20%程度以下
の圧延圧下率による圧延では、圧延仕上温度TF を93
0℃以上としなければ青スケール厚鋼板は得られない。
板厚6〜25mm程度の比較的板厚の薄い厚鋼板では、圧
延仕上温度を安定して930℃以上とすることが非常に
困難であるため、圧延仕上温度TF を高温とするだけで
は青スケール厚鋼板の安定製造が困難である。
However, in the conventional rolling with a rolling reduction of about 20% or less, the rolling finishing temperature T F is 93
If it is not higher than 0 ° C, blue scale thick steel plate cannot be obtained.
The relatively thickness of thin steel plate of about a thickness 6~25Mm, because of making the stable 930 ° C. or higher finishing rolling temperature is very difficult, than the finish rolling temperature T F only the hot blue It is difficult to manufacture scale thick steel plate stably.

【0046】 圧延時の圧下率を大きくすることが青
スケール化に非常に有効である。 そのメカニズムは、圧下率を大きくすることによ
り、圧延中の鋼の加工発熱を大きくし、鋼板表面のスケ
ールの温度低下を抑制してスケールの延性を高く保つこ
とができること、およびスケール厚をより薄くし、圧延
時に破砕しにくくできること、による。
Increasing the rolling reduction at the time of rolling is very effective for forming a blue scale. The mechanism is to increase the heat reduction of the steel during rolling by increasing the rolling reduction, suppress the temperature decrease of the scale on the surface of the steel sheet and maintain the ductility of the scale high, and make the scale thickness thinner. However, it is difficult to crush during rolling.

【0047】 仕上圧下率RF を従来より大きくする
ことにより、青スケール化に必要な仕上温度TF を88
0℃まで低下させることが可能であり、これにより安定
して板厚6〜25mmの青スケール厚鋼板を製造可能であ
る。また、上述のメカニズムにより製造される青スケー
ル厚鋼板は、スケールが圧延時に地鉄と同様に均一に延
伸した後で、圧延後の冷却中に均一に成長するため、ス
ケール厚が均一であり、また、その表面粗度が小さい。
By increasing the finishing reduction ratio R F as compared with the conventional one, the finishing temperature T F required for making the blue scale is 88.
It is possible to lower the temperature to 0 ° C., which makes it possible to stably manufacture a blue scale thick steel plate having a plate thickness of 6 to 25 mm. Further, the blue scale thick steel plate produced by the above mechanism, the scale is uniformly stretched in the same manner as the base metal during rolling, and then grows uniformly during cooling after rolling, so that the scale thickness is uniform, Also, its surface roughness is small.

【0048】[0048]

【実施例】耐スケール剥離性に及ぼす鋼板表面スケール
色調の影響を、表2に示す鋼番A〜Fの化学成分を有す
る、6〜25mm厚の厚鋼板を用いて表3に示す。耐スケ
ール剥離性、及び鋼板表面のスケール色調の評価方法
は、図1の説明として上述した評価方法と同様である。
[Examples] The influence of the steel plate surface scale color tone on the scale peeling resistance is shown in Table 3 using thick steel plates having a chemical composition of steel Nos. A to F shown in Table 2 and having a thickness of 6 to 25 mm. The scale peeling resistance and the scale color tone evaluation method on the surface of the steel sheet are the same as those described above with reference to FIG.

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】供試鋼番号1〜11までは本発明鋼であ
り、鋼板表面のスケールの色調がa*値にて0.5以下
であるため、スケールの剥離率が5%未満であり、良好
な耐スケール剥離性を示す。鋼板表面のスケールの色調
をa* 値にて0以下とすることは、スケールの剥離率を
1%未満とでき、より好ましい。一方、供試鋼番号12
〜22までは比較鋼であり、鋼板表面のスケールの色調
が0.5より大きいことから、スケールの剥離率が5%
以上となり顕著に耐スケール剥離性が劣化したものであ
る。
Steels Nos. 1 to 11 of the present invention are the steels of the present invention, and the scale of the scale on the surface of the steel sheet is 0.5 or less in a * value, so the scale peeling rate is less than 5%, which is good. Exhibits excellent scale peeling resistance. It is more preferable that the color tone of the scale on the surface of the steel sheet is 0 or less in terms of a * value, because the peeling rate of the scale can be less than 1%. On the other hand, sample steel No. 12
Up to 22 are comparative steels, and the scale of the steel plate surface has a color tone of more than 0.5, so the scale peeling rate is 5%.
As described above, the scale peeling resistance is remarkably deteriorated.

【0052】次に、表2に示す鋼番A〜Fの化学成分を
有する供試鋼を用いて、表4に示す条件で加熱、圧延後
に空冷することにより製造した板厚6〜25mmの厚鋼板
のスケール性状を表4に示す。スケール厚は、スケール
断面の光学顕微鏡写真から測定した鋼板上の任意の10
箇所のスケール厚の平均値とした。スケール厚の均一度
の指標として、測定した10箇所のスケール厚の、最小
値、最大値も併せて示す。表面粗度は、鋼板上の任意の
3〜5箇所につき、スケール表面の粗度を長さ25mmに
渡りJIS B 0601 に準拠し表面粗度計を用いて測定し
たRa値の平均値である。
Next, using the test steels having the chemical compositions of steel Nos. A to F shown in Table 2, heating under the conditions shown in Table 4, air-cooling after rolling, the plate thickness of 6 to 25 mm was produced. Table 4 shows the scale properties of the steel sheet. Scale thickness is any 10 on the steel plate measured from the optical micrograph of the scale cross section.
The average value of the scale thickness at the location was used. As an index of the scale thickness uniformity, the minimum and maximum values of the measured scale thickness at 10 locations are also shown. The surface roughness is an average value of Ra values measured using a surface roughness meter according to JIS B 0601 over a length of 25 mm for the roughness of the scale surface at arbitrary 3 to 5 places.

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【表5】 [Table 5]

【0055】供試鋼番号1〜19は、本発明に基づき製
造された鋼であり、色差値はa* 値にて0.5以下であ
り、スケール厚は20〜60μmである。さらに、スケ
ール厚はほぼ均一であり、表面粗度はRa値にて0.5
〜1.5μmと、均一な厚みを持つ表面粗度の小さい青
スケール厚鋼板である。一方、供試鋼番号20〜30
は、圧延条件が本発明の条件範囲から逸脱しており、
0.5<a* 値の赤スケール厚鋼板となっている。さら
に、供試鋼番号31〜32は、圧延条件が本発明の条件
範囲から逸脱しており、圧延仕上温度が980<TF
あるため、スケールに微小なフクレが発生し鋼板表面外
観が劣化したものである。
Specimen Nos. 1 to 19 are steels manufactured according to the present invention, and the color difference value is 0.5 or less in a * value, and the scale thickness is 20 to 60 μm. Further, the scale thickness is almost uniform, and the surface roughness is 0.5 at Ra value.
It is a blue scale thick steel plate having a uniform thickness and a small surface roughness of about 1.5 μm. On the other hand, sample steel No. 20-30
Is, the rolling conditions deviate from the condition range of the present invention,
It is a red scale thick steel plate with a value of 0.5 <a * . Further, in the case of the test steel Nos. 31 to 32, the rolling conditions deviate from the condition range of the present invention, and the rolling finishing temperature is 980 <T F. Therefore, minute blisters occur on the scale and the steel plate surface appearance deteriorates. It was done.

【0056】スケール性状に及ぼす圧延条件と圧延後の
加速冷却の影響を、表2に示す鋼番A〜Fの化学成分を
有する、6〜25mm厚の厚鋼板を用いて表5に示す。表
5に示す条件で加熱、圧延後に5〜30℃/sec の冷却
速度で水冷することにより板厚6〜25mmの厚鋼板を製
造した。その厚鋼板のスケール性状を表5に示す。水冷
開始時間は、圧延終了直後から水冷を開始するまでの時
間であり、水冷停止温度は水冷を停止し空冷を始めた時
の鋼板表面温度である。スケール色調、スケール厚、表
面粗度は表4の説明で上述した方法で評価した。
The effects of rolling conditions and accelerated cooling after rolling on the scale properties are shown in Table 5 by using thick steel plates having the chemical compositions of steel Nos. A to F shown in Table 2 and having a thickness of 6 to 25 mm. A thick steel plate having a plate thickness of 6 to 25 mm was manufactured by heating and rolling under the conditions shown in Table 5 and then water cooling at a cooling rate of 5 to 30 ° C./sec. Table 5 shows the scale properties of the thick steel plate. The water cooling start time is the time from immediately after the end of rolling until the water cooling is started, and the water cooling stop temperature is the steel plate surface temperature when the water cooling is stopped and the air cooling is started. The scale color tone, scale thickness, and surface roughness were evaluated by the methods described above in Table 4.

【0057】[0057]

【表6】 [Table 6]

【0058】[0058]

【表7】 [Table 7]

【0059】供試鋼番号1〜20は、本発明の厚鋼板で
あり、色差値はa* 値にて0.5以下であり、スケール
厚は3〜20μmである。さらに、スケール厚はほぼ均
一であり、表面粗度はRa値にて0.5〜1.5μmと
均一な厚みを持つ表面粗度の小さい青スケール厚鋼板で
ある。供試鋼番号21〜31については、圧延条件が本
発明の条件範囲から逸脱しており、0.5<a* 値の赤
スケール厚鋼板となっている。加速冷却条件について
は、冷却速度を20〜30℃/sec 程度と大きくし、冷
却開始時間を5秒以内とし、冷却停止温度を700℃以
下と低くすることにより、スケール厚をより薄くするこ
とが可能である。
Specimen Nos. 1 to 20 are thick steel plates of the present invention, the color difference value is 0.5 or less in a * value, and the scale thickness is 3 to 20 μm. Further, the scale thickness is substantially uniform, and the surface roughness is a blue scale thick steel plate with a small surface roughness having a Ra value of 0.5 to 1.5 μm and a uniform thickness. Regarding the test steel Nos. 21 to 31, the rolling conditions deviate from the condition range of the present invention, and the red scale thick steel plate with 0.5 <a * value is obtained. Regarding the accelerated cooling conditions, the cooling rate can be increased to about 20 to 30 ° C./sec, the cooling start time can be set to 5 seconds or less, and the cooling stop temperature can be set to 700 ° C. or lower to reduce the scale thickness. It is possible.

【0060】[0060]

【発明の効果】本発明によれば、建設機械、コンクリー
ト型枠、造船、橋梁の分野の大きな課題である、製造
コスト削減、製品外観の改善、職場の衛生状態改善
に大きく貢献することができる、耐スケール剥離性に優
れる厚鋼板を、安価に、安定して供給することが可能と
なるため、産業上極めて有用なものである。
According to the present invention, it is possible to greatly contribute to reduction of manufacturing cost, improvement of product appearance, and improvement of hygiene at work, which are major problems in the fields of construction machinery, concrete formwork, shipbuilding, and bridges. The thick steel plate having excellent scale peeling resistance can be stably supplied at low cost, which is extremely useful in industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】厚鋼板の耐スケール剥離性に及ぼす鋼板表面の
スケールの色調の影響を示した図表である。
FIG. 1 is a chart showing the influence of the color tone of the scale on the surface of a steel sheet on the scale peeling resistance of a thick steel sheet.

【図2】圧延後に空冷して製造する場合の、厚鋼板のス
ケール状態に及ぼす圧延温度と圧下率の影響を示した図
表である。
FIG. 2 is a chart showing the influence of rolling temperature and reduction rate on the scale state of thick steel plates in the case of manufacturing after cooling by air cooling.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% 残部がFe及び不可避的不純物からなり、かつ鋼板表面
のスケールの色調がa*値にて0.5以下である、耐ス
ケール剥離性に優れる厚鋼板。
1. By weight%, C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10. % A thick steel plate having a balance of Fe and inevitable impurities, and having a scale color tone on the surface of the steel plate of 0.5 or less in a * value, which is excellent in scale peeling resistance.
【請求項2】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有
し、残部がFe及び不可避的不純物からなり、かつ鋼板
表面のスケールの色調がa*値にて0.5以下である、
耐スケール剥離性に優れる厚鋼板。
2. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10% (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1.50% Ni: 0 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% at least one element selected from the group consisting of However, the balance consists of Fe and unavoidable impurities, and the color tone of the scale on the steel plate surface is 0.5 or less in a * value,
Thick steel plate with excellent scale peeling resistance.
【請求項3】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素と、 (c) Ca:0.0003〜0.010% REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素とを含有
し、残部がFe及び不可避的不純物からなり、かつ鋼板
表面のスケールの色調がa*値にて0.5以下である、
耐スケール剥離性に優れる厚鋼板。
3. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10% (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1.50% Ni: 0 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% and at least one element selected from the group consisting of: (C) Ca: 0.0003 to 0.010% REM: 0.001 to 0.030% and at least one element selected from the group consisting of, and the balance consisting of Fe and inevitable impurities, and The color tone of the scale on the surface of the steel sheet is 0.5 or less in a * value,
Thick steel plate with excellent scale peeling resistance.
【請求項4】 重量%にて、 C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% 残部がFe及び不可避的不純物からなり、加熱温度を1
050〜1300℃とし、圧延の最終パスのロール噛み
込み温度をTF (℃)、仕上圧延での最終3パスの平均
圧下率をRF (%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
4. In% by weight, C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10. % The balance consists of Fe and inevitable impurities, and the heating temperature is 1
When the rolling biting temperature of the final pass of rolling is TF (° C.) and the average rolling reduction of the final three passes in finishing rolling is R F (%), 880 ≦ T F ≦ 980 ( ℃) 21 ≤ R F ≤ 40 (%) R F ≥ 155-3T F / 20 (%) Rolling under the conditions that satisfy the three formulas at the same time, and air-cooling after rolling to obtain a scale with a thickness of 20 to 60 µm. A method for producing a thick steel sheet having excellent scale peeling resistance, comprising:
【請求項5】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% を含有し、 さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有
し、残部がFe及び不可避的不純物からなり、加熱温度
を1050〜1300℃とし、圧延の最終パスのロール
噛み込み温度をTF (℃)、仕上圧延での最終3パスの
平均圧下率をRF (%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
5. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% at least selected from the group consisting of Containing one element, the balance consisting of Fe and unavoidable impurities, heating temperature of 1050 to 1300 ° C, roll biting temperature of the final pass of rolling T F (° C), final 3 passes of finish rolling the average reduction rate of when the R F (%), 880 ≦ T F ≦ 980 (℃) 21 ≦ R F ≦ 4 (%) Was rolled at R F ≧ 155-3T F / 20 ( %) of three equations simultaneously satisfy conditions, by air cooling after rolling, characterized by having a scale thickness of 20 to 60 [mu] m, A method for manufacturing a thick steel sheet having excellent scale peeling resistance.
【請求項6】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% を含有し、 さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素と、 (c) Ca:0.0003〜0.010% REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素とを含有
し、残部がFe及び不可避的不純物からなり、加熱温度
を1050〜1300℃とし、圧延の最終パスのロール
噛み込み温度をTF (℃)、仕上圧延での最終3パスの
平均圧下率をRF (%)とした時に、 880≦TF ≦980(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延後空冷す
ることにより、20〜60μmの厚みのスケールを有す
ることを特徴とする、耐スケール剥離性に優れる厚鋼板
の製造方法。
6. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% at least selected from the group consisting of One element and (c) Ca: 0.0003 to 0.010% and at least one element selected from the group consisting of REM: 0.001 to 0.030%, the balance being Fe and unavoidable. Made of mechanical impurities, the heating temperature is set to 1050 to 1300 ℃, and the roll is caught in the final pass of rolling. Assuming that the temperature is T F (° C.) and the average rolling reduction of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 980 (° C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%), which is characterized by having a scale of 20 to 60 μm by rolling under the conditions that simultaneously satisfy the three formulas, and then air-cooling after rolling. An excellent method for manufacturing thick steel plates.
【請求項7】 重量%にて、 C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% 残部がFe及び不可避的不純物からなり、加熱温度を1
050〜1300℃とし、圧延の最終パスのロール噛み
込み温度をTF (℃)、仕上圧延での最終3パスの平均
圧下率をRF (%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
7. In wt%, C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10. % The balance consists of Fe and inevitable impurities, and the heating temperature is 1
When the rolling biting temperature of the final pass of rolling is TF (° C.) and the average rolling reduction of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 1020 ( C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) 3 conditions are simultaneously rolled, and after rolling, 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.
【請求項8】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% を含有し、 さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有
し、残部がFe及び不可避的不純物からなり、加熱温度
を1050〜1300℃とし、圧延の最終パスのロール
噛み込み温度をTF (℃)、仕上圧延での最終3パスの
平均圧下率をRF (%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
8. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% at least selected from the group consisting of Containing one element, the balance consisting of Fe and unavoidable impurities, heating temperature of 1050 to 1300 ° C, roll biting temperature of the final pass of rolling T F (° C), final 3 passes of finish rolling the average reduction rate of when the R F (%), 880 ≦ T F ≦ 1020 (℃) 21 ≦ R F ≦ 0 (%) R F ≧ 155-3T F / 20 was rolled at the same time satisfying the condition 3 Expressions (%), the finish rolling after 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.
【請求項9】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% を含有し、 さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素と、 (c) Ca:0.0003〜0.010% REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素とを含有
し、残部がFe及び不可避的不純物からなり、加熱温度
を1050〜1300℃とし、圧延の最終パスのロール
噛み込み温度をTF (℃)、仕上圧延での最終3パスの
平均圧下率をRF (%)とした時に、 880≦TF ≦1020(℃) 21≦RF ≦40(%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延し、圧延終了後3
0秒以内に5℃/sec 以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、その後に空冷することによ
り、3〜20μmの厚みのスケールを有することを特徴
とする、耐スケール剥離性に優れる厚鋼板の製造方法。
9. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% at least selected from the group consisting of One element and (c) Ca: 0.0003 to 0.010% and at least one element selected from the group consisting of REM: 0.001 to 0.030%, the balance being Fe and unavoidable. Made of mechanical impurities, the heating temperature is set to 1050 to 1300 ℃, and the roll is caught in the final pass of rolling. Assuming that the temperature is T F (° C.) and the average rolling reduction of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 1020 (° C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) 3 formulas are simultaneously rolled under the conditions that are satisfied, and after the completion of rolling, 3
By starting accelerated cooling at a cooling rate of 5 ° C / sec or more within 0 seconds, stopping accelerated cooling in a temperature range of the steel sheet surface temperature of 500 ° C or more and 750 ° C or less, and then performing air cooling, 3 to A method for producing a thick steel sheet having excellent scale peeling resistance, which has a scale having a thickness of 20 μm.
JP24924995A 1995-09-27 1995-09-27 Method of manufacturing thick steel plate with excellent scale peel resistance Expired - Fee Related JP3233836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24924995A JP3233836B2 (en) 1995-09-27 1995-09-27 Method of manufacturing thick steel plate with excellent scale peel resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24924995A JP3233836B2 (en) 1995-09-27 1995-09-27 Method of manufacturing thick steel plate with excellent scale peel resistance

Publications (2)

Publication Number Publication Date
JPH0987799A true JPH0987799A (en) 1997-03-31
JP3233836B2 JP3233836B2 (en) 2001-12-04

Family

ID=17190154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24924995A Expired - Fee Related JP3233836B2 (en) 1995-09-27 1995-09-27 Method of manufacturing thick steel plate with excellent scale peel resistance

Country Status (1)

Country Link
JP (1) JP3233836B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256916A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Production of low-temperature extra-thick steel plate having excellent uniformity in thickness direction
JPS6483616A (en) * 1987-09-26 1989-03-29 Sumitomo Metal Ind Production of hot rolled steel sheet having excellent scale adhesiveness
JPH0234793A (en) * 1988-07-26 1990-02-05 Kobe Steel Ltd Production of high-strength hot-rolled steel sheet to be worked having excellent scale adhesion
JPH0539523A (en) * 1991-08-05 1993-02-19 Nippon Steel Corp Manufacture of thick steel plate excellent in surface property
JPH05295431A (en) * 1992-04-20 1993-11-09 Nippon Steel Corp Production of thick plate with high toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256916A (en) * 1986-04-28 1987-11-09 Kobe Steel Ltd Production of low-temperature extra-thick steel plate having excellent uniformity in thickness direction
JPS6483616A (en) * 1987-09-26 1989-03-29 Sumitomo Metal Ind Production of hot rolled steel sheet having excellent scale adhesiveness
JPH0234793A (en) * 1988-07-26 1990-02-05 Kobe Steel Ltd Production of high-strength hot-rolled steel sheet to be worked having excellent scale adhesion
JPH0539523A (en) * 1991-08-05 1993-02-19 Nippon Steel Corp Manufacture of thick steel plate excellent in surface property
JPH05295431A (en) * 1992-04-20 1993-11-09 Nippon Steel Corp Production of thick plate with high toughness

Also Published As

Publication number Publication date
JP3233836B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP5728547B2 (en) Low density steel with good stamping performance
JP5960809B2 (en) Stainless steel sheet for precision machining and manufacturing method thereof
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
EP2182085B1 (en) Ferritic stainless steel plate excellent in punchability and process for production of the same
JP5838708B2 (en) Steel sheet with excellent surface properties and method for producing the same
JP2004360003A (en) Ferritic stainless steel sheet superior in press formability and fabrication quality, and manufacturing method therefor
JPH01172524A (en) Production of complex phase structure chromium stainless strip having excellent corrosion resistance and high ductility and strength
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP2009030081A (en) High-tension cold-rolled steel sheet and producing method therefor
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
CN116635554A (en) Steel having excellent laser cutting characteristics and method for manufacturing same
KR102517499B1 (en) Ferritic stainless steel sheet and manufacturing method thereof
JPH0987799A (en) Thick steel plate excellent in scale peeling resistance and its production
JP2003221640A (en) Steel plate showing excellent laser cuttability and its manufacturing process
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3233833B2 (en) Steel material excellent in high-density energy beam cutting property and method for producing the same
JP2002348616A (en) Method for manufacturing martensitic stainless steel band superior in blanking property
JPH09271806A (en) Thick plate with uniform scale having satisfactory adhesion and its manufacture
JP3445998B2 (en) Hot-rolled steel sheet with excellent laser cutting property and method for producing the same
JP3408942B2 (en) Steel material excellent in high-density energy beam cutting property and method for producing the same
JP2020007599A (en) Ferritic stainless steel sheet, clad material, and manufacturing method of ferritic stainless steel sheet
JPH032320A (en) Method for rolling fe-al-cr series alloy steel
JP5644148B2 (en) Stainless cold-rolled steel sheet with excellent surface appearance after processing and method for producing the same
JP2010270399A (en) Method for manufacturing ferritic-stainless steel excellent in ridging resistance
JPH06264180A (en) Cold rolled steel sheet excellent in dent resistance, surface distortion resistance, and workability and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090921

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees