JPH0987767A - Method for molding half-molten zinc alloy - Google Patents

Method for molding half-molten zinc alloy

Info

Publication number
JPH0987767A
JPH0987767A JP7244109A JP24410995A JPH0987767A JP H0987767 A JPH0987767 A JP H0987767A JP 7244109 A JP7244109 A JP 7244109A JP 24410995 A JP24410995 A JP 24410995A JP H0987767 A JPH0987767 A JP H0987767A
Authority
JP
Japan
Prior art keywords
zinc alloy
jig
alloy
temperature
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7244109A
Other languages
Japanese (ja)
Inventor
Satoshi Sato
智 佐藤
Mitsuru Adachi
充 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP7244109A priority Critical patent/JPH0987767A/en
Priority to CA002177455A priority patent/CA2177455C/en
Priority to EP02028272A priority patent/EP1331279A3/en
Priority to EP96108499A priority patent/EP0745694B1/en
Priority to DE69633988T priority patent/DE69633988T2/en
Publication of JPH0987767A publication Critical patent/JPH0987767A/en
Priority to US09/490,983 priority patent/US6769473B1/en
Priority to US10/852,952 priority patent/US6851466B2/en
Priority to US11/008,749 priority patent/US7121320B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a molding having a fine and spherical thixo structure at a low cost by cooling and holding a liquid zinc ally of a liquidus temp. or above having crystal nuclei under specific conditions to crystallize fine primary crystals and press molding these crystals. SOLUTION: The zinc alloy M which is the perfect liquid in a ladle 10 is cooled to generate the crystal nuclei from the low-temp. melt by using a cooling jig 20 and is poured into a ceramic vessel 30 having a thermal insulating effect to obtain the alloy M right under the liquidus temp. contg. the many crystal nuclei. While the alloy M is cooled in this thermal insulating vessel 30 down to the molding temp. at which the alloy exhibits a prescribed liquid phase ratio. The alloy is then hold in a half molten state for 5 seconds to 60 minutes. The superfine non-dendritic primary crystals are formed from the crystal nuclei during this time. These crystal grow to the spherical primary crystals. The alloy M having the prescribed liquid phase ratio obtd. in such a manner is inserted into an injection sleeve 40 of die casting and is then press-molded within the die cavity 50a of a die casting machine to obtain the molded goods. As a result, the molded goods having the fine and spheroidal structure are easily and simply obtd. at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半溶融亜鉛合金の成
形方法に係り、特に、結晶核を有する液相線温度以上の
液体状態の亜鉛合金、または、結晶核を有する成形温度
以上の液体状態の亜鉛合金を断熱効果を有する断熱容器
の中において、所定の液相率を示す成形温度まで冷却し
つつ5秒間〜60分間保持することにより、液中に微細
な初晶を発生させてから加圧成形する半溶融金属の成形
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a semi-molten zinc alloy, and more particularly to a zinc alloy having a crystal nucleus and in a liquid state above a liquidus temperature, or a crystal state having a crystal nucleus above a forming temperature in a liquid state. In the heat-insulating container having a heat-insulating effect, the above zinc alloy is cooled to a molding temperature exhibiting a predetermined liquid phase ratio and held for 5 seconds to 60 minutes to generate a fine primary crystal in the liquid before adding. The present invention relates to a method for forming a semi-molten metal by pressure forming.

【0002】[0002]

【従来の技術】チクソキャスト法は、従来の鋳造法に比
べて鋳造欠陥や偏析が少なく、金属組織が均一で、金型
寿命が長いことや成形サイクルが短いなどの利点があ
り、最近注目されている技術である。この成形法(A)
において使用されるビレットは、半溶融温度領域で機械
攪拌や電磁攪拌を実施するか、あるいは加工後の再結晶
を利用することによって得られた球状化組織を特徴とす
るものである。これに対して、従来鋳造法による素材を
用いて半溶融成形する方法も知られている。これは、例
えば、等軸晶組織を発生しやすいマグネシウム合金にお
いてさらに微細な結晶を生じせしめるためにZrを添加
する方法(B)や炭素系微細化剤を使用する方法(C)
であり、またアルミニウム合金において微細化剤として
Al−5%Ti−1%B母合金を従来の2倍〜10倍程
度添加する方法(D)であり、これら方法により得られ
た素材を半溶融温度域に加熱し初晶を球状化させて成形
する方法である。また、固溶限以内の合金に対して、固
相線近くの温度まで比較的急速に加熱した後、素材全体
の温度を均一にし局部的な溶融を防ぐために、固相線を
超えて材料が柔らかくなる適当な温度まで緩やかに加熱
して成形する方法(E)が知られている。一方、ビレッ
トを半溶融温度領域まで昇温し成形する方法と異なり、
球状の初晶を含む融液を連続的に生成し、ビレットとし
て一旦固化することなく、そのままそれを成形するレオ
キャスト法(F)が知られている。
2. Description of the Related Art Thixocasting has attracted attention recently because it has fewer casting defects and segregation than conventional casting methods, has a uniform metal structure, has a long mold life, and has a short molding cycle. Technology. This molding method (A)
The billet used in (1) is characterized by a spheroidized structure obtained by carrying out mechanical stirring or electromagnetic stirring in the semi-melting temperature region, or by utilizing recrystallization after processing. On the other hand, a method of semi-solid molding using a material obtained by a conventional casting method is also known. This is, for example, a method (B) of adding Zr or a method (C) of using a carbon-based refiner in order to produce finer crystals in a magnesium alloy that is likely to generate an equiaxed crystal structure.
In addition, it is a method (D) of adding Al-5% Ti-1% B mother alloy as a refining agent in an aluminum alloy about 2 to 10 times that of the conventional method, and the material obtained by these methods is semi-melted. This is a method in which the primary crystal is heated to a temperature range so as to be spherical and then molded. Also, for alloys within the solid solubility limit, after heating relatively quickly to a temperature near the solidus, the material exceeds the solidus in order to equalize the temperature of the entire material and prevent local melting. A method (E) of forming by heating gently to an appropriate temperature at which the material is softened is known. On the other hand, unlike the method of heating the billet to the semi-melting temperature range and molding,
A rheocast method (F) is known in which a melt containing spherical primary crystals is continuously produced, and the billet is not solidified once but is shaped as it is.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た(A)の方法は攪拌法や再結晶を利用する方法のいず
れの場合も煩雑であり、製造コストが高くなる難点があ
る。また、亜鉛合金においては、(B)、(C)および
(D)のような結晶を微細化する方法は、一般的に知ら
れていない。さらに、(E)の方法では、固相線を越え
てから緩やかに加熱して素材の均一加熱と球状化を図る
ことを特徴とするチクソ成形法が提案されているが、通
常のデンドライト組織を加熱してもチクソ組織(初晶デ
ンドライトが球状化されている)には変化しない。しか
も(A)〜(E)のいずれのチクソ成形法においても半
溶融成形するために、一旦液相を固化しそのビレットを
再度半溶融温度領域まで昇温する必要があり、従来鋳造
法に比べてコスト高になる。また、(F)の方法では、
球状の初晶を含む融液を連続的に生成供給するため、コ
スト的、エネルギ的にもチクソキャストよりも有利であ
るが、球状組織と液相からなる金属原料を製造する機械
と最終製品を製造する鋳造機との設備的連動が煩雑であ
る。本発明は、上述の従来の各方法の問題点に着目し、
ビレットを使用することなく、しかも、煩雑な方法をと
ることなく、簡便容易に、微細な初晶を有する半溶融亜
鉛合金を得て、加圧成形する方法を提案することを目的
とするものである。
However, the above-mentioned method (A) is complicated in both cases of the stirring method and the method of utilizing recrystallization, and there is a drawback that the manufacturing cost becomes high. Further, in zinc alloys, a method of refining crystals such as (B), (C) and (D) is not generally known. Further, in the method (E), a thixomolding method has been proposed which is characterized by uniformly heating the material and spheroidizing it by gently heating it after passing the solidus line. It does not change to a thixostructure (primary crystal dendrites are spheroidized) even when heated. Moreover, in any of the thixomolding methods (A) to (E), it is necessary to once solidify the liquid phase and raise the billet again to the semi-melting temperature region in order to perform the semi-melt molding, as compared with the conventional casting method. And the cost will increase. Moreover, in the method of (F),
Since it continuously generates and supplies a melt containing spherical primary crystals, it is more cost- and energy-efficient than thixocasting, but it is possible to provide a machine and final product for producing metal raw materials composed of a spherical structure and a liquid phase. It is complicated to interlock with the casting machine to be manufactured. The present invention focuses on the problems of the conventional methods described above,
The purpose of the present invention is to propose a method of obtaining a semi-molten zinc alloy having a fine primary crystal and pressing it easily and easily without using a billet and without taking a complicated method. is there.

【0004】[0004]

【課題を解決するための手段】このような課題を解決す
るために、本発明においては、第1の発明では、結晶核
を有する液相線温度以上の液体状態の亜鉛合金、また
は、結晶核を有する成形温度以上の固液共存状態の亜鉛
合金を、断熱効果を有する断熱容器の中において、所定
の液相率を示す成形温度まで冷却しつつ5秒間〜60分
間保持することにより、液中に微細な初晶を該亜鉛合金
液中に晶出させ、該亜鉛合金を成形用金型に供給して加
圧成形することとした。また、第2の発明では、第1の
発明における結晶核の生成方法を、液相線温度に対して
過熱度を300℃未満に保持された合金溶湯を該合金の
融点よりも低い温度の治具の表面に接触させることとし
た。さらに、第3の発明では、第2の発明の治具を、金
属製治具または非金属製治具、あるいは半導体を含む非
金属材料を表面に塗布した金属製治具、もしくは半導体
を含む非金属材料を複合させた金属製治具とし、かつ、
該治具の内部あるいは外部から該治具を冷却することが
できるようにした。また、第4の発明では、結晶核の生
成を、治具または断熱容器のいずれか、もしくは両方に
接触する亜鉛合金溶湯に振動を与えることとした。第5
の発明では、第1の発明や第2の発明の亜鉛合金を、非
晶点以下のアルミニウムを含む亜鉛合金とした。そし
て、第6の発明では、液相線温度に対する過熱度を10
0℃未満に保持した亜鉛合金溶湯を、治具を使用するこ
となく直接断熱容器に注ぐようにした。
In order to solve such a problem, in the present invention, in the first invention, a zinc alloy having a crystal nucleus in a liquid state at a liquidus temperature or higher, or a crystal nucleus The solid-liquid coexisting zinc alloy having a temperature above the molding temperature is kept in the liquid for 5 seconds to 60 minutes while being cooled to a molding temperature exhibiting a predetermined liquid phase ratio in a heat insulating container having a heat insulating effect. Then, fine primary crystals were crystallized in the zinc alloy liquid, and the zinc alloy was supplied to a molding die for pressure molding. A second aspect of the present invention is the method of producing crystal nuclei according to the first aspect of the present invention, in which a molten alloy having a superheat degree of less than 300 ° C. with respect to a liquidus temperature is treated at a temperature lower than a melting point of the alloy. It was decided to contact the surface of the ingredient. Further, in the third invention, the jig of the second invention is a metal jig or a non-metal jig, a metal jig whose surface is coated with a non-metal material containing a semiconductor, or a non-metal jig containing a semiconductor. A metal jig that is a composite of metal materials, and
The jig can be cooled from inside or outside. Further, in the fourth aspect of the invention, the crystal nuclei are generated by vibrating the molten zinc alloy in contact with either or both of the jig and the heat insulating container. Fifth
In the invention, the zinc alloy of the first invention or the second invention is a zinc alloy containing aluminum having an amorphous point or lower. In the sixth invention, the degree of superheat with respect to the liquidus temperature is set to 10
The molten zinc alloy held below 0 ° C. was poured directly into a heat insulating container without using a jig.

【0005】[0005]

【発明の実施の形態】結晶核を有する液相線以上の液体
状態の亜鉛合金や結晶核を有する成形温度以上の固液共
存状態の亜鉛合金を、断熱効果を有する断熱容器の中で
成形温度まで冷却しつつ5秒間〜60分間保持すること
によって、液中に微細かつ球状化した初晶を発生させ、
該亜鉛合金を成形用金型に供給して加圧成形することに
より、均質な組織の優れた成形体が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A zinc alloy in a liquid state above a liquidus having a crystal nucleus or a zinc alloy in a solid-liquid coexisting state above a molding temperature having a crystal nucleus is molded in a heat insulating container having a heat insulating effect at a molding temperature. By maintaining for 5 seconds to 60 minutes while cooling to, a fine and spherical primary crystal is generated in the liquid,
By supplying the zinc alloy to a molding die and performing pressure molding, a molded body having an excellent uniform structure can be obtained.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例の詳細に
ついて説明する。図1〜図5は本発明の実施例に係り、
図1は亜共晶組成の亜鉛合金の半溶融金属の成形方法を
示す工程説明図、図2は球状初晶の生成から成形までの
成形方法を示す工程説明図、図3は図2に示した各工程
の金属組織模式図、図4は代表的な亜鉛合金であるZn
−Al系2元合金平衡状態図、図5は本発明例の成形品
の金属組織を示す顕微鏡写真の模写図である。また、図
6は比較例の成形品の金属組織を示す顕微鏡写真の模写
図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. 1 to 5 relate to an embodiment of the present invention,
FIG. 1 is a process explanatory view showing a forming method of a semi-molten metal of a zinc alloy having a hypoeutectic composition, FIG. 2 is a process explanatory view showing a forming method from formation of spherical primary crystals to forming, and FIG. 3 is shown in FIG. Schematic diagram of the metal structure of each process, and FIG. 4 is a typical zinc alloy Zn
-Al binary alloy equilibrium diagram, and Fig. 5 is a copy of a micrograph showing the metal structure of the molded product of the present invention. FIG. 6 is a copy of a micrograph showing the metal structure of the molded product of the comparative example.

【0007】本発明においては、図1、図4に示すよう
に、まず(1)液相線温度に対して過熱度を300℃未
満に保持した亜共晶亜鉛合金の溶湯を、その合金の融点
よりも低い温度の治具の表面に接触させて液中に結晶核
を発生させ、あるいは(2)液相線温度に対する過熱度
は100℃未満に保持した亜鉛合金の溶湯を、治具を使
用せず直接に断熱効果を有する断熱容器に注ぎ、その断
熱容器内において液相線温度以下でかつ共晶温度あるい
は固相線温度より高い温度の状態に5秒間〜60分間保
持することで微細な球状の初晶を多数発生させ、所定の
液相率で成形する。所定の液相率とは、加圧成形に適す
る液相の量比を意味し、ダイカスト鋳造、スクイズ鋳造
などの高圧鋳造では液相率は20%〜90%、好ましく
は30%〜70%(30%未満では素材の成形性が劣
り、70%以上では素材が軟いためハンドリングが難し
いばかりでなく、均一な組織が得難くなる)とし、押出
法や鍛造法では、0.1%〜70%、好ましくは0.1
%〜50%(50%以上では組織の不均一が生じる惧れ
がある)とする。また、本発明でいう断熱容器とは、金
属製容器または非金属製容器とするか、あるいは半導体
を含む非金属材料を表面に塗布した金属製容器、もしく
は半導体を含む非金属材料を複合させた金属製容器と
し、かつ、該容器の内部あるいは外部から該容器の加熱
または冷却が可能なものである。
In the present invention, as shown in FIGS. 1 and 4, first, (1) a melt of a hypoeutectic zinc alloy whose superheat degree is kept below 300 ° C. with respect to the liquidus temperature is The crystal nuclei are generated in the liquid by contacting the surface of the jig whose temperature is lower than the melting point, or (2) the molten zinc alloy which is maintained at a superheat degree of less than 100 ° C. to the liquidus temperature Pour directly into a heat-insulating container that has a heat-insulating effect without using it, and keep it in the heat-insulating container at a temperature below the liquidus temperature and higher than the eutectic temperature or solidus temperature for 5 seconds to 60 minutes to make it fine. A large number of spherical primary crystals are generated and molded at a predetermined liquid phase rate. The predetermined liquid phase ratio means the amount ratio of the liquid phase suitable for pressure molding, and in high pressure casting such as die casting and squeeze casting, the liquid phase ratio is 20% to 90%, preferably 30% to 70% ( If it is less than 30%, the moldability of the material is poor, and if it is 70% or more, the material is not only difficult to handle because it is soft, but it is difficult to obtain a uniform structure.) In the extrusion method or forging method, 0.1% to 70% , Preferably 0.1
% To 50% (50% or more may cause nonuniformity of the structure). The heat-insulating container in the present invention is a metal container or a non-metal container, or a metal container having a surface coated with a non-metal material containing a semiconductor, or a composite of a non-metal material containing a semiconductor. The container is made of metal, and the container can be heated or cooled from inside or outside.

【0008】具体的には以下のとおりの手順により作業
を進める。図2および図3の工程[1]においてラドル
10内に入れられた完全液体である金属Mを工程[2]
において、(a)冷却用治具20を用いて低温溶湯から
結晶核を発生させ断熱効果を有するセラミック製容器3
0に注ぐ、または、(b)融点直上の低温溶湯を直接、
断熱効果を有する断熱容器30(セラミックコーティン
グ金属容器30A)に注ぐ、のいずれかの方法により多
数の結晶核を含む液相線直下の合金を得る。つぎに工程
[3]において、該断熱容器30(または30A)にお
いて該合金を半溶融状態で保持する。この間、導入され
た結晶核から超微細な非デンドライト状初晶が生成し
([3]−a)、融体の温度低下に伴う固相率の増加に
つれて球状の初晶として成長する([3]−c)。この
ようにして得られた所定の液相率を有する金属Mを例え
ば[3]−dのようにダイキャストの射出スリーブ40
に挿入した後、ダイキャストマシンの金型キャビティ5
0a内で加圧成形して成形品を得る。
Specifically, the work is carried out according to the following procedure. The metal M which is a complete liquid contained in the ladle 10 in the step [1] of FIGS. 2 and 3 is processed in the step [2].
In (a), a ceramic container 3 having a heat insulating effect by generating crystal nuclei from a low temperature molten metal by using a cooling jig 20.
0, or (b) directly apply the low temperature melt directly above the melting point,
By pouring into a heat insulating container 30 (ceramic coating metal container 30A) having a heat insulating effect, an alloy immediately below the liquidus line containing a large number of crystal nuclei is obtained. Next, in step [3], the alloy is held in the semi-molten state in the heat insulating container 30 (or 30A). During this period, ultrafine non-dendritic primary crystals are generated from the introduced crystal nuclei ([3] -a), and grow as spherical primary crystals as the solid fraction increases as the temperature of the melt decreases ([3] -a). ] -C). The metal M having a predetermined liquid phase ratio thus obtained is die-casted into the injection sleeve 40 as in [3] -d.
Mold cavity 5 of die casting machine after inserting into
A molded product is obtained by pressure molding in 0a.

【0009】図1、図2、図3に示す本発明と従来のチ
クソキャスト法、レオキャスト法の違いは図より明らか
である。すなわち、本発明では従来法のように、半溶融
温度領域で晶出したデンドライト状の初晶を機械攪拌や
電磁攪拌で強制的に破砕球状化することはなく、液中に
導入された結晶核を起点として半溶融温度領域での温度
低下とともに晶出、成長する多数の初晶が合金自身が持
っている熱量により(必要に応じて外部から加熱保持さ
れることもありうる)連続的に球状化されるものであ
り、また、チクソキャスト法におけるビレットの再昇温
による半溶融化の工程が省かれているため極めて簡便な
方法である。上述した各工程、すなわち、図2に示す冷
却用治具20への注湯工程、初晶の生成、球状工程、成
形工程のそれぞれにおいて設定された鋳造条件、球状化
条件および成形条件や第2の発明、第6の発明で示した
数値限定理由について以下に説明する。
The difference between the present invention shown in FIGS. 1, 2 and 3 and the conventional thixocast method and rheocast method is clear from the drawings. That is, in the present invention, unlike conventional methods, the dendrite-like primary crystals crystallized in the semi-melting temperature region are not forcibly crushed into spherical particles by mechanical stirring or electromagnetic stirring, and the crystal nuclei introduced into the liquid A large number of primary crystals that crystallize and grow with a decrease in temperature in the semi-melting temperature region starting from the starting point are continuously spherical due to the amount of heat the alloy itself has (may be externally heated and held if necessary) It is a very simple method because the step of semi-melting by reheating the billet in the thixocasting method is omitted. The casting conditions, the spheroidizing conditions and the molding conditions set in each of the above-mentioned processes, namely, the process of pouring into the cooling jig 20 shown in FIG. The reason for limiting the numerical values shown in the invention and the sixth invention will be described below.

【0010】鋳造温度が融点に対して300℃以上高け
れば、あるいは治具20の表面温度が融点以上の場合で
は、(1)結晶の核発生が少なく、しかも、(2)断熱
効果を有する断熱容器に注がれた時の溶湯Mの温度が液
相線よりも高いために残存する結晶核の割合も低く、初
晶のサイズが大きくなる。このため、鋳造温度は液相線
に対する過熱度が300℃未満とし、治具の表面温度
は、合金の融点よりも低くする。なお、液相線に対する
過熱度を100℃未満とすることにより、また、治具2
0の温度を溶湯Mの融点よりも50℃以上低くすること
により、より微細な初晶サイズとすることができる。治
具20に溶湯Mを接触させる方法としては、治具の表面
を溶湯Mを移動させる場合(傾斜した治具20へ溶湯を
流す)と溶湯中を治具20が移動する場合の2種類があ
る。なお、ここで言う治具とは、溶湯が流下する際に冷
却作用を溶湯に与えるものを言うが、これに代えて、例
えば、給湯機の筒状パイプを使用してもよい。液相線直
下に低下した溶湯を保持する断熱容器30は、発生した
初晶を球状にし所定時間後に希望する液相率にするため
に、断熱効果を有するものとする。その材質は限定され
るものではなく、保温性を有し、しかも、溶湯との濡れ
性が悪いものが好ましい。また、通気性のあるセラミッ
ク容器を断熱容器30として使用し、合金が酸化しやす
い組成の場合には、容器外部を所定の雰囲気(不活性雰
囲気、減圧雰囲気など)にすることが望ましい。なお、
断熱容器30の形状は筒状に限定されるものではなく、
その後の成形法に適した形状が可能である。また、断熱
容器でなくセラミック製の射出スリーブへ直接投入する
ようにしてもよい。その断熱容器30での保持時間が5
秒未満であれば、希望する液相率を示す温度にすること
が容易ではなく、また球状の初晶を生成することが困難
である。一方、保持時間が60分を超えると生成した球
状初晶や共晶組織が粗くなり機械的性質が低下する。こ
のため保持時間は5秒〜60分とする。なお、高圧鋳造
では成形直前の液相率が20%未満であれば成形時の変
形抵抗が高く良好な品質の成形品を得ることが容易でな
い。また90%を超えると均一な組織を有する成形品を
得ることができない。このため、前述したとおり成形時
の液相率は20%〜90%とすることが好ましい。さら
に、実質の液相率を30%〜70%にすることにより、
さらに均質でかつ高品質の成形材を容易に加圧成形でき
る。加圧成形する手段としては、スクイズ鋳造法やダイ
キャスト鋳造法に代表される高圧鋳造法に限定されるも
のではなく、押出法、鍛造法などの加圧成形する種々の
方法が含まれる。
When the casting temperature is higher than the melting point by 300 ° C. or higher, or when the surface temperature of the jig 20 is higher than the melting point, (1) the generation of crystal nuclei is small, and (2) the heat insulation has a heat insulating effect. Since the temperature of the molten metal M when it is poured into the container is higher than the liquidus line, the proportion of remaining crystal nuclei is low and the size of the primary crystal is large. For this reason, the casting temperature is set so that the degree of superheat to the liquidus is less than 300 ° C., and the surface temperature of the jig is lower than the melting point of the alloy. In addition, by setting the degree of superheat to the liquidus line to less than 100 ° C.
By making the temperature of 0 lower than the melting point of the melt M by 50 ° C. or more, a finer primary crystal size can be obtained. There are two methods for bringing the molten metal M into contact with the jig 20: moving the molten metal M on the surface of the jig (flowing the molten metal into the inclined jig 20) and moving the jig 20 in the molten metal. is there. The jig mentioned here refers to a jig that gives a cooling action to the molten metal when the molten metal flows down, but instead of this, for example, a tubular pipe of a water heater may be used. The heat insulating container 30 that holds the molten metal that has fallen just below the liquidus line has a heat insulating effect in order to make the generated primary crystals spherical and achieve a desired liquidus ratio after a predetermined time. The material is not limited, and it is preferable that the material has heat retention and has poor wettability with the molten metal. Further, when a ceramic container having air permeability is used as the heat insulating container 30 and the alloy has a composition that easily oxidizes, it is desirable to set the outside of the container to a predetermined atmosphere (inert atmosphere, reduced pressure atmosphere, etc.). In addition,
The shape of the heat insulating container 30 is not limited to the cylindrical shape,
A shape suitable for the subsequent molding method is possible. Further, instead of the heat insulating container, it may be directly charged into a ceramic injection sleeve. The holding time in the heat insulation container 30 is 5
If it is less than a second, it is not easy to reach a temperature at which a desired liquid phase ratio is exhibited, and it is difficult to form spherical primary crystals. On the other hand, if the holding time exceeds 60 minutes, the generated spherical primary crystals and eutectic structure become coarse and the mechanical properties deteriorate. Therefore, the holding time is 5 seconds to 60 minutes. In the high-pressure casting, if the liquid phase ratio immediately before molding is less than 20%, the deformation resistance during molding is high and it is not easy to obtain a molded product of good quality. If it exceeds 90%, a molded product having a uniform structure cannot be obtained. Therefore, as described above, the liquid phase ratio during molding is preferably 20% to 90%. Furthermore, by setting the substantial liquid phase ratio to 30% to 70%,
Further, a homogeneous and high-quality molding material can be easily pressure-molded. The means for pressure molding is not limited to the high pressure casting method represented by the squeeze casting method and the die casting casting method, and various methods for pressure molding such as extrusion method and forging method are included.

【0011】溶湯Mを接触させる治具20は、溶湯の温
度を低下させることができるものであればその材質を限
定するものではないが、特に熱伝導率の高い銅、銅合
金、アルミニウム、アルミニウム合金などの金属で、し
かも一定の温度以下に維持できるように冷却管理された
治具20は結晶核を多く生成するので好ましい。なお、
溶湯Mが治具20に接触した時に固体状に金属が治具2
0に付着するのを防ぐために非金属材料を塗布するのは
効果的である。塗布する方法としては、機械的、化学
的、あるいは物理的方法のいずれでも構わない。
The jig 20 for contacting the molten metal M is not limited in its material as long as it can lower the temperature of the molten metal, but copper, copper alloy, aluminum, aluminum having particularly high thermal conductivity is used. The jig 20 which is made of a metal such as an alloy and which is cooled and controlled so that it can be maintained at a certain temperature or lower is preferable because many crystal nuclei are generated. In addition,
When the molten metal M comes into contact with the jig 20, the metal becomes solid in the jig 2
It is effective to apply a non-metallic material to prevent sticking to zero. The coating method may be mechanical, chemical or physical.

【0012】亜鉛合金は等軸晶組織を形成しやすいた
め、治具20を用いずに微細球状の初晶を得ることが比
較的容易にできる。この場合には、液相線に対する過熱
度を100℃未満にするのは、断熱効果を有する断熱容
器30に注いだ合金を、結晶核を有する液体状態、また
は結晶核を有する成形温度以上の固液共存状態にするた
めである。注がれた断熱容器30内の溶湯の温度が高け
れば、一度生成した結晶核の再溶解あるいは初晶の粗大
化が起こり、希望する半溶融組織が得られない。また所
定の液相率まで温度が低下するために時間がかかりすぎ
能率が悪く、注がれた溶湯Mの湯面が酸化されるために
不都合である。表1に成形前の半溶融金属の条件および
成形材の品質を示す。成形は図2に示すように半溶融金
属をスリーブ内に挿入し、その後スクイズ鋳造機を用い
て行なった。成形条件は、加圧力950kgf/c
2 、射出速度1.0m/s、金型温度200℃とし、
製品形状は、厚みが2mm、5mm、10mmと長手方
向に変化し、幅100mm、長さ200mmの平板とし
た。
Since a zinc alloy easily forms an equiaxed crystal structure, it is relatively easy to obtain a fine spherical primary crystal without using the jig 20. In this case, the degree of superheat to the liquidus is set to less than 100 ° C. in order to prevent the alloy poured into the heat insulating container 30 having the heat insulating effect from being in a liquid state having crystal nuclei or a solid having a temperature higher than the molding temperature having the crystal nuclei. This is to make the liquid coexist. If the temperature of the poured molten metal in the heat insulating container 30 is high, re-dissolution of crystal nuclei once formed or coarsening of primary crystals occurs, and a desired semi-molten structure cannot be obtained. Further, since the temperature drops to a predetermined liquid phase rate, it takes too much time and the efficiency is poor, and the surface of the poured molten metal M is oxidized, which is inconvenient. Table 1 shows the conditions of the semi-molten metal before forming and the quality of the forming material. The forming was performed by inserting a semi-molten metal into the sleeve as shown in FIG. 2 and then using a squeeze casting machine. Molding conditions are pressing force 950kgf / c
m 2 , injection speed 1.0 m / s, mold temperature 200 ° C.,
The product shape was a flat plate having a thickness of 2 mm, 5 mm, and 10 mm, which varied in the longitudinal direction, and had a width of 100 mm and a length of 200 mm.

【0013】[0013]

【表1】 [Table 1]

【0014】比較例9では、溶湯Mを接触させる治具2
0の温度が高すぎるために結晶核の発生が少なく、この
ために微細球状の初晶が得られず、不定形の粗大な初晶
となる。比較例10では、鋳造温度が高すぎるために、
セラミック製容器30内において残存する結晶核がほと
んどなく、比較例9と同様な現象を示す。比較例11で
は保持時間が長いために液相率が少なく外観がよくな
い。また、初晶サイズも大きい。比較例12ではセラミ
ック製容器30内での保持時間が短く、しかも液相率が
高いために、図6に示すような成形品内部の成分偏析が
多く発生する。比較例13では、断熱効果の非常に小さ
い金属容器を使用したために、断熱容器30の内壁に生
成したデンドライト状の凝固層が容器中心部に生成され
た球状初晶に混在することになり、偏析を含む不均質な
組織を示す。一方、本発明例1〜8では、図5に示すよ
うな200μm以下の微細な球状の初晶を有する均質な
組織が得られ、しかも良好な外観の成形体が得られる。
In Comparative Example 9, the jig 2 for contacting the molten metal M
Since the temperature of 0 is too high, the generation of crystal nuclei is small, and as a result, fine spherical primary crystals cannot be obtained, resulting in coarse amorphous primary crystals. In Comparative Example 10, since the casting temperature is too high,
Almost no crystal nuclei remained in the ceramic container 30, and the same phenomenon as in Comparative Example 9 was exhibited. In Comparative Example 11, since the retention time is long, the liquid phase ratio is small and the appearance is not good. The primary crystal size is also large. In Comparative Example 12, since the holding time in the ceramic container 30 is short and the liquid phase ratio is high, segregation of components inside the molded product as shown in FIG. 6 occurs frequently. In Comparative Example 13, since the metal container having a very small heat insulating effect was used, the dendrite-like solidified layer formed on the inner wall of the heat insulating container 30 was mixed in the spherical primary crystal formed in the center of the container, and segregation occurred. Shows a heterogeneous tissue containing. On the other hand, in Examples 1 to 8 of the present invention, a homogeneous structure having fine spherical primary crystals of 200 μm or less as shown in FIG. 5 can be obtained, and a molded product having a good appearance can be obtained.

【0015】[0015]

【発明の効果】以上説明したことからも明らかなよう
に、本発明に係る半溶融亜鉛合金の成形方法では、
(1)結晶核を有する液相線温度以上の液体状態の合
金、または、結晶核を有する成形温度以上の固液共存状
態の合金を、断熱効果を有する断熱容器の中において、
所定の液相率を示す成形温度まで冷却しつつ5秒間〜6
0分間保持することにより、あるいは(2)液相線温度
に対して過熱度を300℃未満に保持された合金溶湯を
該合金の融点よりも低い温度の治具の表面に接触させる
ことにより結晶核を発生させて、微細かつ球状化した初
晶を該合金の液中に発生させ、所定の液相率になった半
溶融状態の該合金を成形用金型に供給して加圧成形する
ことにより、従来の機械攪拌法、電磁攪拌法によらず、
簡便容易に、かつ、低コストで微細かつ球状の組織を有
する成形体が得られる。また、液相線温度に対する過熱
度は100℃未満に保持した亜鉛合金溶湯を治具を使用
せず直接に、断熱容器の中に注ぎ、所定の液相率を示す
成形温度まで冷却しつつ5秒間〜60分間保持すること
により、同様に、微細かつ球状化した初晶を発生させる
ことができる。
As is clear from the above description, in the method for forming a semi-molten zinc alloy according to the present invention,
(1) In a heat-insulating container having a heat insulating effect, an alloy in a liquid state having a liquid crystal temperature above the liquidus temperature, or an alloy having a crystal nucleus in a solid-liquid coexisting state above the molding temperature,
5 seconds to 6 while cooling to a molding temperature showing a predetermined liquid phase ratio
Crystallized by holding for 0 minutes, or (2) by bringing the molten alloy whose superheat degree is lower than 300 ° C. with respect to the liquidus temperature into contact with the surface of the jig whose temperature is lower than the melting point of the alloy. Nuclei are generated to generate fine and spheroidized primary crystals in the liquid of the alloy, and the alloy in a semi-molten state having a predetermined liquid phase ratio is supplied to a molding die for pressure molding. Therefore, regardless of the conventional mechanical stirring method and electromagnetic stirring method,
A compact having a fine and spherical structure can be obtained easily and easily at low cost. Further, the degree of superheat with respect to the liquidus temperature was poured directly into a heat-insulating container without using a jig and the molten zinc alloy maintained at less than 100 ° C. was cooled to a molding temperature at which a predetermined liquidus rate was achieved. By maintaining the second to 60 minutes, similarly, fine and spherical primary crystals can be generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る亜共晶組成の亜鉛合金の半溶融金
属の成形方法を示す工程説明図である。
FIG. 1 is a process explanatory view showing a method for forming a semi-molten metal of a hypoeutectic zinc alloy according to the present invention.

【図2】本発明に係る球状初晶の生成から成形までの成
形方法を示す工程説明図である。
FIG. 2 is a process explanatory view showing a molding method from generation of spherical primary crystals to molding according to the present invention.

【図3】図2に示した各工程の金属組織模式図である。FIG. 3 is a schematic diagram of a metallographic structure of each step shown in FIG.

【図4】本発明に係る代表的な亜鉛合金であるZn−A
1系2元合金平衡状態図である。
FIG. 4 is a typical zinc alloy according to the present invention, Zn-A.
It is a 1-system binary alloy equilibrium diagram.

【図5】本発明例の成形品の金属組織を示す顕微鏡写真
の模写図である。
FIG. 5 is a copy of a micrograph showing the metal structure of a molded article of the present invention.

【図6】比較例の成形品の金属組織を示す顕微鏡写真の
模写図である。
FIG. 6 is a copy of a micrograph showing a metal structure of a molded product of a comparative example.

【符号の説明】[Explanation of symbols]

10 ラドル 20 冷却用治具 30 断熱容器(セラミック製容器) 30A セラミックコーティング金属容器 40 射出スリーブ 50 金型 50a 金型キャビティ M 金属(溶湯) t 温度 T 時間 10 Laddle 20 Cooling jig 30 Heat insulation container (ceramic container) 30A Ceramic coating metal container 40 Injection sleeve 50 Mold 50a Mold cavity M Metal (molten metal) t Temperature T time

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶核を有する液相線温度以上の液体状
態の亜鉛合金、または、結晶核を有する成形温度以上の
固液共存状態の亜鉛合金を、断熱効果を有する断熱容器
の中において、所定の液相率を示す成形温度まで冷却し
つつ5秒間〜60分間保持することにより、液中に微細
な初晶を該亜鉛合金液中に晶出させ、該亜鉛合金を成形
用金型に供給して加圧成形することを特徴とする半溶融
亜鉛合金の成形方法。
1. A liquid state zinc alloy having a crystal nucleus at a liquidus temperature or higher, or a solid-liquid coexisting zinc alloy having a crystal nucleus at a forming temperature or higher in a heat insulating container having a heat insulating effect, By holding for 5 seconds to 60 minutes while cooling to a molding temperature exhibiting a predetermined liquid phase rate, fine primary crystals are crystallized in the liquid, and the zinc alloy is used as a molding die. A method for forming a semi-molten zinc alloy, which comprises supplying and pressurizing.
【請求項2】 結晶核の生成方法は、液相線温度に対し
て過熱度を300℃未満に保持された合金溶湯を該合金
の融点よりも低い温度の治具の表面に接触させることと
する請求項1記載の半溶融亜鉛合金の成形方法。
2. The method for producing crystal nuclei comprises contacting a molten alloy having a superheat degree of less than 300 ° C. with respect to a liquidus temperature with a surface of a jig having a temperature lower than a melting point of the alloy. The method for forming a semi-molten zinc alloy according to claim 1.
【請求項3】 溶湯に接触させる治具は、金属製治具ま
たは非金属製治具、あるいは半導体を含む非金属材料を
表面に塗布した金属製治具、もしくは半導体を含む非金
属材料を複合させた金属製治具とし、かつ、該治具の内
部あるいは外部から該治具を冷却させることができるよ
うにした請求項2記載の半溶融亜鉛合金の成形方法。
3. The jig to be brought into contact with the molten metal is a metal jig or a non-metal jig, a metal jig whose surface is coated with a non-metal material containing a semiconductor, or a composite non-metal material containing a semiconductor. The method for forming a semi-molten zinc alloy according to claim 2, wherein the jig is made of a metal, and the jig can be cooled from the inside or the outside of the jig.
【請求項4】 結晶核の生成を、治具または断熱容器の
いずれか、もしくは両方に接触する亜鉛合金溶湯に振動
を与えることとする請求項1記載または請求項2記載の
半溶融亜鉛合金の成形方法。
4. The semi-molten zinc alloy according to claim 1 or 2, wherein the crystal nuclei are generated by vibrating a molten zinc alloy in contact with either or both of the jig and the heat insulating container. Molding method.
【請求項5】 亜鉛合金を、共晶点以下のアルミニウム
を含む亜鉛合金とした請求項1記載または請求項2記載
の半溶融亜鉛合金の成形方法。
5. The method for forming a semi-molten zinc alloy according to claim 1 or 2, wherein the zinc alloy is a zinc alloy containing aluminum having a eutectic point or lower.
【請求項6】 液相線温度に対する過熱度は100℃未
満に保持した亜鉛合金溶湯を、治具を使用することなく
直接、断熱容器に注ぐ請求項5記載の半溶融亜鉛合金の
成形方法。
6. The method for forming a semi-molten zinc alloy according to claim 5, wherein the molten zinc alloy having a superheat degree to the liquidus temperature of less than 100 ° C. is poured directly into a heat insulating container without using a jig.
JP7244109A 1995-05-29 1995-09-22 Method for molding half-molten zinc alloy Pending JPH0987767A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP7244109A JPH0987767A (en) 1995-09-22 1995-09-22 Method for molding half-molten zinc alloy
CA002177455A CA2177455C (en) 1995-05-29 1996-05-27 Method and apparatus for shaping semisolid metals
EP02028272A EP1331279A3 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
EP96108499A EP0745694B1 (en) 1995-05-29 1996-05-29 Method and apparatus for shaping semisolid metals
DE69633988T DE69633988T2 (en) 1995-05-29 1996-05-29 Method and apparatus for forming semi-solid metals
US09/490,983 US6769473B1 (en) 1995-05-29 2000-01-24 Method of shaping semisolid metals
US10/852,952 US6851466B2 (en) 1995-05-29 2004-05-24 Method and apparatus for shaping semisolid metals
US11/008,749 US7121320B2 (en) 1995-05-29 2004-12-09 Method for shaping semisolid metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7244109A JPH0987767A (en) 1995-09-22 1995-09-22 Method for molding half-molten zinc alloy

Publications (1)

Publication Number Publication Date
JPH0987767A true JPH0987767A (en) 1997-03-31

Family

ID=17113898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7244109A Pending JPH0987767A (en) 1995-05-29 1995-09-22 Method for molding half-molten zinc alloy

Country Status (1)

Country Link
JP (1) JPH0987767A (en)

Similar Documents

Publication Publication Date Title
US5571346A (en) Casting, thermal transforming and semi-solid forming aluminum alloys
US5701942A (en) Semi-solid metal processing method and a process for casting alloy billets suitable for that processing method
JP3474017B2 (en) Method for producing metal slurry for casting
EP0841406B1 (en) Method of shaping semisolid metals
US5911843A (en) Casting, thermal transforming and semi-solid forming aluminum alloys
JP3246296B2 (en) Forming method of semi-molten metal
JP3246363B2 (en) Forming method of semi-molten metal
US5968292A (en) Casting thermal transforming and semi-solid forming aluminum alloys
JP3246273B2 (en) Forming method of semi-molten metal
JP3246358B2 (en) Forming method of semi-molten metal
JP3491468B2 (en) Method for forming semi-solid metal
JP3783275B2 (en) Method for forming semi-molten metal
JP3487315B2 (en) Die casting method
JPH0987768A (en) Production of half-melted hypereutectic al-si alloy
JP3473214B2 (en) Forming method of semi-molten metal
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JP3216685B2 (en) Forming method of semi-molten metal
JPH0987773A (en) Method for molding half-molten metal
JP2003126950A (en) Molding method of semi-molten metal
JP3536559B2 (en) Method for forming semi-solid metal
JPH0987767A (en) Method for molding half-molten zinc alloy
JP3473216B2 (en) Forming method of semi-molten metal
JP3246319B2 (en) Forming method of semi-molten metal
JP3216684B2 (en) Forming method of semi-molten metal