JPH09870A - Device and process for denitrating exhaust gas - Google Patents

Device and process for denitrating exhaust gas

Info

Publication number
JPH09870A
JPH09870A JP7156406A JP15640695A JPH09870A JP H09870 A JPH09870 A JP H09870A JP 7156406 A JP7156406 A JP 7156406A JP 15640695 A JP15640695 A JP 15640695A JP H09870 A JPH09870 A JP H09870A
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
denitration
amount
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7156406A
Other languages
Japanese (ja)
Other versions
JP3526490B2 (en
Inventor
Hitoshi Yamazaki
均 山崎
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP15640695A priority Critical patent/JP3526490B2/en
Publication of JPH09870A publication Critical patent/JPH09870A/en
Application granted granted Critical
Publication of JP3526490B2 publication Critical patent/JP3526490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To provide the high denitration performance by injecting ammonia of required amount based on the constitution of NO2 and NO and exhaust gas amount after feeding NO2 of required amount into an exhaust pipe in a process for reduction removing a nitrogen oxide in exhaust gas by injecting ammonia into the exhaust gas pipe. CONSTITUTION: When exhaust gas exhausted from a combustion furnace 1 through an exhaust pipe 2 is fed into a denitration device 3, ammonia 9 is injected into the exhaust pipe 2 to reduction remove a nitrogen oxide in the exhaust gas. At that time, the NO and NO2 concentration in the exhaust gas is sensed by a concentration measuring meter 8 and the exhaust gas amount is sensed by a flowmeter 7 and based on the sensed values fuel an NO2 generation accelerating material and combustion air of the amounts computed by a control device 20 are fed to an NO2 generation combustion burner 6 to generate the NO2 gas of required amount. The NO/NO2 ratio in the exhaust gas is almost close to 1 (one) in the exhaust pipe 2, and ammonia 9 of required amount based on the NO2 and NO concentration in the exhaust gas and the exhaust gas amount is injected into the exhaust pipe 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガス脱硝装置および
脱硝方法に関わり、特に発電プラント用ボイラ、ガスタ
ービン、ゴミ焼却炉などの各種燃焼炉から排出される排
ガス中の窒素酸化物(NOx)を、低温から効率良くア
ンモニア(NH3)で接触還元できることが可能な排ガス
脱硝装置および脱硝方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas denitration device and a denitration method, and in particular, nitrogen oxides (NOx) in exhaust gas discharged from various combustion furnaces such as boilers for power plants, gas turbines, and refuse incinerators. The present invention relates to an exhaust gas denitration device and a denitration method capable of efficiently catalytically reducing with ammonia (NH 3 ) from a low temperature.

【0002】[0002]

【従来の技術】排ガス中にアンモニア(NH3)を注入し
た後、触媒と接触させることにより窒素酸化物を窒素に
還元除去する接触アンモニア還元脱硝法において、排ガ
スにあらかじめ酸化剤を注入して含有する一酸化窒素
(NO)の一部を二酸化窒素(NO2)にすることによ
り、NH3 との反応性を向上させ、より低温から脱硝で
きるようにする試みは数多く知られている(例えば、特
開昭52−94863号公報、特公昭56−50613
号公報、特開昭54−23068号公報など)。
2. Description of the Related Art In a catalytic ammonia reduction denitration method in which ammonia (NH 3 ) is injected into exhaust gas, and then nitrogen oxides are reduced to nitrogen by contacting with a catalyst, an oxidizer is pre-injected into the exhaust gas and contained. There are many known attempts to improve the reactivity with NH 3 and to make it possible to denitrify from a lower temperature by converting a part of nitric oxide (NO) to be used into nitrogen dioxide (NO 2 ) (for example, JP-A-52-94863, JP-B-56-50613
JP-A-54-23068, etc.).

【0003】上記方法は、下記(1)式で示されるNO
1モルおよびNO2 1モルとNH3 2モルの反応
が、(2)式で示される通常の脱硝反応に比べ極めて速
いため、あらかじめNO2 源を注入するか、オゾン(O
3)、過酸化水素(H2 2)、硝酸(HNO3)などの酸化
剤を注入してNOの一部をNO2 に酸化((3)〜
(5)式)して脱硝装置の運転温度の低温化を図ろうと
するものである。
The above method uses the NO expressed by the following equation (1).
Since the reaction between 1 mol and 1 mol of NO 2 and 2 mol of NH 3 is much faster than the normal denitration reaction represented by the formula (2), a NO 2 source may be injected in advance or ozone (O 2
3 ), hydrogen peroxide (H 2 O 2 ), nitric acid (HNO 3 ), etc. are injected to oxidize part of NO into NO 2 ((3)-
(5)) to reduce the operating temperature of the denitration device.

【0004】 脱硝反応 NO+NO2 +2NH3 → 2N2 +3H2 O (1)式 NO+NH3 +1/402 → N2 +3/2H2 O (2)式 NOの酸化反応 NO+O3 → NO2 +O2 (3)式 NO+H2 2 → NO2 +H2 O (4)式 NO+2HNO3 → 3NO2 +H2 O (5)式 上記のNOとNO2 を共存させる効果は100〜300
℃でその効果が顕著であるため、古くから各種焼却炉排
ガス、排熱回収ボイラ、ガスタービンなどの燃焼器を始
めとする低温脱硝への応用が試みられてきたが、広く実
用されるには至っていない。
Denitration reaction NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O (1) Formula NO + NH 3 +1/402 → N 2 + 3 / 2H 2 O (2) Formula NO oxidation reaction NO + O 3 → NO 2 + O 2 (3) Formula NO + H 2 O 2 → NO 2 + H 2 O (4) Formula NO + 2HNO 3 → 3NO 2 + H 2 O (5) Formula The above effect of coexisting NO and NO 2 is 100 to 300.
Since the effect is remarkable at ℃, it has been tried for a long time to be applied to low temperature denitration such as exhaust gas from various incinerators, exhaust heat recovery boilers, combustors such as gas turbines, etc. I haven't arrived.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術の実用化
の妨げになっている原因としては、脱硝率の制御が難し
いことがあげられる。すなわち、図6は、NO単独、N
2 単独、およびNOとNO2 とを等モルで含む排ガス
をTi−W−V系触媒を用いて脱硝する場合の温度特性
を示したものであるが、NOとNO2 とが等モルの場合
には効率良くNOxが除去されるが、NOまたはNO2
単独では除去性能が著しく低下する。そのため、NOx
の変動に対し酸化剤の注入量とNH3 の注入量を個別に
制御する従来技術では、次のような多くの問題点があっ
た。 (a)酸化剤が不足し、排ガス中のNO2 の含有割合が
小さいと、脱硝反応速度が低下し、さらに、多量の未反
応アンモニアの流出が生じる。 (b)排ガス中のNO2 濃度がNO濃度を越えると、下
記(6)式に示すようなNO2 とNH3 とが反応するよ
うになり、NH3 の注入量制御が困難となる。
One of the causes of hindering the practical use of the above-mentioned prior art is that it is difficult to control the denitration rate. That is, FIG. 6 shows NO alone, N
The graph shows the temperature characteristics in the case of denitration of exhaust gas containing O 2 alone and equimolar amounts of NO and NO 2 using a Ti—WV type catalyst, but NO and NO 2 are equimolar. In this case, NOx is efficiently removed, but NO or NO 2
When used alone, the removal performance is significantly reduced. Therefore, NOx
In the conventional technique in which the oxidant injection amount and the NH 3 injection amount are individually controlled with respect to the fluctuation of, there are many problems as follows. (A) When the oxidizing agent is insufficient and the NO 2 content in the exhaust gas is small, the denitration reaction rate decreases, and a large amount of unreacted ammonia flows out. (B) When the NO 2 concentration in the exhaust gas exceeds the NO concentration, NO 2 and NH 3 will react as shown in the following formula (6), making it difficult to control the injection amount of NH 3 .

【0006】 3NO2 +4NH3 → 7/2N2 +6H2 O (6)式 さらに、NO2 がNO濃度を越えて過多になると、NO
2 とNH3 から硝安が生成して触媒が除々に劣化すると
共に、N2 Oを副生するようになる。 (c)NH3 がNO2 含有比率にみあわないと、NOよ
りさらに公害を引き起こしやすいNO2 が煙突から排出
され、煙色が黄変する。 (d)HNO3 、H2 2 等の薬品を使用することにな
り、その保管や取扱いには厳重な処理、管理が必要とな
る。
3NO 2 + 4NH 3 → 7 / 2N 2 + 6H 2 O Equation (6) Furthermore, when NO 2 becomes excessive beyond the NO concentration, NO
Ammonium nitrate is produced from 2 and NH 3 to gradually deteriorate the catalyst and also to produce N 2 O as a by-product. (C) If NH 3 does not match the NO 2 content ratio, NO 2 which is more likely to cause pollution than NO is discharged from the chimney, and the smoke color turns yellow. (D) Chemicals such as HNO 3 and H 2 O 2 are used, and strict treatment and management are required for their storage and handling.

【0007】本発明は、このような従来技術の問題点に
鑑み、現在広く実用化されているNOを主体とする排ガ
スのアンモニア接触還元法脱硝装置と同様の装置構成、
取扱いで高い脱硝性能が可能な脱硝装置およびその運転
方法を提供するものである。
In view of the above problems of the prior art, the present invention has the same device structure as the NOx denitrification device for ammonia catalytic reduction of exhaust gas, which is widely used nowadays.
Provided are a denitration device capable of handling high denitration performance and an operating method thereof.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本願で特許請求する発明は以下のとおりである。 (1)排気管により排ガスを脱硝装置に送給するととも
に、脱硝装置上流域の排気管内にアンモニアを注入して
排ガス中の窒素酸化物を還元除去する排ガス脱硝方法に
おいて、脱硝装置上流域の排ガス中のNOおよびNO2
濃度と排ガス流量を検出する工程と、この検出値に基づ
き算出された所定量の燃料とNO2 発生促進材と燃焼用
空気および火炎冷却材をNO2 発生用燃焼バーナに供給
して必要な量のNO2 ガスを発生させる工程と、発生し
たNO2 ガスを脱硝装置上流域の排気管内に供給して排
ガス中のNO/NO2 比をほぼ1に近くする工程と、上
記NO2 ガス供給後の排ガス中NO2 とNOの濃度およ
び排ガス量に基づき必要な量のアンモニアを脱硝装置上
流域の排ガス中に注入する工程とを備えたことを特徴と
する排ガス脱硝方法。 (2)請求項1において、NO2 発生用燃焼バーナに供
給する空気量と燃料量の比(空焼比)が0.8より小さ
く1.2よりも大きくなるように調整することを特徴と
する排ガスの脱硝方法。 (3)排ガスにアンモニアを注入した後、脱硝装置の触
媒と接触させて排ガス中の窒素酸化物を還元除去する排
ガス脱硝装置において、燃料とNO2 発生促進材と燃焼
用空気の供給手段および火炎の急冷手段を備えたNO2
発生用燃焼バーナと、該バーナで発生したNO2 含有ガ
スを前記脱硝装置上流域の前記排ガス中に供給する手段
とを設けたことを特徴とする排ガス脱硝装置。 (4)請求項3において、前記排ガスは燃焼装置からの
燃焼排ガスであり、かつ、燃焼装置の燃焼室内下流域に
前記NO2 発生燃焼バーナを配置したことを特徴とする
排ガス脱硝装置。
The invention claimed in this application to achieve the above object is as follows. (1) In an exhaust gas denitration method in which exhaust gas is sent to a denitration device through an exhaust pipe and ammonia is injected into the exhaust pipe in the upstream region of the denitration device to reduce and remove nitrogen oxides in the exhaust gas, the exhaust gas in the upstream region of the denitration device NO and NO 2 in
The process of detecting the concentration and the exhaust gas flow rate, and the required amount of fuel, NO 2 generation promoting material, combustion air and flame cooling material, which are calculated based on these detected values, are supplied to the NO 2 generation combustion burner. The step of generating the NO 2 gas, the step of supplying the generated NO 2 gas into the exhaust pipe in the upstream region of the denitrification device to make the NO / NO 2 ratio in the exhaust gas close to 1, and after supplying the NO 2 gas And a step of injecting a necessary amount of ammonia into the exhaust gas in the upstream region of the denitration device based on the concentrations of NO 2 and NO in the exhaust gas and the amount of the exhaust gas. (2) In Claim 1, the ratio of the amount of air supplied to the NO 2 generating combustion burner and the amount of fuel (air burning ratio) is adjusted to be smaller than 0.8 and larger than 1.2. Exhaust gas denitration method (3) In an exhaust gas denitration device for injecting ammonia into the exhaust gas and then contacting it with a catalyst of the denitration device to reduce and remove nitrogen oxides in the exhaust gas, a means for supplying fuel, NO 2 generation promoting material, combustion air, and flame NO 2 with quenching means
An exhaust gas denitration apparatus comprising: a combustion burner for generation; and means for supplying a NO 2 -containing gas generated by the burner into the exhaust gas in the upstream region of the denitration apparatus. (4) The exhaust gas denitration device according to claim 3, wherein the exhaust gas is a combustion exhaust gas from a combustion device, and the NO 2 generating combustion burner is arranged in a downstream region of the combustion chamber of the combustion device.

【0009】[0009]

【作用】燃焼バーナ等の燃焼によりNO2 が生成するこ
とについてさらに詳細に説明する。通常の燃焼条件では
燃料と空気との比は1に近い値であるが、燃焼時に発生
するNOxを低減するため、その比を少し下げて燃焼す
ることが通常行なわれている。本発明で採用する燃焼条
件は、こうした燃焼条件とは異なり、NO2 を発生する
燃焼条件として、燃焼ガスを急冷し、さらに好ましくは
燃料と空気との比が0.8から1.2以外の希薄燃焼条
件または濃厚燃料燃焼条件にすることである。こうした
燃焼条件により、下記(7)式に示す反応メカニズムに
よりNO2が生成することが推定されている。炭化水素
などによるNO2 生成の促進はHO 2 の増加によると考
えられる。
[Operation] NO due to combustion of combustion burner, etc.2Can be generated
And will be described in more detail. Under normal combustion conditions
The ratio of fuel to air is close to 1, but occurs during combustion
To reduce NOx emission
Is usually done. Combustion strip adopted in the present invention
The problem is that, unlike these combustion conditions, NO2To generate
As the combustion condition, the combustion gas is rapidly cooled, more preferably
Lean burn strip with fuel to air ratio other than 0.8 to 1.2
Conditions or rich fuel combustion conditions. These
Depending on the combustion conditions, the reaction mechanism shown in equation (7) below
More NO2Have been estimated to be generated. hydrocarbon
NO due to2HO promotes production 2Considered to increase
available.

【0010】 NO+HO2 → NO2 +OH (7)式 この場合、例えばプロパン等の炭化水素の添加によりN
2 の発生が促進されることも明らかで、その理由は炭
化水素の分解・酸化に伴なうラジカル類がHO 2 生成を
促進し、結果としてNO2 の生成を促進しているといわ
れている。また、燃焼して生成するNOのNO2 への変
換は、ガスの冷却速度が大きく寄与していることも示さ
れており、燃焼の冷却過程で二次的に生じるHO2 が上
記(7)式にしたがいNOと反応してNO2 が生成する
といわれている。図2は、代表的な燃焼バーナの概念図
で、バーナ中心部に空気と燃料となる例えばプロパンを
その比が0.8から1.2までの範囲以外の条件となる
ように投入し、外周部に冷却用の空気または冷えた燃焼
ガスを流す構造にしている。こうした燃焼バーナ構造と
することで、NO2 の発生が容易にかつ濃度を制御する
ことができる。なお、発生するNO2 濃度の制御は、燃
焼してNOまたはNO2 になる物質であれば特に限定す
るものではなく、通常、有機窒素化合物、例えば、ピリ
ジン(C5 6 N)等が良く使用される。
NO + HO2 → NO2+ OH (7) Formula In this case, N is added by adding hydrocarbon such as propane.
O2It is also clear that the generation of
Radicals associated with the decomposition and oxidation of hydrogen halide are HO 2Generate
Promote and as a result NO2Is promoting the generation of
Have been. In addition, NO of NO generated by combustion2Change to
It also shows that the cooling rate of the gas contributes significantly.
HO, which is secondarily generated in the combustion cooling process.2Is above
Reacts with NO according to the equation (7) and NO2Produces
It is said that. Figure 2 is a conceptual diagram of a typical combustion burner.
So, for example, propane that becomes air and fuel in the center of the burner
The ratio is outside the range of 0.8 to 1.2
So as to put cooling air or cold combustion on the outer periphery
It has a structure that allows gas to flow. With such a combustion burner structure
By doing, NO2Easy to generate and control concentration
be able to. Note that the generated NO2Concentration control
Burn and NO or NO2If the substance becomes
But usually an organic nitrogen compound such as
Jin (CFiveH6N) etc. are often used.

【0011】なお、空気と燃料の比が0.8〜1.2の
範囲以外でNO2 生成量が多いデータを図7に示す。上
述したように、NO2 の発生にはプロパンなどの炭化水
素の添加も有効であるから、上記有機窒素化合物と炭化
水素を添加してもよい。本発明のように、NOを含有す
る排ガス中に、燃焼により直接NO2 を生成して注入す
ることから、従来技術で問題となった排ガス中のNOま
たはNO2 いずれかが過多になった場合に生じる脱硝率
の低下や、NO2 のリーク、N2 Oの副生や触媒劣化を
引き起こす硝安の生成がない。
FIG. 7 shows data in which the amount of NO 2 produced is large when the ratio of air to fuel is outside the range of 0.8 to 1.2. As described above, addition of a hydrocarbon such as propane is also effective for the generation of NO 2 , and therefore the organic nitrogen compound and the hydrocarbon may be added. As in the present invention, when NO 2 is directly generated by combustion in the exhaust gas containing NO and is injected, when either NO or NO 2 in the exhaust gas, which is a problem in the prior art, becomes excessive. There is no decrease in the denitrification rate, NO 2 leak, N 2 O by-product, or ammonium nitrate production that causes catalyst deterioration.

【0012】実運転においては、排ガス中に初期から存
在するNO濃度および注入したNO 2 濃度を測定して、
その総和に対応したアンモニアを添加して脱硝を行なえ
ば良く、本発明においては、現在一般に行なわれている
運転方法と格別変わる点はなく、従来法と同様の簡便さ
で装置を運転できる。炭化水素種によるNO2 生成促進
のメカニズムについては次のように考えられている。炭
化水素が存在するときの基本的なNOの酸化反応は、大
気中のスモッグ生成の反応を参考にすると、次のように
考えられる。
In actual operation, the exhaust gas is present from the beginning.
Existing NO concentration and injected NO 2Measure the concentration,
Perform denitration by adding ammonia corresponding to the sum.
In the present invention, it is generally performed now.
There is no particular difference from the driving method, and it is as easy as the conventional method
You can operate the device at. NO by hydrocarbon species2Promotion
The mechanism of is considered as follows. Charcoal
The basic NO oxidation reaction in the presence of hydrogen fluoride is
Referring to the reaction of smog formation in the air,
Conceivable.

【0013】 RH+OH → R+H2 O (8)式 R+O2 → RO2 (9)式 RO2 +NO → NO2 +RO (10)式 RO+O2 → R′O+H2 O (11)式 ここで、RHは炭化水素である。また、前述したラジカ
ル類としては、RO、R′O、RO2 がある。すなわ
ち、NO2 は(10)式の直接生成や(11)式の反応
や(7)式の反応のHO2 メカニズムにより生じ、その
生成速度は炭化水素の分解や炭化水素ラジカルの濃度に
依存すると考えられている。
RH + OH → R + H 2 O (8) Formula R + O 2 → RO 2 (9) Formula RO 2 + NO → NO 2 + RO (10) Formula RO + O 2 → R′O + H 2 O (11) Formula Here, RH is carbonized. It is hydrogen. The radicals mentioned above include RO, R'O, and RO 2 . That is, NO 2 is generated by the HO 2 mechanism of the direct generation of the formula (10), the reaction of the formula (11), and the reaction of the formula (7), and its generation rate depends on the decomposition of hydrocarbons and the concentration of hydrocarbon radicals. It is considered.

【0014】本発明で採用した手段は、高温の燃焼ガス
を急冷する燃焼バーナを用い、好ましくは空気と燃料と
の比が1/1以外、特に好ましくは0.8より小さく、
1.2より大きい燃料過多燃焼または希薄燃焼する燃焼
バーナを脱硝触媒装置の上流側に設置して、燃焼法によ
りNO2 を生成することを特徴とする。
The means adopted in the present invention uses a combustion burner for rapidly cooling high-temperature combustion gas, and the ratio of air to fuel is preferably other than 1/1, particularly preferably smaller than 0.8,
It is characterized in that a combustion burner which burns in excess of fuel or lean burns larger than 1.2 is installed upstream of the denitration catalyst device to generate NO 2 by the combustion method.

【0015】[0015]

【実施例】図1に本発明になる基本系統図を示す。燃焼
炉の下流側に本発明になる燃焼バーナを配置し、排ガス
中のNO濃度をモニタし、そのNO濃度と等モルのNO
2を該燃焼バーナにより排ガスに注入する。この時、排
ガス中のNO濃度と等モルのNO2 濃度にするため、N
2 の発生量の制御方法としては、燃焼した時にNO
(NO2)になる物質、例えばNを含有した有機化合物
や、従来の知見で明らかとなっている炭化水素を添加す
るなどいかなる制御手段をも含むものである。これによ
り、排ガス中には、NOとNO2 が等モルで存在するこ
とから、触媒での脱硝反応が前記(1)式に示すように
著しく速い反応速度で進行し、より低温から脱硝できる
ことになる。
FIG. 1 shows a basic system diagram according to the present invention. The combustion burner according to the present invention is arranged on the downstream side of the combustion furnace, the NO concentration in the exhaust gas is monitored, and the NO concentration is equimolar to the NO concentration.
2 is injected into the exhaust gas by the combustion burner. At this time, in order to make the NO 2 concentration equimolar to the NO concentration in the exhaust gas,
The method of controlling the amount of O 2 generated is NO when burning.
It includes any control means such as adding a substance that becomes (NO 2 ), for example, an organic compound containing N, or a hydrocarbon that has been clarified by conventional knowledge. As a result, since NO and NO 2 are present in the exhaust gas in equimolar amounts, the denitration reaction on the catalyst proceeds at a remarkably fast reaction rate as shown in the above equation (1), and denitration can be performed from a lower temperature. Become.

【0016】本発明になる最適な実施例の装置基本構成
図は、図1に示したとおりである。本発明になる燃焼バ
ーナ6を排ガス源(燃焼炉)1の下流側(図では上部)
に設置している。その燃焼バーナ6の構造は図2に示し
たとおりで、プロパン、軽油等の燃料とNO2 濃度制御
用の燃料(例えば、ピリジン)および空気を該バーナ6
の中心部から投入し、その外周から冷却用空気または排
ガス18を流す構造となっている。燃料の燃焼源である
燃焼炉1から出た排ガス流量およびNO濃度およびNO
2 濃度をそれぞれ流量計7、NOx濃度測定装置8で測
定する。両者の信号に基づき、NO2 発生用燃焼バーナ
6により所定のNO2 濃度になるようNO2 発生物質を
燃焼バーナ部に注入し燃焼によりNO2 を発生させる。
これにより、NOとNO2 が等モルになることから、そ
の信号によりアンモニア注入装置9により所定量のアン
モニアを脱硝装置の上流側で注入する。
The basic construction of the apparatus of the most preferred embodiment of the present invention is as shown in FIG. The combustion burner 6 according to the present invention is installed on the downstream side of the exhaust gas source (combustion furnace) 1 (upper part in the figure).
It is installed in. The structure of the combustion burner 6 is as shown in FIG. 2, in which fuel such as propane, light oil, etc., fuel for controlling NO 2 concentration (for example, pyridine), and air are supplied.
The structure is such that the cooling air or the exhaust gas 18 is flown from the outer periphery thereof in the central part of. Exhaust gas flow rate and NO concentration and NO emitted from the combustion furnace 1 which is a combustion source of fuel
The two concentrations are measured by the flow meter 7 and the NOx concentration measuring device 8, respectively. Based on both signals, the NO 2 generating combustion burner 6 injects a NO 2 generating substance into the combustion burner portion so that the NO 2 concentration becomes a predetermined value, and NO 2 is generated by combustion.
As a result, NO and NO 2 become equimolar, and the ammonia injecting device 9 injects a predetermined amount of ammonia on the upstream side of the denitration device in response to the signal.

【0017】ここで、NOx測定装置8は、赤外線式ま
たは化学発光式などの通常のNOx濃度測定装置を用い
ればよく、排ガス中のNOx濃度に対応した信号を発生
する。また、排ガス流量は、流量計でもよいし、ピトー
管、オリフィスなど独自に計測するものでも良く、流量
信号として取出せるものであれば特に制限を加えるもの
ではない。図1において、20は制御装置であり、排気
管2内を流れる排ガス流量信号10、排ガス中のNOx
(NOおよびNO2 それぞれ)の濃度信号11を入力し
て、バーナ6に供給する軽油燃料、ピリジンなどのNO
2 発生促進材および空気、冷却用燃焼排ガスなどの量を
制御して所定量のNO2 がバーナ6により発生するよう
にするとともに、検出されたNO、NO2 各濃度と排ガ
ス量によるNOx量に相当するNH3 注入量信号12を
NH3 注入装置9に伝達する。燃焼炉1の下流側にNO
2 生成用の燃焼バーナ6を設けることにより、排ガス中
にはNOとNO2 が等モルで存在し、アンモニアが加え
られ脱硝装置3に導かれる。したがって、脱硝装置部で
は、非常に速い反応のみが選択的に進行する条件になる
ことから、脱硝装置での運転温度を著しく低下すること
が可能になり、100〜300℃、特に150〜250
℃での触媒量が大幅に低減できる。
Here, the NOx measuring device 8 may be a normal NOx concentration measuring device such as an infrared type or a chemiluminescent type, and generates a signal corresponding to the NOx concentration in the exhaust gas. Further, the exhaust gas flow rate may be a flow meter or may be independently measured such as a Pitot tube or an orifice, and is not particularly limited as long as it can be taken out as a flow rate signal. In FIG. 1, reference numeral 20 denotes a control device, which is an exhaust gas flow rate signal 10 flowing through the exhaust pipe 2 and NOx in the exhaust gas.
(NO and NO 2 ) concentration signals 11 are input to supply to the burner 6 diesel fuel, NO such as pyridine
2 Controls the amount of generation accelerator, air, and combustion exhaust gas for cooling so that a predetermined amount of NO 2 is generated by the burner 6, and the detected NO and NO 2 concentrations and the NOx amount by the exhaust gas amount are set. The corresponding NH 3 injection amount signal 12 is transmitted to the NH 3 injection device 9. NO on the downstream side of the combustion furnace 1
By providing the combustion burner 6 for 2 generation, NO and NO 2 are present in equimolar amount in the exhaust gas, and ammonia is added to the NOx removal device 3 to be introduced into the denitration device 3. Therefore, in the denitration unit, only the very fast reaction is a condition that selectively progresses, so that the operating temperature in the denitration unit can be remarkably lowered and 100 to 300 ° C., particularly 150 to 250 ° C.
The amount of catalyst at ℃ can be reduced significantly.

【0018】なお、NO2 発生用燃焼バーナ6の本数、
配置は特に限定するものではなく、燃焼炉で発生するN
Oの濃度、および1本当たりのNO2 発生用燃焼バーナ
6の投入NO2 発生物質量から決定すればよい。また、
このNO2 発生用燃焼バーナ6については、従来低NO
x燃焼法としてよく使用されているアフタエア用バーナ
を利用しても良い。この場合、燃料と空気との比は、希
薄燃料条件で運用する方が便利である。
The number of combustion burners 6 for NO 2 generation,
The arrangement is not particularly limited, and N generated in the combustion furnace
O concentration, and may be determined from the feeding NO 2 generation amount of substance of NO 2 generation combustion burner 6 per one. Also,
The combustion burner 6 for NO 2 generation has a conventional low NO
An after-air burner that is often used as the x combustion method may be used. In this case, it is more convenient to operate the fuel-air ratio under lean fuel conditions.

【0019】本発明は、特に低温度での脱硝装置の運用
時に効果的であるが、装置構成材料の腐食等の理由か
ら、脱硝装置入口部を昇温して使用しても良い。また、
ガスタービン起動時の低温度での排ガス浄化に対して
も、本燃焼バーナを不定期に運用することで従来適用で
きなかった低温脱硝も可能となる。本発明の他の実施例
を図3に示す。NO2 生成用燃焼バーナ6によりNO2
を発生させ、そのNO2 含有ガスを脱硝装置3の上流側
に注入するようにしたものである。この場合、NO2
生成を促進し脱硝装置入口部での温度を一致させるた
め、燃焼バーナ出口配管を冷却するように冷却部17を
設けている。燃焼炉出口での排ガス流量およびNOx
(NO、NO2 各)濃度を測定し、その信号から燃焼バ
ーナでの燃料量、空気量およびNO2 生成用物質の投入
量を決定する。
The present invention is particularly effective when the denitration apparatus is operated at a low temperature, but it may be used by raising the temperature of the denitration apparatus inlet for reasons such as corrosion of the constituent materials of the apparatus. Also,
Even for exhaust gas purification at low temperatures when the gas turbine is started, by operating this combustion burner irregularly, low-temperature denitration, which was not applicable in the past, will be possible. Another embodiment of the present invention is shown in FIG. The NO 2 generation combustion burner 6 NO 2
Is generated and the NO 2 containing gas is injected into the upstream side of the denitration device 3. In this case, the cooling unit 17 is provided so as to cool the combustion burner outlet pipe in order to promote the generation of NO 2 and to make the temperature at the inlet of the denitration device equal. Exhaust gas flow rate and NOx at combustion furnace outlet
The concentrations of (NO and NO 2 ) are measured, and the amount of fuel, the amount of air, and the amount of NO 2 production substance input in the combustion burner are determined from the signals.

【0020】また、図4は、本発明になる他の実施例を
示したもので、燃焼炉1と脱硝装置3の間に集塵装置1
4を設けたもので、ゴミ焼却炉排ガスなどの媒塵の多い
排ガスに好適である。また、図5は、排ガス系に熱交換
器または熱回収装置を設置した例である。いずれの場合
も、NO2 発生用燃焼バーナ6は燃焼炉下流側に設置し
た例で示しているが、図3のようにNO2 発生用燃焼バ
ーナ6を脱硝装置3の上流側に設置した場合でも有効で
ある。
FIG. 4 shows another embodiment according to the present invention, in which the dust collecting device 1 is provided between the combustion furnace 1 and the denitration device 3.
4 is provided, and is suitable for exhaust gas with a large amount of dust such as exhaust gas from a refuse incinerator. Further, FIG. 5 is an example in which a heat exchanger or a heat recovery device is installed in the exhaust gas system. In each case, the NO 2 generation combustion burner 6 is shown as an example installed on the downstream side of the combustion furnace, but when the NO 2 generation combustion burner 6 is installed on the upstream side of the denitration device 3 as shown in FIG. But it is effective.

【0021】図1の実施例において制御装置20による
NO2 発生バーナ6で発生するNO 2 濃度の制御方法に
ついてさらに具体的に説明する。燃焼炉1で発生して出
てくるNOxは通常NOであり、その濃度は100〜2
00 ppm程度である。本実施例では、これと等しい濃度
のNO2 をNO2 発生用燃焼バーナ6で生成させる。燃
焼バーナでNO2 を生成させる方法として、急冷および
燃料と空気との比を0.8〜1.2の範囲外にして、N
2 の生成を促進させる。
According to the controller 20 in the embodiment of FIG.
NO2NO generated by the burner 6 2For controlling the concentration
This will be described more specifically. Generated in the combustion furnace 1
The NOx that comes in is usually NO, and its concentration is 100 to 2
It is about 00 ppm. In this example, the density equal to this
NO2NO2It is generated by the combustion burner 6 for generation. Burning
NO with a burner2Quenching and
When the ratio of fuel to air is outside the range of 0.8 to 1.2, N
O2Promote the production of.

【0022】以下、具体的数値でNO2 濃度の制御法等
について説明する。燃焼炉1として比較的小型のゴミ焼
却炉を例にとる。その燃焼排ガス量は10,000m3
/h;NO=200 ppmである。燃焼炉1での燃料と空気
との比を1、本燃焼バーナ6を含めたTotal の空気と燃
料との比を1.2(本燃焼バーナ6を通常の2段燃焼バ
ーナと合わせる)を考慮し、燃焼炉1および本燃焼バー
ナ6それぞれのガス量は概略8,000m3N/hおよび
2,000m3N/hとなる。
The method of controlling the NO 2 concentration and the like will be described below with specific numerical values. As the combustion furnace 1, a relatively small waste incinerator is taken as an example. The combustion exhaust gas amount is 10,000 m 3 N
/ h; NO = 200 ppm. Considering the ratio of fuel to air in combustion furnace 1 is 1, and the ratio of total air to fuel including main combustion burner 6 is 1.2 (combining main combustion burner 6 with normal two-stage combustion burner) However, the amount of gas in each of the combustion furnace 1 and the main combustion burner 6 is approximately 8,000 m 3 N / h and 2,000 m 3 N / h.

【0023】燃焼バーナ6用空気量2,000m3N/hに
よる燃焼でNOが発生する。すなわち、thermal NOx
の発生もあると考えられるが、本燃焼バーナ6のガス量
が燃焼炉の1/4であり、以下示すように、燃焼バーナ
6では高濃度のNO2 を主として発生させる必要がある
ので、以下の計算では計算を簡単にするため、thermal
NOxの生成をとりあえず無視する。ピリジン添加によ
り、NO2 を発生する場合、本実施例の燃焼バーナ6
で、NO2 =200 ppmを発生させる必要があり、計算
上、ピリジンの最大添加量を求めることにする。燃焼炉
ガス8,000m3N/h中にNOが200 ppm存在するこ
とから、燃焼バーナで必要な生成NO量は、
NO is generated by combustion with an air amount of 2,000 m 3 N / h for the combustion burner 6. That is, thermal NOx
However, since the gas amount of the main combustion burner 6 is 1/4 of that of the combustion furnace, it is necessary to mainly generate a high concentration of NO 2 in the combustion burner 6 as shown below. In order to simplify the calculation of
Ignore the generation of NOx for the time being. When NO 2 is generated by adding pyridine, the combustion burner 6 of this embodiment is used.
Therefore, it is necessary to generate NO 2 = 200 ppm, and the maximum addition amount of pyridine will be calculated. Since 200 ppm of NO is present in the combustion furnace gas of 8,000 m 3 N / h, the amount of NO produced by the combustion burner is

【0024】[0024]

【数1】 [Equation 1]

【0025】ここで、本発明になる急冷方式により生成
NOが100%NO2 に変更できたとすると、2m3N/h
のNO2 になるに必要なピリジンの量は、PV=nRT
よりn≒82mol/h となり、約6.5kg/hとなる。な
お、燃焼バーナでの燃料用プロパンのガス量は、80m3
N/hである。したがって、脱硝装置3の入口のNOx濃
度測定計8でNO、NO2 を計測し、上記計算手法でピ
リジン等のNO2 生成物質の添加量を求めることにな
る。
Here, assuming that the generated NO can be changed to 100% NO 2 by the rapid cooling method according to the present invention, it is 2 m 3 N / h.
The amount of pyridine required to become NO 2 is PV = nRT
Therefore, n≈82 mol / h, which is about 6.5 kg / h. The gas volume of fuel propane in the combustion burner, 80 m 3
N / h. Therefore, NO and NO 2 are measured by the NOx concentration measuring instrument 8 at the inlet of the denitration device 3, and the addition amount of the NO 2 -producing substance such as pyridine is calculated by the above calculation method.

【0026】図1のNOx濃度測定計8では、NOとN
2 両者を測定する。通常NOx計はNOを測定する
が、NO2 についても高温のNOxコンバータを設置す
ることで NO2 → NO+1/2O2 の反応により、NO2 をNOに変換して測定できる。
In the NOx concentration measuring instrument 8 of FIG. 1, NO and N
Both O 2 are measured. Normally, a NOx meter measures NO, but NO 2 can also be measured by converting NO 2 to NO by the reaction of NO 2 → NO + 1 / 2O 2 by installing a high-temperature NOx converter.

【0027】[0027]

【発明の効果】以上述べたように、本発明を脱硝装置に
適用すれば、従来の脱硝制御方法と大差ない簡便さで実
施でき高い効率の低温度での脱硝が可能となる。
As described above, when the present invention is applied to a denitration device, it can be carried out with the same simplicity as the conventional denitration control method, and denitration with high efficiency and low temperature becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる実施例を示す脱硝装置の構成図。FIG. 1 is a configuration diagram of a denitration device showing an embodiment according to the present invention.

【図2】実施例でのNO2 発生用燃焼バーナの構造図。FIG. 2 is a structural diagram of a combustion burner for NO 2 generation in an example.

【図3】、[Fig. 3]

【図4】、[Fig. 4]

【図5】本発明になる他の実施例を示す脱硝装置の構造
図。
FIG. 5 is a structural diagram of a denitration device showing another embodiment according to the present invention.

【図6】従来技術の問題点を説明するための図。FIG. 6 is a diagram for explaining a problem of the conventional technique.

【図7】本発明で使用する燃焼バーナでのNO2 発生と
燃料と空気の関係を示す図。
FIG. 7 is a diagram showing the relationship between NO 2 generation, fuel and air in the combustion burner used in the present invention.

【図8】図1における燃焼バーナの制御の具体例説明
図。
FIG. 8 is an explanatory view of a specific example of control of the combustion burner in FIG.

【符号の説明】[Explanation of symbols]

1…排ガス源(燃焼炉)、2、5…排気管、3…脱硝装
置、4…触媒、6…NO2 発生用燃焼バーナ、7…流量
計、8…NOx(NO、NO2)濃度測定計、9…アンモ
ニア注入装置、10…(排ガス)流量信号、11…NO
x(NO、NO 2)濃度信号、12…アンモニア注入量指
令信号、13…所定NO2 量発生のためのバーナへの指
令信号、14…集じん器、15…熱回収器(熱交換
器)、17…冷却部、18…燃料+空気+NO2 発生物
質、19…冷却用空気または排ガス、20…制御装置。
 1 ... Exhaust gas source (combustion furnace) 2, 5 ... Exhaust pipe, 3 ... Denitration equipment
Placement, 4 ... Catalyst, 6 ... NO2Combustion burner for generation, 7 ... Flow rate
Total, 8 ... NOx (NO, NO2) Densitometer, 9 ... Ammo
Near injection device, 10 ... (exhaust gas) flow rate signal, 11 ... NO
x (NO, NO 2) Concentration signal, 12 ... Ammonia injection amount finger
Command signal, 13 ... predetermined NO2Finger to burner for volume generation
Command signal, 14 ... Dust collector, 15 ... Heat recovery device (heat exchange
Container), 17 ... Cooling unit, 18 ... Fuel + air + NO2Generation
Quality, 19 ... Cooling air or exhaust gas, 20 ... Control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排気管により排ガスを脱硝装置に送給す
るとともに、脱硝装置上流域の排気管内にアンモニアを
注入して排ガス中の窒素酸化物を還元除去する排ガス脱
硝方法において、脱硝装置上流域の排ガス中のNOおよ
びNO2 濃度と排ガス流量を検出する工程と、この検出
値に基づき算出された所定量の燃料とNO2 発生促進材
と燃焼用空気および火炎冷却材をNO2 発生用燃焼バー
ナに供給して必要な量のNO2 ガスを発生させる工程
と、発生したNO2 ガスを脱硝装置上流域の排気管内に
供給して排ガス中のNO/NO2 比をほぼ1に近くする
工程と、上記NO2 ガス供給後の排ガス中NO2 とNO
の濃度および排ガス量に基づき必要な量のアンモニアを
脱硝装置上流域の排ガス中に注入する工程とを備えたこ
とを特徴とする排ガス脱硝方法。
1. An exhaust gas denitration method in which exhaust gas is sent to a denitration device through an exhaust pipe, and ammonia is injected into the exhaust pipe in an upstream region of the denitration device to reduce and remove nitrogen oxides in the exhaust gas. Of detecting NO and NO 2 concentrations in exhaust gas and exhaust gas flow rate, and using a predetermined amount of fuel calculated based on the detected values, NO 2 generation promoting material, combustion air and flame cooling material for NO 2 generation combustion A step of supplying the burner with a required amount of NO 2 gas, and a step of supplying the generated NO 2 gas into the exhaust pipe in the upstream region of the denitration device to make the NO / NO 2 ratio in the exhaust gas close to 1 And NO 2 and NO in the exhaust gas after the above NO 2 gas supply
And a step of injecting a required amount of ammonia into the exhaust gas in the upstream region of the denitration apparatus based on the concentration of the exhaust gas and the amount of the exhaust gas.
【請求項2】 請求項1において、NO2 発生用燃焼バ
ーナに供給する空気量と燃料量の比(空焼比)が0.8
より小さく1.2よりも大きく調整することを特徴とす
る排ガスの脱硝方法。
2. The ratio of the amount of air supplied to the NO 2 generating combustion burner to the amount of fuel (air-burning ratio) is 0.8.
A method for denitration of exhaust gas, which comprises adjusting the particle size to be smaller than 1.2 and larger than 1.2.
【請求項3】 排ガスにアンモニアを注入した後、脱硝
装置の触媒と接触させて排ガス中の窒素酸化物を還元除
去する排ガス脱硝装置において、燃料とNO 2 発生促進
材と燃焼用空気の供給手段および火炎の急冷手段を備え
たNO2 発生用燃焼バーナと、該バーナで発生したNO
2 含有ガスを前記脱硝装置上流域の前記排ガス中に供給
する手段とを設けたことを特徴とする排ガス脱硝装置。
3. Denitration after injecting ammonia into the exhaust gas
Contact with the catalyst of the equipment to reduce and remove nitrogen oxides in the exhaust gas.
Fuel and NO in the exhaust gas denitration device to leave 2Acceleration
Equipped with wood and combustion air supply means and flame quenching means
NO2Combustion burner for generation and NO generated in the burner
2Supply the contained gas into the exhaust gas in the upstream area of the denitration equipment
And an exhaust gas denitration device.
【請求項4】 請求項3において、前記排ガスは燃焼装
置からの燃焼排ガスであり、かつ、燃焼装置の燃焼室内
下流域に前記NO2 発生燃焼バーナを配置したことを特
徴とする排ガス脱硝装置。
4. The exhaust gas denitration device according to claim 3, wherein the exhaust gas is a combustion exhaust gas from a combustion device, and the NO 2 generating combustion burner is arranged in a downstream region of a combustion chamber of the combustion device.
JP15640695A 1995-06-22 1995-06-22 Exhaust gas denitration device and denitration method Expired - Fee Related JP3526490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15640695A JP3526490B2 (en) 1995-06-22 1995-06-22 Exhaust gas denitration device and denitration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15640695A JP3526490B2 (en) 1995-06-22 1995-06-22 Exhaust gas denitration device and denitration method

Publications (2)

Publication Number Publication Date
JPH09870A true JPH09870A (en) 1997-01-07
JP3526490B2 JP3526490B2 (en) 2004-05-17

Family

ID=15627053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15640695A Expired - Fee Related JP3526490B2 (en) 1995-06-22 1995-06-22 Exhaust gas denitration device and denitration method

Country Status (1)

Country Link
JP (1) JP3526490B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281294A (en) * 2008-05-22 2009-12-03 Denso Corp Exhaust emission control device for internal combustion engine
JP4606512B1 (en) * 2010-04-07 2011-01-05 太陽築炉工業株式会社 Nitrogen oxide reduction system for cremation furnace
JP2011220234A (en) * 2010-04-09 2011-11-04 Ihi Corp Engine system
JP2013017934A (en) * 2011-07-08 2013-01-31 Ihi Corp Denitration device and denitration method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281294A (en) * 2008-05-22 2009-12-03 Denso Corp Exhaust emission control device for internal combustion engine
JP4726926B2 (en) * 2008-05-22 2011-07-20 株式会社デンソー Exhaust gas purification device for internal combustion engine
US8209966B2 (en) 2008-05-22 2012-07-03 Denso Corporation Exhaust emission control device for internal combustion
JP4606512B1 (en) * 2010-04-07 2011-01-05 太陽築炉工業株式会社 Nitrogen oxide reduction system for cremation furnace
JP2011220580A (en) * 2010-04-07 2011-11-04 Taiyo Chikuro Kogyo Kk System used in cinerator for reducing nitrogen oxide
JP2011220234A (en) * 2010-04-09 2011-11-04 Ihi Corp Engine system
JP2013017934A (en) * 2011-07-08 2013-01-31 Ihi Corp Denitration device and denitration method

Also Published As

Publication number Publication date
JP3526490B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
RU2299758C2 (en) Device and the method of control over nitrogen dioxide ejections from the boilers burning the carbonic fuels without usage of the external reactant
US7842266B2 (en) Method of denitration of exhaust gas and apparatus therefor
EP0162893B1 (en) Non-catalytic method for reducing the concentration of nitrogen oxide in combustion effluents
EP0648313B1 (en) Low nox cogeneration process and system
US5547650A (en) Process for removal of oxides of nitrogen
EP0521949B1 (en) IMPROVED LOW NOx COGENERATION PROCESS AND SYSTEM
US9387436B2 (en) Exhaust-gas purification device and method for the reduction of nitrogen oxides from an exhaust gas of a fossil-fired power plant
CA2673562A1 (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
US4849192A (en) Methods for preventing formation of sulfuric acid and related products in combustion effluents
JPH03503735A (en) Two-stage boiler injection method and device for the purpose of reducing nitrogen oxides
US5178101A (en) Low NOx combustion process and system
JP3556728B2 (en) Exhaust gas denitration method and apparatus
JP3526490B2 (en) Exhaust gas denitration device and denitration method
KR101139575B1 (en) The de-nox system and the method for exhaust gas at low temperature
CN1817415A (en) Denitration of non-selective catalytic reducing smoke
JP2014190692A (en) Method and apparatus for burning hydrocarbons and other liquids and gases
CN111836997A (en) Heat production method of power device
JP3986628B2 (en) Smoke exhaust denitration method and apparatus
KR102359124B1 (en) Method and system for removing hazardous compounds from flue gases using fabric filter bags with SCR catalyst
JP6413034B1 (en) Combustion control method for an incinerator with a biogas combustion engine
JP4933496B2 (en) NOx emission prediction method, operation method of gasification power plant using this method, and gasification power plant
Warnatz et al. Formation of nitric oxides
US20230228205A1 (en) Nitrogen Oxide Reduction Type Regenerative Thermal Oxidation System And Nitrogen Oxide Reduction Method Thereof
JP2003326135A (en) Purification method for exhaust gas and purification device for exhaust gas
JP2634279B2 (en) Method for burning NOx-containing gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080227

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees