JPH0985843A - Frp lattice and its preparation - Google Patents

Frp lattice and its preparation

Info

Publication number
JPH0985843A
JPH0985843A JP8162300A JP16230096A JPH0985843A JP H0985843 A JPH0985843 A JP H0985843A JP 8162300 A JP8162300 A JP 8162300A JP 16230096 A JP16230096 A JP 16230096A JP H0985843 A JPH0985843 A JP H0985843A
Authority
JP
Japan
Prior art keywords
frp
lattice
elastic modulus
tensile elastic
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8162300A
Other languages
Japanese (ja)
Other versions
JP3590693B2 (en
Inventor
Minoru Nakamura
実 中村
Akira Nishimura
明 西村
Hiroshi Onishi
博 大西
Nobuhiko Shimizu
信彦 清水
Yasuyuki Kawanomoto
靖之 川野元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOKUTO JUSHI KK
Toray Industries Inc
Original Assignee
KYOKUTO JUSHI KK
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOKUTO JUSHI KK, Toray Industries Inc filed Critical KYOKUTO JUSHI KK
Priority to JP16230096A priority Critical patent/JP3590693B2/en
Publication of JPH0985843A publication Critical patent/JPH0985843A/en
Application granted granted Critical
Publication of JP3590693B2 publication Critical patent/JP3590693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an FRP lattice which exhibits excellent chem. resistance and high rigidity and makes prediction of breakage possible to result in safety and makes wt. reduction possible furthermore. SOLUTION: An FRP lattice with a wt. of at most 15kg/m<2> , and a bending rigidity of at least 0.7×10<6> kgf.mm<2> or a bending strength of at least 40kgf/mm<2> and prepd. by arranging reinforcing fibers in laminar shape and making them with a resin to a composite, is provided and the reinforcing fibers contain a high tensile elasticity reinforcing fiber and a low tensile elasticity reinforcing fiber and at least outer layers 2a and 2b contain the high tensile elasticity reinforcing fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、FRP(繊維強化
プラスチック)格子およびその製造方法に関し、さらに
詳しくは土木分野や建築分野等で好適に用いられるFR
P格子およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced plastic (FRP) lattice and a method for producing the same, and more particularly, to an FR suitably used in the fields of civil engineering and construction.
The present invention relates to a P lattice and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ガラス繊維強化プラスチック(GFR
P)からなる格子部材は、メッキ工場や下水処理場など
の耐触性および水はけ性が要求される箇所の床材や、軽
量で強度が要求される高所工事用などの通路、バルコニ
ーなどの床材、道路の側溝や枡などの蓋体、および壁材
や天井材など多目的に土木分野や建築分野における部材
として用いられている。
2. Description of the Related Art Glass fiber reinforced plastic (GFR)
Grid members made of P) are used for flooring materials where contact resistance and drainage are required, such as plating plants and sewage treatment plants, as well as passages for high-place construction where light weight and strength are required, and balconies. 2. Description of the Related Art Floor materials, lids such as road gutters and yards, and wall materials and ceiling materials are used for various purposes as members in the civil engineering and construction fields.

【0003】GFRPはこれら分野に用いられている鉄
に比べ、耐触性に優れ、錆びないという特徴は有する
が、鉄に比べ弾性率が小さいので、GFRPで作られた
格子部材は曲げ剛性が小さかったり剪断剛性が小さく、
土木や建築分野の部材として用いると種々の問題が生じ
る。
[0003] Compared to iron used in these fields, GFRP has a feature that it has excellent touch resistance and does not rust. However, since its elastic modulus is smaller than that of iron, a lattice member made of GFRP has a bending rigidity. Small or low shear rigidity,
When used as a member in the civil engineering and construction fields, various problems occur.

【0004】たとえば、道路の側溝の蓋として用いる
と、重量車両が上に乗ったとき、蓋の撓み量が大きくな
り、GFRP格子蓋が大きく変形し、GFRP蓋縁側が
持ち上がり、周囲のコンクリートとの間に大きな隙間や
段差ができ、歩行中の人が挟まれたり、躓いてしまう。
[0004] For example, when used as a lid for a gutter on a road, when a heavy vehicle rides on the top, the amount of deflection of the lid increases, the GFRP lattice lid is greatly deformed, and the edge of the GFRP lid is lifted, and the surrounding GFRP lid is lifted. Large gaps or steps are created between them, and people walking may be pinched or tripped.

【0005】また、壁材や天井材に用いると、これらは
地震の際、建物の変形を抑え、建物の耐震性向上に寄与
するものであるが、剪断剛性が小さいので、地震に弱い
建物となってしまう。GFRP部材の高さを大きくした
り格子バーの幅を大きくすることで、剛性を大きくする
ことが可能であるが、部材を組み込むスペースが大きく
なったり、開口率が小さくなって、水はけが悪くなった
りする。また、透視性が悪くなるので人間に圧迫感を与
える、通気性が悪くなる、重くなるという問題もある。
When used for wall materials and ceiling materials, they suppress deformation of the building in the event of an earthquake and contribute to the improvement of the seismic resistance of the building. turn into. It is possible to increase rigidity by increasing the height of the GFRP member or the width of the lattice bar, but the space for incorporating the member becomes larger, the aperture ratio becomes smaller, and drainage becomes worse. Or In addition, there is also a problem that the visibility is deteriorated, which gives a sense of pressure to human beings, the ventilation is deteriorated, and the weight becomes heavy.

【0006】また、ガラス繊維と樹脂からなるGFRP
は鉄に比べ軽量、高強度ではあるが、鉄のように塑性変
形せず、一気に脆性的な破壊を起す。各種床材などに使
用している際、補強繊維や樹脂が薬品や紫外線で劣化す
ると、強度劣化が進む。したがって、望ましくない破壊
状態が突然生じるおそれがある。
A GFRP made of glass fiber and resin
Although is lighter and stronger than iron, it does not plastically deform like iron and causes brittle fracture at a stretch. When reinforcing fibers and resins are deteriorated by chemicals or ultraviolet rays when used for various flooring materials and the like, the strength deteriorates. Therefore, an undesired destruction condition may suddenly occur.

【0007】さらに、GFRP格子部材は鉄格子部材に
比べ軽くはなっているが、一般に土木・建築職場は重労
働を伴う職場であるので、取り扱う各種部材のより一層
の軽量化要求が強い。
Further, although the GFRP lattice member is lighter than the iron lattice member, since the civil engineering / construction work place is generally a work place involving heavy labor, there is a strong demand for further weight reduction of various members to be handled.

【0008】また、このようなGFRP格子部材の製造
方法として、予め補強繊維束に樹脂を含浸した状態(以
下、ウエット状態という。)で引き揃えて、成形溝が格
子状に並んだ成形型に積層した後、硬化・脱型する方法
が採られてきた。しかしこの方法には、積層作業時間が
樹脂のポットライフに制限され、大きな格子部材が製造
できないという問題や、ウエット状態での補強繊維は表
面が滑りやすく、積層作業時に十分な張力を加えられず
成形型の成形溝の中で蛇行するため、格子部材の強度、
剛性が低下するという問題があった。
As a method of manufacturing such a GFRP lattice member, a reinforcing fiber bundle is preliminarily impregnated with a resin (hereinafter, referred to as a wet state) and aligned to form a forming die in which forming grooves are arranged in a lattice form. A method of curing and demolding after stacking has been adopted. However, this method has a problem that the laminating operation time is limited by the pot life of the resin, a large lattice member cannot be manufactured, and the reinforcing fiber in a wet state has a slippery surface, and sufficient tension is not applied during the laminating operation. Meandering in the molding groove of the mold, the strength of the lattice member,
There was a problem that rigidity was reduced.

【0009】このような問題の解決策として、補強繊維
束を樹脂含浸しない状態(以下、ドライ状態という。)
で成形型に積層し、次いでこの成形型に樹脂を注入して
補強繊維束に含浸させ硬化する方法が考えられる。しか
しこの方法でも、成形溝の底面側にある補強繊維束まで
含浸するのに時間がかかり、生産効率が落ちたり、繊維
束内に残っている空気が抜け切らず樹脂硬化後にボイド
となって残り、格子部材の強度、剛性が低下するという
問題がある。
As a solution to such a problem, a state in which the reinforcing fiber bundle is not impregnated with resin (hereinafter referred to as a dry state).
A method is conceivable in which the layer is laminated on a molding die by, and then a resin is injected into this molding die to impregnate the reinforcing fiber bundle and cure. However, even with this method, it takes time to impregnate the reinforcing fiber bundle on the bottom side of the molding groove, the production efficiency drops, and the air remaining in the fiber bundle does not completely escape and remains as a void after resin curing. However, there is a problem that the strength and rigidity of the lattice member are reduced.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、この
ような現状に着目し、耐薬品性等に優れ、強度、剛性が
高く、破壊の予知が可能で安全であり、かつ、一層の軽
量化が可能なFRP格子を提供することにある。
The problem of the present invention is to pay attention to such a situation, to provide excellent chemical resistance, high strength and rigidity, predictable fracture and safety, and further It is to provide an FRP grating that can be made lightweight.

【0011】また、本発明の他の課題は、樹脂のポット
ライフ等に影響を受けないで任意の大きさで製造でき、
かつ、ボイドレスで強度、剛性の高いFRP格子の製造
用成形型および製造方法を提供することにある。
Another object of the present invention is that the resin can be manufactured in any size without being affected by the pot life of the resin, and the like.
Another object of the present invention is to provide a mold and a method for producing a FRP lattice having high strength and rigidity in a voidless manner.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係るFRP格子は、重量が15kg/m2
以下であり、かつ、曲げ剛性が少なくとも0.7×10
6 kgf・mm2 であることを特徴とするものからな
る。
In order to solve the above problems, the FRP grating according to the present invention has a weight of 15 kg / m 2.
And flexural rigidity of at least 0.7 × 10
It is characterized by being 6 kgf · mm 2 .

【0013】また、本発明に係るFRP格子は、重量が
15kg/m2 以下であり、かつ、曲げ強度が少なくと
も40kgf/mm2 であることを特徴とするものから
なる。
The FRP lattice according to the present invention is characterized by having a weight of 15 kg / m 2 or less and a bending strength of at least 40 kgf / mm 2 .

【0014】このようなFRP格子は、次のような構成
によって達成される。すなわち、本発明に係るFRP格
子は、補強繊維を層状に配置し、樹脂と複合してなるF
RP格子であって、前記補強繊維は高引張弾性率補強繊
維と低引張弾性率補強繊維とを含み、かつ、少なくとも
外層が高引張弾性率補強繊維を含んでいることを特徴と
するものからなる。
Such an FRP grating is achieved by the following structure. That is, the FRP lattice according to the present invention has a structure in which reinforcing fibers are arranged in layers and are combined with resin.
An RP lattice, wherein the reinforcing fibers include high tensile elastic modulus reinforcing fibers and low tensile elastic modulus reinforcing fibers, and at least the outer layer includes high tensile elastic modulus reinforcing fibers. .

【0015】このようなFRP格子においては、その開
口率が65〜95%の範囲にあることが好ましい。ま
た、格子の目を形成する枠の横断面形状が逆台形状であ
ることが好ましい。さらに、格子の目を形成する枠の横
断面に段部を有する形状とすることもできる。但し、格
子の横断面形状は、これらの形状に限定されず、任意の
形状を採ることが可能である。
In such an FRP grating, the aperture ratio is preferably in the range of 65 to 95%. Further, it is preferable that the cross-sectional shape of the frame forming the grid eyes is an inverted trapezoidal shape. Furthermore, the shape which has a step part in the cross section of the frame which forms the eyes of a lattice can also be used. However, the cross-sectional shape of the lattice is not limited to these shapes, but can be any shape.

【0016】FRP格子を構成する樹脂としては、特に
限定されないが、ビニルエステル樹脂であることが好ま
しい。また、上記高引張弾性率補強繊維が炭素繊維であ
り、高引張弾性率補強繊維の引張弾性率が低引張弾性率
補強繊維のそれの少なくとも3倍であることが好まし
い。さらに、上記外層の厚みが、全体厚みの少なくとも
20%を占めていることが好ましい。
The resin constituting the FRP lattice is not particularly limited, but vinyl ester resin is preferable. Preferably, the high tensile modulus reinforcing fiber is a carbon fiber, and the tensile modulus of the high tensile modulus reinforcing fiber is at least three times that of the low tensile modulus reinforcing fiber. Furthermore, it is preferable that the thickness of the outer layer accounts for at least 20% of the total thickness.

【0017】また、このように構成されたFRP格子の
重量は15kg/m2 以下とすることが好ましく、これ
によって剛性や強度を確保しつつ、軽量化要求に応える
ことができる。FRP格子の曲げ剛性は、用途にもよる
が、少なくとも0.7×106 kgf・mm2 であるこ
とが好ましく、曲げ強度としては、少なくとも40kg
f/mm2 であることが好ましい。
Further, the weight of the FRP lattice constructed as described above is preferably 15 kg / m 2 or less, which makes it possible to meet the demand for weight reduction while ensuring rigidity and strength. The flexural rigidity of the FRP lattice depends on the application but is preferably at least 0.7 × 10 6 kgf · mm 2 , and the flexural strength is at least 40 kg.
It is preferably f / mm 2 .

【0018】また、本発明に係るFRP格子の成形型
は、補強繊維を層状に配置し、樹脂と複合してなるFR
P格子の成形型であって、格子の目を形成する型の側壁
に、成形型の厚み方向に延びる溝が設けられていること
を特徴とするものからなる。このような成形型を用いて
成形されたFRP格子は、格子の目を形成する枠の側面
に、格子の厚み方向に延びる突条を有するものとなる。
Further, the mold for the FRP lattice according to the present invention is an FR in which reinforcing fibers are arranged in layers and are compounded with a resin.
A mold for a P-lattice, which is characterized in that a groove extending in the thickness direction of the mold is provided on the side wall of the mold for forming the meshes of the lattice. The FRP lattice molded by using such a mold has a ridge extending in the thickness direction of the lattice on the side surface of the frame forming the mesh of the lattice.

【0019】さらに、本発明に係るFRP格子の製造方
法は、成形型内に補強繊維を層状に配置し、樹脂を注入
してFRP格子を製造するに際し、前記補強繊維とし
て、高引張弾性率補強繊維と低引張弾性率補強繊維とを
用い、かつ、少なくとも外層に高引張弾性率補強繊維を
配置することを特徴とする方法からなる。
Further, in the method for producing an FRP lattice according to the present invention, when reinforcing fibers are arranged in layers in a molding die and resin is injected to produce an FRP lattice, the reinforcing fibers are reinforced with high tensile modulus. The method comprises using fibers and low tensile elastic modulus reinforcing fibers, and disposing high tensile elastic modulus reinforcing fibers in at least an outer layer.

【0020】また、本発明に係るFRP格子の製造方法
は、上述の、格子の目を形成する型の側壁に、成形型の
厚み方向に延びる溝が設けられている成形型を用い、該
成形型内に補強繊維を層状に配置し、樹脂を注入してF
RP格子を製造することを特徴とする方法からなる。こ
の場合にも、高引張弾性率補強繊維と低引張弾性率補強
繊維とを用い、かつ、高引張弾性率補強繊維を少なくと
も外層に配置することが好ましい。
Further, the method for manufacturing an FRP lattice according to the present invention uses a forming die in which a groove extending in the thickness direction of the forming die is provided on the side wall of the die for forming the mesh of the lattice as described above. Reinforcing fibers are arranged in layers in the mold and resin is injected to make F
The method comprises manufacturing an RP grating. Also in this case, it is preferable to use the high tensile elastic modulus reinforcing fiber and the low tensile elastic modulus reinforcing fiber, and arrange the high tensile elastic modulus reinforcing fiber in at least the outer layer.

【0021】上記FRP格子の製造方法においては、樹
脂としてビニルエステル樹脂を用いることが好ましい。
また、高引張弾性率補強繊維として炭素繊維を用い、低
引張弾性率補強繊維としてガラス繊維を用いることが好
ましい。
In the above FRP lattice manufacturing method, it is preferable to use a vinyl ester resin as the resin.
Preferably, carbon fibers are used as the high tensile modulus reinforcing fibers, and glass fibers are used as the low tensile modulus reinforcing fibers.

【0022】また、これらFRP格子の製造方法におい
ては、成形を減圧下で行うことが好ましい。
In addition, in these FRP lattice manufacturing methods, it is preferable to carry out molding under reduced pressure.

【0023】上記のような本発明に係るFRP格子を用
いて、各種土木・建築用部材を構成できる。本発明に係
るFRP格子は、たとえば、各種床材や高所工事用など
の通路材(たとえば、足場材)、道路の側溝や枡などの
蓋体(溝蓋、枡蓋)、各種壁材や天井材(たとえば、表
面に化粧板等が配置される壁材や天井材のコア材)など
に使用できる。さらに詳しく言えば、たとえば、水関係
では、下水(汚水)処理場の床板や歩廊、レジャー施
設、船舶の床板、海洋構造物等、薬品関係では、石油精
製、薬品等の化学プラントの構築物内の床材、レーダー
周辺等電波透過性を必要とする場所の床材、階段、壁材
等、建築・橋梁関係では、高層建築物の歩廊、非常階段
の踏み板やバルコニーの床、フェンス(たとえば、ベラ
ンダのフェンスや、一般的な柵用フェンスや仕切り)、
ドアのコア材、駐車場の床材、吊橋や桟橋の歩廊、鉄橋
等の点検歩廊、クリーンルームの床材や壁材、天井材、
ヘリポートの敷板等があり、その他にも、メッキ槽、タ
ワー廻りの床板、排水・排液溝の蓋体(たとえば、マン
ホールの蓋、溝蓋)等がある。
Various civil engineering and construction members can be constructed by using the FRP lattice according to the present invention as described above. The FRP lattice according to the present invention includes, for example, various flooring materials, passage materials (for example, scaffolding materials) for high-place construction, lids (groove lids, ridge lids) such as road gutters and pits, various wall materials and the like. It can be used as a ceiling material (for example, a wall material on which a decorative board or the like is arranged on its surface or a core material of a ceiling material). More specifically, for example, in the case of water, floorboards and corridors of sewage (sewage) treatment plants, leisure facilities, floorboards of ships, marine structures, etc. In the case of chemicals, petroleum refining and chemical plant construction For construction and bridges, such as flooring materials, stairs, and wall materials in places that require radio wave transmission, such as flooring materials and radar surroundings, walkways of high-rise buildings, treads of emergency stairs, floors of balconies, fences (for example, verandas) Fences, general fences and partitions),
Core materials for doors, floor materials for parking lots, walkways for suspension bridges and piers, inspection walkways for railway bridges, etc., floor materials and walls for clean rooms, ceiling materials,
There are a heliport floor plate and the like, and in addition, there are a plating tank, a floor plate around a tower, a lid of a drainage / drainage groove (for example, a lid of a manhole, a groove lid) and the like.

【0024】[0024]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照して説明する。図1および図2は、
本発明の一実施態様に係るFRP格子を示している。図
1において、1はFRP格子全体を示しており、該FR
P格子1は、補強繊維を2方向に、かつ、層状に配置
し、樹脂と複合したものからなる。すなわち、引揃えら
れた多数本の補強繊維を2方向に交互に積層して格子形
状となし、それらを樹脂と複合してなるものである。ま
た、繊維体積含有率は30%程度となるように設定す
る。本実施態様に係るFRP格子1は、たとえば、耐触
性、水はけ性、耐久性などが要求される箇所用の部材と
して使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 and FIG.
1 illustrates an FRP grating according to one embodiment of the present invention. In FIG. 1, 1 indicates the entire FRP lattice, and the FR
The P-lattice 1 is composed of reinforcing fibers arranged in two directions and in a layered form and compounded with a resin. That is, a large number of aligned reinforcing fibers are alternately laminated in two directions to form a lattice shape, and these are combined with a resin. Further, the fiber volume content is set to be about 30%. The FRP grating 1 according to the present embodiment is used, for example, as a member for a part where touch resistance, drainage, durability, and the like are required.

【0025】このFRP格子1の各格子バーの横断面形
状、つまり、格子の目を形成する枠の横断面形状は、図
2に示すように、逆台形状に形成されている。そして、
各格子バーは、両最外層に高引張弾性率補強繊維を含む
層2a、2b、中央層に低引張弾性率補強繊維を含む層
3を配置した、実質的に2種の層の3層構造に構成され
ている。
The cross-sectional shape of each grid bar of the FRP grid 1, that is, the cross-sectional shape of the frame forming the grid eyes is formed in an inverted trapezoidal shape as shown in FIG. And
Each lattice bar is a three-layer structure of substantially two kinds of layers, in which layers 2a and 2b containing high tensile elastic modulus reinforcing fibers are arranged in both outermost layers, and layer 3 containing low tensile elastic modulus reinforcing fibers is arranged in the central layer. Is configured.

【0026】最外層2a、2bに使用する補強繊維とし
ては、マルチフィラメントからなる炭素繊維や炭化ケイ
素繊維、金属繊維などの高強度・高弾性率繊維が好まし
い。なかでも、炭素繊維は耐薬品性、耐水性などに優
れ、軽量、高強度、高弾性率で、又、樹脂含浸性、樹脂
との接着性なども良く、上記高引張弾性率補強繊維を含
む層の補強繊維として最適である。但し、二種以上の補
強繊維、たとえば炭素繊維とガラス繊維を含む層として
もよい。
The reinforcing fibers used in the outermost layers 2a and 2b are preferably high strength / high elastic modulus fibers such as carbon fibers, silicon carbide fibers and metal fibers composed of multifilaments. Among them, carbon fiber has excellent chemical resistance, water resistance, etc., is lightweight, has high strength, high elastic modulus, and also has good resin impregnating property and adhesiveness with resin, and includes the above-mentioned high tensile elastic modulus reinforcing fiber. Most suitable as a reinforcing fiber for layers. However, it may be a layer containing two or more kinds of reinforcing fibers, for example, carbon fibers and glass fibers.

【0027】中央層3に使用する補強繊維としては、た
とえばガラス繊維を使用できる。但し、この層において
も、二種以上の補強繊維、たとえばガラス繊維と炭素繊
維を含む層としてもよい。このような補強繊維の繊維束
からなる層は、いずれも樹脂で複合されてなる。
As the reinforcing fiber used for the central layer 3, for example, glass fiber can be used. However, this layer may also be a layer containing two or more kinds of reinforcing fibers, for example, glass fibers and carbon fibers. Each of the layers composed of such fiber bundles of reinforcing fibers is formed by compounding with a resin.

【0028】このように、本発明に係るFRP格子1
は、外層に(本実施態様では最外層に)高引張弾性率補
強繊維、内層(中央層)に低引張弾性率補強繊維を配し
てなるので、長期の使用による部材の劣化や過大な荷重
がかかった時などに、繊維破断による大きな破壊を生じ
る前に、まず、外層と内層との界面に発生する剪断応力
で層間剥離を起す。さらに荷重が増大し繊維を破断する
ようになると、大きな破壊に至る。
Thus, the FRP grating 1 according to the present invention
Has a high tensile elastic modulus reinforcing fiber in the outer layer (the outermost layer in the present embodiment) and a low tensile elastic modulus reinforcing fiber in the inner layer (center layer), so that deterioration of the member due to long-term use or excessive load First, delamination is caused by the shear stress generated at the interface between the outer layer and the inner layer before a large breakage due to fiber breakage occurs when the fiber is broken. When the load is further increased and the fiber is broken, a large breakage occurs.

【0029】上記層間剥離は、繊維が破断するときのよ
うな破壊モードではなく、単に部材の剛性が低下し、破
損の感知は可能であるが脆性的で致命的破壊は生じない
モードである。したがって、この層間剥離は、危険予知
モードとしては最適なものである。
The above-mentioned delamination is not a fracture mode as when the fiber breaks, but is a mode in which the rigidity of the member is simply lowered and the damage can be detected, but it is brittle and does not cause fatal damage. Therefore, this delamination is optimal as a danger prediction mode.

【0030】この層間剥離を起こす応力は、2種類の補
強繊維層における補強繊維の引張弾性率およびFRP部
材の曲げ中心軸からの距離に左右される。
The stress that causes delamination depends on the tensile elastic modulus of the reinforcing fibers in the two types of reinforcing fiber layers and the distance from the bending center axis of the FRP member.

【0031】たとえば、高引張弾性率補強繊維を有する
層の厚みが全体厚みの1/3を越えると、剥離後のFR
P部材の曲げ強度が初期強度の約半分となり、剥離後の
部材の残存強度としては低すぎることになる。また、1
/5(20%)未満の場合には、2種の引張弾性率の異
なる補強繊維を有する層間に発生する剪断応力が小さ
く、破壊がいきなり繊維破断モードとなる可能性が高く
なり、破壊予知の効果がなくなるおそれがある。したが
って、上記最外層の厚みとしては、全体厚みの少なくと
も1/5(20%)を占めていることが望ましく、より
好ましくは1/5〜1/3の範囲が望ましい。
For example, when the thickness of the layer having the high tensile modulus reinforcing fiber exceeds 1/3 of the total thickness, the FR after peeling is increased.
The bending strength of the P member is about half of the initial strength, which is too low as the residual strength of the member after peeling. Also, 1
If it is less than / 5 (20%), the shear stress generated between the layers having two kinds of reinforcing fibers having different tensile elastic moduli is small, and there is a high possibility that the fiber breaks suddenly in the breakage, which may lead to failure prediction. May lose effect. Therefore, the thickness of the outermost layer preferably occupies at least 1/5 (20%) of the total thickness, and more preferably 1/5 to 1/3.

【0032】また、2種類の補強繊維の引張弾性率の差
が大きい程、荷重がかかったときの層間剪断応力は大き
くなるが、その差が余り大きすぎると、低荷重で剥離が
発生してしまい、格子部材として成立しなくなるので、
高引張弾性率補強繊維は低引張弾性率補強繊維の3倍以
上、より好ましくは3〜7倍の範囲の引張弾性率を有す
ることが望ましい。
Further, the greater the difference between the tensile elastic moduli of the two types of reinforcing fibers, the greater the interlaminar shear stress when a load is applied, but if the difference is too large, peeling will occur at a low load. Since it will not be established as a grid member,
It is desirable that the high tensile elastic modulus reinforcing fiber has a tensile elastic modulus of 3 times or more, more preferably 3 to 7 times that of the low tensile elastic modulus reinforcing fiber.

【0033】また、本発明に係るFRP格子は、外層に
内層よりも引張弾性率の高い繊維を使用するため、高剛
性となり、各格子バーの幅を小さくすることが可能にな
り、開口率を従来のGFRP製のものに比べ10〜20
%大きくすることが可能である。その結果、容易に、開
口率65〜95%のFRP格子を構成できる。
Further, since the FRP lattice according to the present invention uses fibers having a higher tensile elastic modulus than the inner layer for the outer layer, the FRP lattice has high rigidity and the width of each lattice bar can be made small, thereby increasing the aperture ratio. 10 to 20 compared to conventional GFRP products
% Can be increased. As a result, an FRP grating having an aperture ratio of 65 to 95% can be easily constructed.

【0034】さらに、開口率を大きくとれる結果、使用
する材料が少なくて済み、全容積も小さくなる。さら
に、補強繊維束に炭素繊維を含む場合、炭素繊維の比重
はガラス繊維の比重より小さいこともあり、部材全体の
重量を大幅に軽減できる。
Further, as a result of the large aperture ratio, a small amount of material is used and the total volume is small. Furthermore, when the reinforcing fiber bundle contains carbon fibers, the specific gravity of the carbon fibers may be smaller than the specific gravity of the glass fibers, so that the weight of the entire member can be significantly reduced.

【0035】使用する樹脂としては、エポキシ樹脂、ビ
ニルエステル樹脂、不飽和ポリエステル樹脂、フェノー
ル樹脂など熱硬化性樹脂が主に用いられるが、なかでも
ビニルエステル樹脂は耐薬品性、耐候性などに優れてい
るので好ましい。
Thermosetting resins such as epoxy resin, vinyl ester resin, unsaturated polyester resin and phenol resin are mainly used as the resin to be used. Among them, the vinyl ester resin is excellent in chemical resistance and weather resistance. Therefore, it is preferable.

【0036】なお、このマトリックス樹脂は熱硬化性樹
脂に限定する必要はなく、ナイロン樹脂、ABS樹脂、
ポリプロピレン樹脂など熱可塑性樹脂であってもよく、
また、熱硬化性樹脂と熱可塑性樹脂の混合物であっても
よい。
The matrix resin is not limited to the thermosetting resin, but may be nylon resin, ABS resin,
It may be a thermoplastic resin such as a polypropylene resin,
Further, a mixture of a thermosetting resin and a thermoplastic resin may be used.

【0037】このような樹脂は、予め繊維束に含浸させ
ておき、それを引き揃えて形状を賦型してもよいし、ド
ライで賦型したプリフォームに後で樹脂を含浸させても
よい。また、繊維と樹脂を複合した後に、ボイドをなく
すために、真空チャンバ内で脱泡することも可能であ
る。つまり、樹脂の硬化や固化を、減圧下で行うのであ
る。
Such a resin may be impregnated into a fiber bundle in advance, and may be shaped by shaping the bundle, or a preform that has been dry-molded may be impregnated with the resin later. . Further, it is also possible to perform defoaming in the vacuum chamber in order to eliminate voids after the fiber and the resin are combined. That is, the resin is cured and solidified under reduced pressure.

【0038】このように製造されたFRP格子は、軽量
でありながら優れた機械的特性を有することができる。
すなわち、重量が15kg/m2 以下であり、かつ、曲
げ剛性が少なくとも0.7×106 kgf・mm2 であ
るFRP格子や、重量が15kg/m2 以下であり、か
つ、曲げ強度が少なくとも40kgf/mm2 であるF
RP格子を実現できる。
The FRP grating manufactured as described above can have excellent mechanical properties while being lightweight.
That is, the weight is not more 15 kg / m 2 or less, and, and FRP grating bending stiffness of at least 0.7 × 10 6 kgf · mm 2 , the weight is at 15 kg / m 2 or less, and flexural strength of at least F which is 40 kgf / mm 2
An RP grating can be realized.

【0039】図3は、別の実施態様に係るFRP格子1
0を示している。本実施態様においては、互いに交又す
るように2方向に配置されている各格子バーの、交点間
のピッチが縦横互いに異なるピッチとされている。な
お、図示は省略するが、交点間のピッチは一定であって
もよく、途中で変化するタイプのものであってもよい。
FIG. 3 shows an FRP grating 1 according to another embodiment.
0 is shown. In the present embodiment, the pitch between the intersections of the grid bars arranged in two directions so as to intersect each other has a different vertical and horizontal pitch. Although not shown, the pitch between the intersections may be constant, or may be a type that changes midway.

【0040】また、図1、図3に示したFRP格子1、
10は、補強繊維を2方向に層状に配置し、実質的に直
交する方向に延びる格子バーを有する構成に形成した
が、3方向以上、たとえば、さらに斜めに延びる補強繊
維、格子バーを有する構成としてもよい。さらに、図2
には3層構成のFRPを示したが、他の断面層状構成と
することもできる。たとえば、内層を低引張弾性率補強
繊維を含む2層構成とし、両最外層に高引張弾性率補強
繊維を含む層を配置することもできる。また、耐電蝕性
を付与するためや、最外層高引張弾性率繊維層を保護す
る目的などで、表面にGFRP層などの薄い層を設ける
ことも可能である。
In addition, the FRP grating 1 shown in FIGS.
In No. 10, the reinforcing fibers were arranged in layers in two directions and formed into a structure having a lattice bar extending in a direction substantially orthogonal to each other, but a structure having reinforcing fibers and a lattice bar extending in three or more directions, for example, obliquely. May be Furthermore, FIG.
Although the FRP having a three-layer structure is shown in FIG. 1, another cross-sectional layer structure can be used. For example, the inner layer may have a two-layer structure containing low tensile elastic modulus reinforcing fibers, and both outermost layers may be arranged with layers containing high tensile elastic modulus reinforcing fibers. In addition, a thin layer such as a GFRP layer can be provided on the surface for the purpose of imparting electrolytic corrosion resistance or for the purpose of protecting the outermost high tensile modulus fiber layer.

【0041】また、格子の目を形成する枠、つまり、格
子バーの横断面形状については、図2に示したような逆
台形状のものに限られず、台形、矩形、楕円、多角形、
つづみ形等任意の形状が可能であり、さらには単純な形
状の断面に限らず、複雑な特殊形状の断面とすることも
可能である。
Further, the frame for forming the eyes of the lattice, that is, the cross-sectional shape of the lattice bar is not limited to the inverted trapezoidal shape shown in FIG. 2, but may be a trapezoid, a rectangle, an ellipse, a polygon,
An arbitrary shape such as a trapezoidal shape is possible, and the cross section is not limited to a simple shape but a complicated special shape.

【0042】さらに、図2に示した実施態様では、高引
張弾性率補強繊維を含む補強繊維2a、2bを両最外層
に配置したが、この態様に限定されるものではない。た
とえば図4(A)に示すように、中央層20に対し、両
外側に高引張弾性率補強繊維を含む補強繊維21a、2
1bを配置し、さらにその外側に別の層22a、22b
を配置する構成としてもよい。
Furthermore, in the embodiment shown in FIG. 2, the reinforcing fibers 2a and 2b containing the high tensile elastic modulus reinforcing fibers are arranged in both outermost layers, but the present invention is not limited to this embodiment. For example, as shown in FIG. 4 (A), with respect to the central layer 20, reinforcing fibers 21 a, 2 containing high tensile elastic modulus reinforcing fibers on both outsides thereof.
1b is placed on the outside of the layer 1b and another layer 22a, 22b
May be arranged.

【0043】また、(B)に示すように、図2に示した
態様に比べ、一方の最外層としてのみ高引張弾性率補強
繊維を含む補強繊維24を配置し、残りは全て別の補強
繊維23とする構成としてもよい。同様に(C)に示す
ように、(A)に示した態様に比べ、一方の外層として
のみ高引張弾性率補強繊維を含む補強繊維26を配置
し、その両側に別の補強繊維25、27を配置する構成
としてもよい。
Further, as shown in (B), as compared with the embodiment shown in FIG. 2, reinforcing fibers 24 containing high tensile elastic modulus reinforcing fibers are arranged only as one outermost layer, and the rest are all other reinforcing fibers. The configuration may be set to 23. Similarly, as shown in (C), as compared to the embodiment shown in (A), reinforcing fibers 26 containing high tensile elastic modulus reinforcing fibers are arranged only as one outer layer, and reinforcing fibers 25, 27 are provided on both sides thereof. May be arranged.

【0044】さらに(D)に示すように、図2に示した
態様に比べ、中央にも高引張弾性率補強繊維を含む補強
繊維2cを配置し、その両側に別の補強繊維3a、3b
が配置され、最外層に補強繊維2a、2bが配置される
構成としてもよい。
Further, as shown in (D), as compared with the embodiment shown in FIG. 2, the reinforcing fiber 2c containing the high tensile elastic modulus reinforcing fiber is also arranged in the center, and the other reinforcing fibers 3a and 3b are provided on both sides thereof.
May be arranged, and the reinforcing fibers 2a and 2b may be arranged in the outermost layer.

【0045】すなわち、本発明に係るFRP格子におい
ては、少なくとも一層の外層が、高引張弾性率補強繊維
を含む補強繊維を用いて構成されていればよい。
That is, in the FRP lattice according to the present invention, at least one outer layer may be formed by using reinforcing fibers including high tensile elastic modulus reinforcing fibers.

【0046】さらにまた、(E)に示すように、格子断
面に段差を有する構造としてもよい。図示例では、図2
に示した態様に比べ、高引張弾性率補強繊維を含む補強
繊維28部を大きくし、中央層3との間に段部29を形
成してある。
Furthermore, as shown in (E), a structure having a step in the cross section of the lattice may be adopted. In the illustrated example, FIG.
As compared with the embodiment shown in FIG. 7, the reinforcing fiber 28 portion including the high tensile elastic modulus reinforcing fiber is enlarged, and the step portion 29 is formed between the reinforcing fiber 28 and the central layer 3.

【0047】上記のようなFRP格子は、少なくとも2
方向に延びる格子成形溝を有する成形型を用いて成形さ
れる。たとえば、図1および図2に示したFRP格子1
を成形するための成形型は、図5に示すようなものであ
る。成形型30には、2方向(本実施態様では互いに直
交する2方向)に延びる成形溝31が形成されている。
各成形溝31の横断面は、図2に示した逆台形状に対応
する形状に形成されている。
The FRP grating as described above has at least 2
It is formed using a mold having a grid forming groove extending in the direction. For example, the FRP grating 1 shown in FIGS.
A molding die for molding is as shown in FIG. The molding die 30 is formed with molding grooves 31 extending in two directions (in this embodiment, two directions orthogonal to each other).
The cross section of each forming groove 31 is formed in a shape corresponding to the inverted trapezoidal shape shown in FIG.

【0048】このような成形型30内に、たとえば図2
に示したような補強繊維2b、3、2aが、順に層状に
配置され、樹脂が注入されてFRP格子が成形される。
補強繊維2a、2bは高引張弾性率補強繊維を含み、か
つ、それら補強繊維2a、2bが外層に配置される。成
形を減圧下で行えば、効率よく脱気でき、ボイドレスの
FRP格子を得ることができる。
In such a molding die 30, for example, as shown in FIG.
The reinforcing fibers 2b, 3 and 2a as shown in FIG. 3 are sequentially arranged in layers and resin is injected to mold the FRP lattice.
The reinforcing fibers 2a and 2b include high tensile elastic modulus reinforcing fibers, and the reinforcing fibers 2a and 2b are arranged in the outer layer. If molding is performed under reduced pressure, degassing can be performed efficiently, and a voidless FRP lattice can be obtained.

【0049】成形型として、図6に示すような型を用い
ることもできる。図6に示す成形型40においては、成
形溝41の側壁41aに、つまり、格子の目を形成する
型の側壁41aに、成形型40の厚み方向に延びる溝4
2が刻設されている。溝42は、全ての側壁に設けても
よく、一部の側壁のみに設けてもよい。溝42は、本実
施態様ではV溝に形成されているが、溝42の横断面形
状としては、U字状、円弧状、角形状、台形状等任意の
形状が可能である。
As the molding die, a die as shown in FIG. 6 can be used. In the forming die 40 shown in FIG. 6, the groove 4 extending in the thickness direction of the forming die 40 is formed on the side wall 41a of the forming groove 41, that is, on the side wall 41a of the die forming the grid pattern.
2 is engraved. The groove 42 may be provided on all side walls, or may be provided only on some side walls. Although the groove 42 is formed as a V groove in the present embodiment, the cross-sectional shape of the groove 42 can be any shape such as a U shape, an arc shape, a square shape, or a trapezoidal shape.

【0050】このように側壁41aに成形型40の厚み
方向に延びる溝42を設けておくと、ドライ状態の補強
繊維束が成形溝41に積層された状態の成形型40に樹
脂を注入する際に、樹脂が溝42を通って成形溝41の
底面41bあるいは底面近くまですぐに到達するため、
補強繊維への樹脂の含浸が速くなる。また、樹脂含浸後
も補強繊維内に残っている空気がこの溝42を通って抜
けやすくなり、FRP格子のボイドが低減できる。
When the groove 42 extending in the thickness direction of the molding die 40 is provided on the side wall 41a in this manner, when the resin is injected into the molding die 40 in which the reinforcing fiber bundle in the dry state is laminated in the molding groove 41. Since the resin immediately reaches the bottom surface 41b of the molding groove 41 or near the bottom surface through the groove 42,
The impregnation of the resin into the reinforcing fiber becomes faster. Further, air remaining in the reinforcing fibers even after the resin impregnation becomes easy to escape through the grooves 42, and voids in the FRP lattice can be reduced.

【0051】さらに、樹脂注入後の成形型40を真空チ
ャンバー等の中に入れ、成形を減圧下で行えば、一層ボ
イドレスなFRP格子を得ることができる。
Furthermore, if the molding die 40 after resin injection is placed in a vacuum chamber or the like and molding is carried out under reduced pressure, a more voidless FRP lattice can be obtained.

【0052】このようなFRP格子製造用成形型の溝4
2としては、樹脂の入りやすさ、空気の抜けやすさか
ら、図6に示したように成形溝底面41bに対し略垂直
方向に設けてあることが好ましいが、斜め方向に設けて
あっても構わない。また、溝42の大きさとしては、い
くらでも構わないが、幅10mm以下、深さ5mm以下
とするのが好ましい。幅が10mmを超えると、積層し
た補強繊維が溝42に沿って曲り、溝42を塞いでしま
うおそれがあるため、上記した効果が十分に得られな
い。また、溝42の深さが5mmを超えると、この溝4
2に入って硬化した樹脂の重量が増え、FRP格子とし
て十分な軽量化効果が得られなくなるおそれがある。
Groove 4 of the mold for manufacturing such FRP lattice
2 is preferably provided in a direction substantially perpendicular to the molding groove bottom surface 41b as shown in FIG. 6 in view of ease of resin entry and air escape, but even if provided obliquely. I do not care. The groove 42 may have any size, but it is preferable that the width is 10 mm or less and the depth is 5 mm or less. If the width exceeds 10 mm, the laminated reinforcing fibers may bend along the grooves 42 and block the grooves 42, so that the above-mentioned effects cannot be sufficiently obtained. When the depth of the groove 42 exceeds 5 mm, the groove 4
2, the weight of the cured resin increases, and there is a possibility that a sufficient lightening effect as the FRP lattice cannot be obtained.

【0053】また、溝42は、成形溝41の側壁41a
の底面41b部から上面まで貫通して設けてあるのが好
ましいが、上記の効果が得られれば途中で切れていても
構わない。さらに、溝42は、それぞれの格子部の成形
溝の側壁に1本以上あればよいが、それぞれの格子の各
辺の成形溝の側壁に1本以上あればより効果が大きい。
ただし、このときそれぞれの格子の各辺の成形溝の側壁
に5本以上の溝42を設けると、この溝に入って硬化し
た樹脂により、軽量化効果が得られなくなるおそれがあ
るので注意が必要である。
The groove 42 is the side wall 41a of the molding groove 41.
Although it is preferable to penetrate from the bottom surface 41b to the top surface of the above, it may be cut off in the middle if the above-mentioned effect is obtained. Further, the number of the grooves 42 may be one or more on the side wall of the forming groove of each lattice portion, but the effect is greater if the number of the grooves 42 is one or more on the side wall of the forming groove on each side of each lattice.
However, at this time, if five or more grooves 42 are provided on the side walls of the molding grooves on each side of each lattice, it is necessary to pay attention because the resin that has entered the grooves and hardened may not be able to obtain the lightening effect. It is.

【0054】上記のような成形型40を用いて成形した
FRP格子は、たとえば図7に示すようになる。FRP
格子50の各格子部の側面には、図6に示した溝42に
対応して、格子の厚み方向に延びる突条51が形成され
ている。突条51の大きさや長さ、横断面形状は、上述
した溝42のそれらに対応したものとなる。このような
FRP格子50は、軽量、高剛性、高強度特性に加え、
ボイドレスの高品質なものとなる。
An FRP lattice molded by using the molding die 40 as described above is, for example, as shown in FIG. FRP
Protrusions 51 extending in the thickness direction of the lattice are formed on the side surfaces of each lattice portion of the lattice 50, corresponding to the grooves 42 shown in FIG. The size, length, and cross-sectional shape of the ridge 51 correspond to those of the groove 42 described above. The FRP grating 50 as described above is lightweight, has high rigidity, and has high strength characteristics.
It will be a high quality of the dress.

【0055】[0055]

【実施例】以下に、本発明の実施例について説明する。 実施例1 格子状に成形溝を配置した、寸法が縦、横それぞれ1,
007mm、厚みが50mm、格子間のピッチが40m
mの成形型に、引き揃えられた炭素繊維の補強繊維
(A)およびガラス繊維の補強繊維(B)を所定の厚み
になるように2方向にA/B/Aの積層構成にて積層
し、次いで積層した繊維に樹脂を注入、含浸、硬化させ
た。硬化後成形品を取り出し、40mmの厚みに面加工
し、さらに1,007mm長×407mm幅に切り出し
た。格子部断面は図2に示したものである。格子の目を
形成する枠の横断面の寸法は、上面幅4.5mm、下面
幅2.5mm、厚みが40mmであった。この成形品
を、両端単純支持し(スパン間隔600mm)、中央集
中荷重にて曲げ試験を行った。
Embodiments of the present invention will be described below. Example 1 Forming grooves are arranged in a grid, and the dimensions are 1
007mm, thickness 50mm, pitch between lattices 40m
The reinforcing fibers (A) of the carbon fibers and the reinforcing fibers (B) of the glass fibers, which had been aligned, were laminated in a two-direction A / B / A laminated structure to a predetermined thickness on a molding die of m. Then, resin was injected into the laminated fibers, impregnated and cured. After curing, the molded product was taken out, surface-processed to a thickness of 40 mm, and further cut out to a length of 1,007 mm × width of 407 mm. The lattice section is shown in FIG. The dimensions of the horizontal cross section of the frame forming the grid pattern were an upper surface width of 4.5 mm, a lower surface width of 2.5 mm, and a thickness of 40 mm. This molded product was simply supported at both ends (span interval 600 mm) and subjected to a bending test under a central concentrated load.

【0056】結果を表1に示すが、成形品の重量当たり
の強度、剛性ともに従来のGFRP製の格子に比べ大幅
にすぐれていた。また、破壊モードも層間破壊が先行
し、安全性の高いものであった。
The results are shown in Table 1. Both the strength per unit weight and the rigidity of the molded product were significantly superior to those of the conventional GFRP lattice. Further, the destruction mode was also high in safety because the interlayer destruction preceded.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【発明の効果】以上説明したように、本発明のFRP格
子は、軽量でありながら、優れた曲げ剛性や曲げ強度等
の機械的特性を有する。また、本発明のFRP格子によ
れば、外層に高引張弾性率補強繊維を含む層を有するの
で、長期の使用下で材料が劣化したとき、あるいは過大
な荷重がかかったときなどに、引張弾性率の異なった2
種の補強繊維の層間で剥離が発生し、繊維の破断による
大きな破壊に至る前に予知が可能となり、安全上すぐれ
た部材を実現できる。
As described above, the FRP lattice of the present invention is lightweight and has excellent mechanical properties such as bending rigidity and bending strength. Further, according to the FRP lattice of the present invention, since the outer layer has the layer containing the high tensile elastic modulus reinforcing fiber, the tensile elasticity can be improved when the material deteriorates under long-term use or when an excessive load is applied. 2 with different rates
It becomes possible to predict before a large breakage occurs due to the breakage of the fibers when peeling occurs between the layers of the reinforcing fibers of the seed, and a member excellent in safety can be realized.

【0059】また、外層に高引張弾性率の補強繊維を使
用するため、部材剛性が高くなり、格子バーの幅を小さ
くできるので、開口率を大きくとることができ、水はけ
性、透視性、通気性などが大幅に向上し、FRP格子と
しての性能が向上する。
Further, since the reinforcing fiber having a high tensile elastic modulus is used for the outer layer, the member rigidity is increased and the width of the lattice bar can be reduced, so that the aperture ratio can be increased, the drainage property, the see-through property and the ventilation property. And the like, and the performance as an FRP grating is improved.

【0060】また、材料使用量が少なくなるので大幅に
軽量化を促進できる。さらには、使用材料低減により材
料コストが下がり、同時に作業時間も少なくなって、従
来品に比べコスト的にも安いものができることになる。
Further, since the amount of materials used is reduced, it is possible to greatly reduce the weight. Further, the material cost is reduced due to the reduction of the used material, and at the same time, the working time is reduced, so that the cost can be reduced as compared with the conventional product.

【0061】また、外層、とくに最外層を炭素繊維を有
する層とすれば、耐薬品性、耐水性等の一層の向上をは
かることができる。
Further, if the outer layer, particularly the outermost layer, is a layer having carbon fibers, the chemical resistance and water resistance can be further improved.

【0062】さらに、本発明に係る、格子の目を形成す
る型の側壁に成形型の厚み方向に延びる溝を有する成形
型を用いれば、補強繊維をドライ状態で成形型内に積層
できるので、生産効率が良く、任意の大きさのFRP格
子を容易に製造できる。さらに、ボイドレスにすること
ができるので、一層強度、剛性の高いFRP格子を製造
することができる。
Further, by using the molding die according to the present invention, which has grooves extending in the thickness direction of the molding die on the side wall of the die for forming the grid pattern, the reinforcing fiber can be laminated in the molding die in a dry state. The production efficiency is good, and the FRP lattice of any size can be easily manufactured. Furthermore, since it can be made into a void dress, it is possible to manufacture an FRP grating having higher strength and rigidity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様に係るFRP格子の部分斜
視図である。
FIG. 1 is a partial perspective view of an FRP grating according to one embodiment of the present invention.

【図2】図1のFRP格子の拡大部分横断面図である。FIG. 2 is an enlarged partial cross-sectional view of the FRP grating of FIG.

【図3】本発明の別の実施態様に係るFRP格子の部分
斜視図である。
FIG. 3 is a partial perspective view of an FRP grating according to another embodiment of the present invention.

【図4】本発明に係るFRP格子のさらに別の実施態様
に係る部分横断面図である。
FIG. 4 is a partial cross-sectional view of yet another embodiment of the FRP grating according to the present invention.

【図5】図1、図2に示したFRP格子製造用の成形型
の部分斜視図である。
FIG. 5 is a partial perspective view of the molding die for manufacturing the FRP lattice shown in FIGS. 1 and 2.

【図6】本発明に係る別のFRP格子製造用の成形型の
部分斜視図である。
FIG. 6 is a partial perspective view of another mold for manufacturing an FRP lattice according to the present invention.

【図7】図6の成形型を用いて成形したFRP格子の部
分斜視図である。
FIG. 7 is a partial perspective view of an FRP lattice molded using the molding die of FIG.

【符号の説明】[Explanation of symbols]

1、10、50 FRP格子 2a、2b、21a、21b、24、26、28 高引
張弾性率補強繊維を含む外層 3、3a、3b、20、23、25 低引張弾性率補強
繊維を含む中央層(内層) 22a、22b、27 その他の外層 29 段部 30、40 成形型 31、41 成形溝 41a 側壁 41b 成形溝底面 42 溝 51 突条
1, 10, 50 FRP lattice 2a, 2b, 21a, 21b, 24, 26, 28 Outer layer containing high tensile modulus reinforcing fibers 3, 3a, 3b, 20, 23, 25 Central layer containing low tensile modulus reinforcing fibers (Inner layer) 22a, 22b, 27 Other outer layers 29 Steps 30, 40 Mold 31, 41 Molding groove 41a Side wall 41b Molding groove bottom 42 Groove 51 Projection

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 307:04 309:08 B29L 9:00 31:10 (72)発明者 大西 博 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内 (72)発明者 清水 信彦 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内 (72)発明者 川野元 靖之 愛媛県伊予郡松前町大字筒井1515番地 東 レ株式会社愛媛工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B29K 307: 04 309: 08 B29L 9:00 31:10 (72) Inventor Hiroshi Onishi Iyo-gun, Ehime Prefecture Matsumae-cho 1515 Tsutsui, Toray Co., Ltd., Ehime Plant (72) Inventor Nobuhiko Shimizu Matsumae, Iyo-gun, Ehime Prefecture Matsumae-cho, Toray Co., Ltd. 1515 Tsuji, Otsuji Toray Co., Ltd. Ehime factory

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 重量が15kg/m2 以下であり、か
つ、曲げ剛性が少なくとも0.7×106 kgf・mm
2 であることを特徴とするFRP格子。
1. A weight of 15 kg / m 2 or less, and a bending rigidity of at least 0.7 × 10 6 kgf · mm.
FRP grating characterized by being 2 .
【請求項2】 重量が15kg/m2 以下であり、か
つ、曲げ強度が少なくとも40kgf/mm2 であるこ
とを特徴とするFRP格子。
2. An FRP grating having a weight of 15 kg / m 2 or less and a bending strength of at least 40 kgf / mm 2 .
【請求項3】 補強繊維を層状に配置し、樹脂と複合し
てなるFRP格子であって、前記補強繊維は高引張弾性
率補強繊維と低引張弾性率補強繊維とを含み、かつ、少
なくとも外層が高引張弾性率補強繊維を含んでいること
を特徴とするFRP格子。
3. An FRP lattice in which reinforcing fibers are arranged in layers and are composited with a resin, wherein the reinforcing fibers include high tensile elastic modulus reinforcing fibers and low tensile elastic modulus reinforcing fibers, and at least an outer layer. Contains a high tensile elastic modulus reinforcing fiber.
【請求項4】 開口率が65〜95%の範囲にある、請
求項3のFRP格子。
4. The FRP grating according to claim 3, wherein the aperture ratio is in the range of 65 to 95%.
【請求項5】 格子の目を形成する枠の横断面形状が逆
台形状である、請求項3または4のFRP格子。
5. The FRP lattice according to claim 3, wherein the frame forming the eyes of the lattice has an inverted trapezoidal cross-sectional shape.
【請求項6】 格子の目を形成する枠の横断面に段部を
有する、請求項3ないし5のいずれかに記載のFRP格
子。
6. The FRP grating according to claim 3, wherein a step portion is provided in a cross section of a frame forming the eyes of the grating.
【請求項7】 格子の目を形成する枠の側面に、格子の
厚み方向に延びる突条を有する、請求項3ないし6のい
ずれかに記載のFRP格子。
7. The FRP lattice according to claim 3, wherein a ridge extending in the thickness direction of the lattice is provided on a side surface of a frame forming the lattice eyes.
【請求項8】 樹脂がビニルエステル樹脂である、請求
項3ないし7のいずれかに記載のFRP格子。
8. The FRP lattice according to claim 3, wherein the resin is a vinyl ester resin.
【請求項9】 高引張弾性率補強繊維が炭素繊維であ
り、低引張弾性率補強繊維がガラス繊維である、請求項
3ないし8のいずれかに記載のFRP格子。
9. The FRP lattice according to claim 3, wherein the high tensile elastic modulus reinforcing fibers are carbon fibers and the low tensile elastic modulus reinforcing fibers are glass fibers.
【請求項10】 高引張弾性率補強繊維の引張弾性率が
低引張弾性率補強繊維のそれの少なくとも3倍である、
請求項3ないし9のいずれかに記載のFRP格子。
10. The tensile modulus of the high tensile modulus reinforcing fiber is at least three times that of the low tensile modulus reinforcing fiber,
The FRP grating according to any one of claims 3 to 9.
【請求項11】 外層の厚みが全体厚みの少なくとも2
0%を占めている、請求項3ないし10のいずれかに記
載のFRP格子。
11. The outer layer has a thickness of at least 2 of the total thickness.
The FRP grating according to any one of claims 3 to 10, which occupies 0%.
【請求項12】 重量が15kg/m2 以下であり、か
つ、曲げ剛性が少なくとも0.7×106 kgf・mm
2 である、請求項3ないし11のいずれかに記載のFR
P格子。
12. The weight is 15 kg / m 2 or less, and the bending rigidity is at least 0.7 × 10 6 kgf · mm.
The FR according to any one of claims 3 to 11, which is 2.
P lattice.
【請求項13】 重量が15kg/m2 以下であり、か
つ、曲げ強度が少なくとも40kgf/mm2 である、
請求項3ないし12のいずれかに記載のFRP格子。
13. The weight is 15 kg / m 2 or less, and the bending strength is at least 40 kgf / mm 2 .
The FRP grating according to any one of claims 3 to 12.
【請求項14】 請求項1ないし13のいずれかに記載
のFRP格子を有する土木・建築用部材。
14. A civil engineering / construction member having the FRP lattice according to any one of claims 1 to 13.
【請求項15】 補強繊維を層状に配置し、樹脂と複合
してなるFRP格子の成形型であって、格子の目を形成
する型の側壁に、成形型の厚み方向に延びる溝が設けら
れていることを特徴とする、FRP格子の成形型。
15. A mold for an FRP lattice formed by arranging reinforcing fibers in layers and compounding with a resin, wherein a groove extending in the thickness direction of the mold is provided on the side wall of the mold forming the mesh of the lattice. A mold for an FRP lattice, which is characterized in that
【請求項16】 成形型内に補強繊維を層状に配置し、
樹脂を注入してFRP格子を製造するに際し、前記補強
繊維として、高引張弾性率補強繊維と低引張弾性率補強
繊維とを用い、かつ、少なくとも外層に高引張弾性率補
強繊維を配置することを特徴とする、FRP格子の製造
方法。
16. Reinforcing fibers are arranged in layers in a mold,
When manufacturing a FRP lattice by injecting a resin, as the reinforcing fiber, a high tensile elastic modulus reinforcing fiber and a low tensile elastic modulus reinforcing fiber are used, and at least the high tensile elastic modulus reinforcing fiber is arranged in the outer layer. A method for manufacturing an FRP grating, which is characterized.
【請求項17】 請求項15の成形型内に補強繊維を層
状に配置し、樹脂を注入してFRP格子を製造すること
を特徴とする、FRP格子の製造方法。
17. A method for producing an FRP lattice, comprising arranging reinforcing fibers in layers in the mold of claim 15 and injecting a resin to produce an FRP lattice.
【請求項18】 成形を減圧下で行う、請求項16また
は17のFRP格子の製造方法。
18. The method for producing an FRP lattice according to claim 16, wherein the forming is performed under reduced pressure.
【請求項19】 樹脂としてビニルエステル樹脂を用い
る、請求項16ないし18のいずれかに記載のFRP格
子の製造方法。
19. The method for producing an FRP lattice according to claim 16, wherein a vinyl ester resin is used as the resin.
【請求項20】 高引張弾性率補強繊維と低引張弾性率
補強繊維とを用い、かつ、高引張弾性率補強繊維を少な
くとも外層に配置する、請求項17ないし19のいずれ
かに記載のFRP格子の製造方法。
20. The FRP lattice according to claim 17, wherein the high tensile elastic modulus reinforcing fiber and the low tensile elastic modulus reinforcing fiber are used, and the high tensile elastic modulus reinforcing fiber is arranged at least in the outer layer. Manufacturing method.
【請求項21】 高引張弾性率補強繊維として炭素繊維
を用い、低引張弾性率補強繊維としてガラス繊維を用い
る、請求項16または20のFRP格子の製造方法。
21. The method for producing an FRP lattice according to claim 16, wherein carbon fiber is used as the high tensile elastic modulus reinforcing fiber, and glass fiber is used as the low tensile elastic modulus reinforcing fiber.
JP16230096A 1995-07-18 1996-06-03 FRP grating and method for manufacturing the same Expired - Fee Related JP3590693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16230096A JP3590693B2 (en) 1995-07-18 1996-06-03 FRP grating and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-203961 1995-07-18
JP20396195 1995-07-18
JP16230096A JP3590693B2 (en) 1995-07-18 1996-06-03 FRP grating and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0985843A true JPH0985843A (en) 1997-03-31
JP3590693B2 JP3590693B2 (en) 2004-11-17

Family

ID=26488141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16230096A Expired - Fee Related JP3590693B2 (en) 1995-07-18 1996-06-03 FRP grating and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3590693B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106408A (en) * 1996-06-24 1998-01-13 Toray Ind Inc Frp lattice and its manufacture
JP2008142935A (en) * 2006-12-06 2008-06-26 Canon Inc Inkjet head cartridge, recording head, ink container, and manufacturing method for inkjet head cartridge
JP2011502833A (en) * 2007-11-19 2011-01-27 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Manufacturing method of fiber cell structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577330A (en) * 1991-09-24 1993-03-30 Mitsubishi Electric Corp Composite material joint structure
JPH05269873A (en) * 1992-01-30 1993-10-19 Nikkiso Co Ltd Production of lattice like structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577330A (en) * 1991-09-24 1993-03-30 Mitsubishi Electric Corp Composite material joint structure
JPH05269873A (en) * 1992-01-30 1993-10-19 Nikkiso Co Ltd Production of lattice like structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106408A (en) * 1996-06-24 1998-01-13 Toray Ind Inc Frp lattice and its manufacture
JP2008142935A (en) * 2006-12-06 2008-06-26 Canon Inc Inkjet head cartridge, recording head, ink container, and manufacturing method for inkjet head cartridge
JP2011502833A (en) * 2007-11-19 2011-01-27 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Manufacturing method of fiber cell structure

Also Published As

Publication number Publication date
JP3590693B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
EP1094171B1 (en) Structural reinforcement member and method of utilizing the same to reinforce a product
US10876262B2 (en) Composite bridge deck structural panel and method of fabrication
US5727357A (en) Composite reinforcement
US6083589A (en) Composite filled hollow structure having roughened outer surface portion for use as a piling
JP6034174B2 (en) FRP structure and architectural civil structure using the same
US20080199682A1 (en) Structural Elements Made From Syntactic Foam Sandwich Panels
JP3005945B2 (en) Composite material and method for producing the same
JP3590693B2 (en) FRP grating and method for manufacturing the same
JP3591142B2 (en) FRP grating and method for manufacturing the same
US20070256382A1 (en) Armature for composite and polymeric materials domain of the invention
WO2003016649A1 (en) A method of manufacturing structural units
JP3094851B2 (en) Civil and architectural reinforcement
JP4392415B2 (en) Reinforcement method for reinforced concrete buildings
KR100977187B1 (en) An artificial sculpture for prevention water percolation and method of fabricating for the same
JP4121911B2 (en) Lattice member and block for earthquake-resistant wall using the same
EP1645697A1 (en) Method and apparatus for producing construction panels, construction panels obtained thereby, method of construction using said panels and constructions obtained therewith
WO1999029980A1 (en) Floor/ceiling construction method
KR200210970Y1 (en) Rope Type Composite Bar to Replace Tie and Spiral Reinforcing Bar and Stirrup
JP2023127525A (en) Structural member and method of manufacturing structural member
DE2505208A1 (en) Anti-slip stair or walkway tread - has resin and grit facing, reinforced and foam-filled backing
WO1998036897A1 (en) Composite structures
AU2002322173B2 (en) A method of manufacturing structural units
GB2583665A (en) Composite construction
JP2022071305A (en) Reinforcing member and reinforcing structure
JPH0972102A (en) Reinforcing structure of beam, floor or wall of building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees