JPH0985328A - Hot rolled steel sheet coiling temperature control device and its coiling temperature control method - Google Patents
Hot rolled steel sheet coiling temperature control device and its coiling temperature control methodInfo
- Publication number
- JPH0985328A JPH0985328A JP7240099A JP24009995A JPH0985328A JP H0985328 A JPH0985328 A JP H0985328A JP 7240099 A JP7240099 A JP 7240099A JP 24009995 A JP24009995 A JP 24009995A JP H0985328 A JPH0985328 A JP H0985328A
- Authority
- JP
- Japan
- Prior art keywords
- rolled steel
- steel sheet
- hot
- learning coefficient
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、圧延機の最終ス
タンドから出力された熱延鋼板がコイラーに巻き取られ
る前に、その熱延鋼板を所定の目標温度まで冷却する熱
延鋼板の巻取温度制御装置及びその巻取温度制御方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet wound from a final stand of a rolling mill, which cools the hot-rolled steel sheet to a predetermined target temperature before being wound on a coiler. The present invention relates to a temperature control device and a winding temperature control method thereof.
【0002】[0002]
【従来の技術】図12は従来の熱延鋼板の巻取温度制御
装置を示す構成図であり、図において、1は仕上圧延機
の最終スタンド、2は仕上圧延機の最終スタンド1から
出力された熱延鋼板、3は熱延鋼板2を巻き取るコイラ
ー、4は熱延鋼板2の板厚HFを計測する板厚計、5は
仕上圧延機の最終スタンド1を駆動するモータ、6はモ
ータ5の回転速度を計測して熱延鋼板2の搬送速度V及
び加速度aを求める演算器、7は仕上圧延機の最終スタ
ンド1から出力された熱延鋼板2の長手方向における各
箇所の仕上出側温度FDTを測定する仕上出側温度計、
8は熱延鋼板2がコイラー3に巻き取られる直前の巻取
温度CTを測定する巻取温度計、9は熱延鋼板2の巻取
温度制御に関する所定の初期値を設定する初期データ入
力装置、10は仕上出側温度計7等の各種センサの出力
や初期データ入力装置9に設定された初期値に基づいて
注水オン−オフパターン(以下、注水パターンという)
を決定する計算機、11は熱延鋼板2に冷却水を注水す
る冷却装置を注水パターンにしたがって制御するバルブ
制御装置、1U,2U,3U・・・NUは冷却装置の上
部バンク、1L,2L,3L・・・NLは冷却装置の下
部バンクである。2. Description of the Related Art FIG. 12 is a block diagram showing a conventional coiling temperature controller for hot-rolled steel sheets. In the figure, 1 is the final stand of the finishing rolling mill, and 2 is the output from the final stand 1 of the finishing rolling mill. hot-rolled steel sheet, coiler 3 is for winding the hot-rolled steel sheet 2, the thickness meter for measuring the thickness H F of the hot-rolled steel sheet 2 is 4, the motor 5 which drives the final stand 1 of the finishing mill, the 6 An arithmetic unit for measuring the rotation speed of the motor 5 to obtain the conveying speed V and the acceleration a of the hot-rolled steel sheet 2, and 7 is the finishing of each location in the longitudinal direction of the hot-rolled steel sheet 2 output from the final stand 1 of the finishing mill Finishing outlet thermometer for measuring outlet temperature FDT,
Reference numeral 8 is a winding thermometer for measuring the winding temperature CT immediately before the hot-rolled steel sheet 2 is wound around the coiler 3, and 9 is an initial data input device for setting a predetermined initial value for controlling the winding temperature of the hot-rolled steel sheet 2. Reference numeral 10 is a water injection on-off pattern (hereinafter referred to as a water injection pattern) based on the outputs of various sensors such as the finish side thermometer 7 and the initial values set in the initial data input device 9.
11 is a valve control device for controlling a cooling device for injecting cooling water into the hot-rolled steel plate 2 according to a water injection pattern, 1U, 2U, 3U ... NU is an upper bank of the cooling device, 1L, 2L, 3L ... NL are lower banks of the cooling device.
【0003】次に動作について説明する。仕上圧延機の
最終スタンド1から出力された熱延鋼板2は図示したホ
ットランテーブル上を搬送されてコイラー3に巻き取ら
れるが、コイラー3に巻き取られた熱延鋼板2の強度や
加工性等の品質を確保するためには、熱延鋼板2がコイ
ラー3に巻き取られる前に、熱延鋼板2の温度を所定の
目標巻取温度CT* まで冷却する必要がある。Next, the operation will be described. The hot-rolled steel sheet 2 output from the final stand 1 of the finish rolling mill is conveyed on the illustrated hot run table and wound around the coiler 3. The strength and workability of the hot-rolled steel sheet 2 wound around the coiler 3, etc. In order to ensure the quality of the hot rolled steel sheet 2, it is necessary to cool the temperature of the hot rolled steel sheet 2 to a predetermined target winding temperature CT * before the hot rolled steel sheet 2 is wound around the coiler 3.
【0004】そこで、熱延鋼板2を複数個(N個)に分
割し(例えば、分割した各部分の長さが冷却装置の各バ
ンクの長さと等しくなるように分割する。以下、分割し
た各部分を制御長という)、各制御長ごとに注水パター
ンを決定して冷却装置の各バンクを制御する。Therefore, the hot-rolled steel sheet 2 is divided into a plurality (N pieces) (for example, the length of each divided portion is equal to the length of each bank of the cooling device. (The part is called the control length), and the water injection pattern is determined for each control length to control each bank of the cooling device.
【0005】具体的には、まず、仕上圧延機の最終スタ
ンド1から熱延鋼板2が出力されると、仕上出側温度計
7及び板厚計4が、熱延鋼板2の各制御長n(n=1,
2,3・・・N)ごとに、それぞれ熱延鋼板2の仕上出
側温度FDT,板厚HF を測定する。また、演算器6
が、熱延鋼板2の各制御長nが仕上出側温度計7を通過
したときの搬送速度V及び加速度aを、モータ5の回転
速度を計測することにより求める。Specifically, first, when the hot-rolled steel plate 2 is output from the final stand 1 of the finish rolling mill, the finish-side thermometer 7 and the plate thickness gauge 4 cause the control lengths n of the hot-rolled steel plate 2 to be controlled. (N = 1,
The finish-out temperature FDT and the sheet thickness H F of the hot-rolled steel sheet 2 are measured for each of 2, 3, ... N). Also, the computing unit 6
However, the conveyance speed V and the acceleration a when each control length n of the hot-rolled steel sheet 2 passes through the finishing-side thermometer 7 are obtained by measuring the rotation speed of the motor 5.
【0006】そして、熱延鋼板2の搬送速度V等が求ま
ると、計算機10が、熱延鋼板2の各制御長nが仕上出
側温度計7を通過してから巻取温度計8に到達するまで
の所要時間tを下記に示すように計算する。ただし、仕
上出側温度計7から巻取温度計8までの距離Lは、圧延
機の設計時に決定されるので、初期値として初期データ
入力装置9から入力されている。When the conveying speed V of the hot-rolled steel sheet 2 and the like are obtained, the computer 10 reaches the take-up thermometer 8 after each control length n of the hot-rolled steel sheet 2 has passed through the finish-side thermometer 7. The required time t until it is calculated is calculated as shown below. However, the distance L from the finish-side thermometer 7 to the take-up thermometer 8 is determined at the time of designing the rolling mill, and thus is input from the initial data input device 9 as an initial value.
【0007】[0007]
【数1】 [Equation 1]
【0008】そして、計算機10は、所要時間tを計算
すると、各制御長nごとに、その所要時間tと仕上出側
温度FDTに基づいて、下記に示すように空冷却温度降
下量ΔTair を演算する。ただし、式(2)中の輻射率
ε,比熱CP 及び比重γは、圧延機の設計時に決定され
るので、初期値として初期データ入力装置9から入力さ
れている。When the required time t is calculated, the computer 10 calculates the air cooling temperature drop amount ΔT air as shown below based on the required time t and the finishing outlet temperature FDT for each control length n. Calculate However, since the emissivity ε, the specific heat C P and the specific gravity γ in the formula (2) are determined at the time of designing the rolling mill, they are input from the initial data input device 9 as initial values.
【0009】[0009]
【数2】 [Equation 2]
【0010】そして、計算機10は、空冷却温度降下量
ΔTair を演算すると、各制御長nごとに、仕上出側温
度FDTから目標巻取温度CT* 及び空冷却温度降下量
ΔTair を減算して水冷却温度降下量ΔTwater を演算
する。 ΔTwater =FDT−CT* −ΔTair ・・・(3)Then, when the air-cooling temperature drop amount ΔT air is calculated, the computer 10 subtracts the target winding temperature CT * and the air-cooling temperature drop amount ΔT air from the finish outlet temperature FDT for each control length n. Then, the water cooling temperature drop amount ΔT water is calculated. ΔT water = FDT-CT * -ΔT air (3)
【0011】そして、計算機10は、水冷却温度降下量
ΔTwater を演算すると、各制御長nごとの水冷却温度
降下量ΔTwater に、予め設定された学習係数Ci を乗
算して、各制御長nに対する水冷却量ΔTpを演算す
る。 ΔTp=Ci ・ΔTwater ・・・(4)[0011] Then, the computer 10 has calculated the water cooling temperature drop [Delta] T water, the water cooling temperature drop [Delta] T water of each control length n, by multiplying a preset learning coefficient C i, each control The water cooling amount ΔTp for the length n is calculated. ΔTp = C i · ΔT water (4)
【0012】ここで、学習係数Ci は、予測した水冷却
温度降下量に対する実際の水冷却温度降下量の比であ
り、各制御長nに共通の係数である。このように、水冷
却温度降下量ΔTwater に学習係数Ci を乗算する理由
は、予測した水冷却温度降下量と実際の水冷却温度降下
量の間に誤差がある場合、次回搬送されてくる熱延鋼板
2の冷却についても同程度の誤差を生ずる可能性が高い
ので、かかる誤差を吸収する必要があるからである。例
えば、予測した水冷却温度降下量が100℃で、実際の
水冷却温度降下量が120℃になった場合、20℃の誤
差が発生しているので、その20℃の誤差を吸収する必
要がある。従って、次回搬送されてくる熱延鋼板2の冷
却に用いる学習係数はCi+1 =120/100=1.2
となり(ここでは、説明の簡単のため、今回の冷却に用
いた学習係数Ci は考慮していない)、次回搬送されて
くる熱延鋼板2の水冷却温度降下量を100℃と予測し
た場合には、当該水冷却量はΔTp=1.2×100=
120℃となる。よって、予測した水冷却温度降下量が
100℃であっても、熱延鋼板2の温度を120℃だけ
低下させる注水パターンを決定することになり、20℃
の誤差を吸収することができる。Here, the learning coefficient C i is the ratio of the actual water cooling temperature drop amount to the predicted water cooling temperature drop amount, and is a coefficient common to each control length n. In this way, the reason for multiplying the water cooling temperature drop amount ΔT water by the learning coefficient C i is that when there is an error between the predicted water cooling temperature drop amount and the actual water cooling temperature drop amount, they are conveyed next time. This is because the same degree of error is likely to occur in cooling the hot-rolled steel sheet 2, and it is necessary to absorb such an error. For example, if the predicted water cooling temperature drop amount is 100 ° C. and the actual water cooling temperature drop amount is 120 ° C., an error of 20 ° C. has occurred. Therefore, it is necessary to absorb the error of 20 ° C. is there. Therefore, the learning coefficient used for cooling the hot-rolled steel sheet 2 conveyed next time is C i + 1 = 120/100 = 1.2.
(For the sake of simplicity, here, the learning coefficient C i used for the cooling this time is not considered), and when the water cooling temperature drop amount of the hot rolled steel sheet 2 to be conveyed next time is predicted to be 100 ° C. The water cooling amount is ΔTp = 1.2 × 100 =
It becomes 120 ° C. Therefore, even if the predicted water cooling temperature drop amount is 100 ° C., the water injection pattern for lowering the temperature of the hot-rolled steel sheet 2 by 120 ° C. is determined, and 20 ° C.
The error of can be absorbed.
【0013】そして、計算機10は、各制御長nに対す
る水冷却量ΔTpを演算すると、各制御長nごとに、そ
の水冷却量ΔTpに基づいて注水パターンを決定する
(使用するバンクの数と、その使用するバンクに実装さ
れているノズルのなかで、実際に使用するノズルの本数
Nを決定する)。例えば、水冷却量ΔTpが100℃
で、各バンクの最大冷却能力(実装しているノズルをす
べて使用したときの冷却能力)を40℃とすると、2台
のバンクを最大冷却能力で使用することによって80℃
の水冷却量を確保し、1台のバンクの半分のノズルを使
用することによって残り20℃の水冷却量を確保する等
の注水パターンを決定する。なお、下記に示す式(5)
は、使用するノズルの本数を決定するための計算式であ
る。ただし、式(5)中の各バンクの実装ノズル数N
0 ,冷却バンク長M及び熱流束係数fは、圧延機の設計
時に決定されるので、初期値として初期データ入力装置
9から入力されている。When the water cooling amount ΔTp for each control length n is calculated, the computer 10 determines the water injection pattern based on the water cooling amount ΔTp for each control length n (the number of banks to be used, The number N of nozzles actually used among the nozzles mounted in the bank to be used is determined). For example, the water cooling amount ΔTp is 100 ° C
Then, assuming that the maximum cooling capacity of each bank (cooling capacity when all mounted nozzles are used) is 40 ° C, the maximum cooling capacity of two banks is 80 ° C.
The water injection amount is determined, and the half of the nozzles in one bank are used to determine the remaining water cooling amount of 20 ° C. In addition, the following equation (5)
Is a calculation formula for determining the number of nozzles to be used. However, the number of mounted nozzles N in each bank in equation (5) is N
0 , the cooling bank length M, and the heat flux coefficient f are determined at the time of designing the rolling mill, and thus are input as initial values from the initial data input device 9.
【0014】[0014]
【数3】 (Equation 3)
【0015】そして、計算機10により注水パターンが
決定されると、バルブ制御装置11が、その注水パター
ンにしたがって各バンクのバルブを制御し、熱延鋼板2
に冷却水を注水する。これにより、熱延鋼板2は目標巻
取温度CT* まで冷却され、コイラー3に巻き取られる
ことになるが、熱延鋼板2の巻取温度CTは必ずしも目
標巻取温度CT* に一致せず誤差を伴う場合があり、今
回の冷却に用いた学習係数Ci をそのまま次回搬送され
てくる熱延鋼板2の冷却にも用いると、同程度の誤差を
生ずる可能性が高い。そこで、かかる誤差を吸収するた
め、今回の冷却結果に基づいて学習係数Ciを更新する
必要がある。When the water injection pattern is determined by the computer 10, the valve controller 11 controls the valves of each bank according to the water injection pattern, and the hot rolled steel sheet 2
Cooling water is poured into. As a result, the hot-rolled steel sheet 2 is cooled to the target winding temperature CT * and wound around the coiler 3, but the winding temperature CT of the hot-rolled steel sheet 2 does not always match the target winding temperature CT *. There may be an error, and if the learning coefficient C i used for the current cooling is also used as it is for cooling the hot-rolled steel sheet 2 that is conveyed next time, there is a high possibility that an error of the same degree will occur. Therefore, in order to absorb such an error, it is necessary to update the learning coefficient C i based on the current cooling result.
【0016】以下、学習係数Ci の更新について説明す
る。まず、学習係数Ci は上述したように、熱延鋼板2
の各制御長nに共通の係数であるので、学習係数Ci の
更新に際し任意の1つの制御長に着目し(説明の便宜
上、以下、制御長kに着目したものとする)、制御長k
に係るデータに基づいて学習係数Ci を更新する。具体
的には、上記の通り熱延鋼板2が冷却装置によって冷却
されると、巻取温度計8が、コイラー3に巻き取られる
直前の制御長kの巻取温度CTを測定するとともに、計
算機10が、実際に、制御長kが仕上出側温度計7を通
過してから巻取温度計8に到達するまでに要した時間の
実績値tres を測定する。The update of the learning coefficient C i will be described below. First, the learning coefficient C i is, as described above, the hot rolled steel sheet 2
Is a coefficient common to the control lengths n, the control length k is focused on one arbitrary control length when the learning coefficient C i is updated (for convenience of description, the control length k will be focused hereinafter).
The learning coefficient C i is updated based on the data related to. Specifically, when the hot-rolled steel sheet 2 is cooled by the cooling device as described above, the coiling thermometer 8 measures the coiling temperature CT of the control length k immediately before being coiled by the coiler 3, and the computer 10 actually measures the actual value t res of the time required for the control length k to reach the take-up thermometer 8 after passing through the finishing outlet thermometer 7.
【0017】そして、所要時間の実績値tres が測定さ
れると、計算機10が、その所要時間の実績値tres 等
に基づいて、制御長kの空冷却温度降下量の実績値ΔT
air- res を演算する。When the actual value t res of the required time is measured, the computer 10 determines the actual value ΔT of the air cooling temperature drop amount of the control length k based on the actual value t res of the required time.
Calculate air- res .
【0018】[0018]
【数4】 [Equation 4]
【0019】そして、計算機10は、制御長kの空冷却
温度降下量の実績値ΔTair-res を演算すると、制御長
kの実績仕上出側温度FDTから実績巻取温度CT及び
空冷却温度降下量の実績値ΔTair-res を減算して水冷
却温度降下量の実績値ΔTwa ter-res を計算する。 ΔTwater-res =FDT−CT−ΔTair-res ・・・(7)Then, the computer 10 calculates the actual value ΔT air-res of the air cooling temperature drop amount of the control length k from the actual finish side temperature FDT of the control length k to the actual winding temperature CT and the air cooling temperature drop. by subtracting the amount of actual values [Delta] T air-res calculating the actual value ΔT wa ter-res water cooling temperature drop. ΔT water-res = FDT-CT-ΔT air-res ... (7)
【0020】また、計算機10は、バルブ制御装置11
が制御長kの冷却に用いた注水パターン(使用したノズ
ルの数N)から計算上予測される制御長kの水冷却温度
降下量ΔTwater-ant を計算する。The computer 10 also includes a valve controller 11
Calculates the water cooling temperature drop amount ΔT water-ant for the control length k, which is predicted by calculation from the water injection pattern used for cooling the control length k (the number N of nozzles used).
【0021】[0021]
【数5】 (Equation 5)
【0022】このようにして、制御長kの水冷却温度降
下量の予測値ΔTwater-ant と実績値ΔTwater-res を
計算すると、計算機10は、その予測値ΔTwater-ant
と実績値ΔTwater-res から、次回搬送されてくる熱延
鋼板2の冷却に用いる学習係数Ci+1 を計算する。 Ci+1 =ΔTwater-res /ΔTwater-ant ・・・(9)In this way, when the predicted value ΔT water-ant and the actual value ΔT water-res of the water cooling temperature drop amount of the control length k are calculated, the computer 10 calculates the predicted value ΔT water-ant.
From the actual value ΔT water-res , the learning coefficient C i + 1 used for cooling the hot rolled steel sheet 2 to be conveyed next time is calculated. C i + 1 = ΔT water-res / ΔT water-ant (9)
【0023】そして、計算機10は、式(9)から求め
た学習係数Ci+1 は、今回用いた学習係数Ci を考慮し
ていないので、今回用いた学習係数Ci を考慮して、学
習係数の精度を更に向上させるべく、下記に示すよう
に、適当な重み係数αを学習係数Ci+1 等に乗算して、
学習係数Ci+1 を修正する。 Ci+1 ←(1−α)Ci +α・Ci+1 ・・・(10)Since the learning coefficient C i + 1 obtained from the equation (9) does not consider the learning coefficient C i used this time, the computer 10 considers the learning coefficient C i used this time, In order to further improve the accuracy of the learning coefficient, the learning coefficient C i + 1 or the like is multiplied by an appropriate weighting coefficient α as shown below,
The learning coefficient C i + 1 is modified. C i + 1 ← (1-α) C i + α · C i + 1 (10)
【0024】因に、上記した学習係数の更新のアルゴリ
ズムは、特公昭58−47924号公報に開示されてい
る。Incidentally, the algorithm for updating the learning coefficient described above is disclosed in Japanese Patent Publication No. 58-47924.
【0025】[0025]
【発明が解決しようとする課題】従来の熱延鋼板の巻取
温度制御装置は以上のように構成されているので、熱延
鋼板2が常時一定の速度で搬送される場合には比較的精
度よく巻取温度を制御できるが、コイラー3において熱
延鋼板2を巻き取る際、熱延鋼板2の先端部及び終端部
ではゆっくり巻き取る一方、中間部では高速に巻き取る
関係上、熱延鋼板2の各制御長nごとに、仕上出側温度
計7を通過してから巻取温度計8に到達するまでに要す
る所要時間tが異なる。このため、各制御長nごとに空
冷却温度降下量ΔTair が異なるので、必要な水冷却量
ΔTpを各制御長nごとに計算するが、熱延鋼板2の搬
送速度V(コイラー3の巻取速度)の変化に伴って、巻
取温度の誤差が各制御長nごとに微妙に変化するため、
各制御長nに共通の学習係数Ci を用いても当該誤差を
完全には吸収できず、各制御長nごとに適切な水冷却量
ΔTpを決定することができないなどの課題があった。Since the conventional hot-rolled steel sheet winding temperature control device is constructed as described above, it is relatively accurate when the hot-rolled steel sheet 2 is always conveyed at a constant speed. Although the winding temperature can be controlled well, when winding the hot-rolled steel sheet 2 in the coiler 3, the hot-rolled steel sheet 2 is slowly wound at the front end and the end portion of the hot-rolled steel sheet 2 while being wound at a high speed in the middle portion. The required time t from passing through the finishing outlet thermometer 7 to reaching the winding thermometer 8 is different for each control length n of 2. For this reason, since the air cooling temperature drop amount ΔT air is different for each control length n, the required water cooling amount ΔTp is calculated for each control length n, but the transport speed V of the hot-rolled steel sheet 2 (winding of the coiler 3 is calculated. Since the error of the winding temperature slightly changes for each control length n with the change of the take-up speed),
Even if the common learning coefficient C i is used for each control length n, the error cannot be completely absorbed, and there is a problem that an appropriate water cooling amount ΔTp cannot be determined for each control length n.
【0026】この発明は上記のような課題を解決するた
めになされたもので、熱延鋼板の搬送速度が変化して
も、各制御長ごとに適切な水冷却量を決定できる熱延鋼
板の巻取温度制御装置及びその巻取温度制御方法を得る
ことを目的とする。The present invention has been made in order to solve the above problems. A hot-rolled steel sheet capable of determining an appropriate water cooling amount for each control length even if the hot-rolled steel sheet conveyance speed changes. An object of the present invention is to obtain a winding temperature control device and a winding temperature control method thereof.
【0027】[0027]
【課題を解決するための手段】請求項1記載の発明に係
る熱延鋼板の巻取温度制御装置は、熱延鋼板の先端部が
所定の基準点を通過した時点から、熱延鋼板の各箇所が
その基準点を通過するまでの経過時間を計測して、各経
過時間に対応する学習係数を記憶手段から参照し、各学
習係数を各箇所の水冷却温度降下量にそれぞれ乗算して
各箇所の水冷却量を演算する水冷却量演算手段を設けた
ものである。According to a first aspect of the present invention, there is provided a coiling temperature control device for a hot rolled steel sheet, wherein each of the hot rolled steel sheet is controlled from the time when the tip of the hot rolled steel sheet passes a predetermined reference point. The elapsed time until the point passes the reference point is measured, the learning coefficient corresponding to each elapsed time is referred from the storage means, and each learning coefficient is multiplied by the water cooling temperature drop amount at each point. Water cooling amount calculation means for calculating the amount of water cooling at a location is provided.
【0028】請求項2記載の発明に係る熱延鋼板の巻取
温度制御装置は、熱延鋼板の先端部から各箇所までの距
離を計測して、各距離に対応する学習係数を記憶手段か
ら参照し、各学習係数を各箇所の水冷却温度降下量にそ
れぞれ乗算して各箇所の水冷却量を演算する水冷却量演
算手段を設けたものである。A hot-rolled steel sheet winding temperature control device according to a second aspect of the present invention measures the distance from the tip of the hot-rolled steel sheet to each location, and stores a learning coefficient corresponding to each distance from the storage means. For reference, a water cooling amount calculation means for calculating each water cooling amount at each position by multiplying each learning coefficient by the water cooling temperature drop amount at each position is provided.
【0029】請求項3記載の発明に係る熱延鋼板の巻取
温度制御装置は、各箇所の実際の水冷却温度降下量を演
算する降下量演算手段と、注水パターン決定手段により
決定された注水パターンから各箇所の水冷却温度降下量
を予測する降下量予測手段とを設け、各箇所ごとに、実
際の水冷却温度降下量を予測した水冷却温度降下量で除
算して学習係数を求めるようにしたものである。According to a third aspect of the present invention, there is provided a hot-rolled steel sheet winding temperature control device, in which a drop amount calculation means for calculating an actual water cooling temperature drop amount at each location and a water injection pattern determined by a water injection pattern determination means. A drop amount predicting unit that predicts the water cooling temperature drop amount at each location from the pattern is provided, and the learning coefficient is calculated by dividing the actual water cooling temperature drop amount by the predicted water cooling temperature drop amount for each location. It is the one.
【0030】請求項4記載の発明に係る熱延鋼板の巻取
温度制御装置は、記憶手段に記憶されている学習係数を
更新する際、基準点を通過してからの経過時間または先
端部からの距離を複数の区間に分割するとともに、演算
して求めた学習係数を対応する区間に振り分けて各区間
の学習係数の平均値を求め、その平均値を各区間の学習
係数として更新する更新手段を設けたものである。In the coiling temperature control device for a hot rolled steel sheet according to the invention of claim 4, when the learning coefficient stored in the storage means is updated, the elapsed time after passing the reference point or the tip end portion Updating means that divides the distances into a plurality of sections, distributes the learning coefficients obtained by calculation to corresponding sections, obtains the average value of the learning coefficients of each section, and updates the average value as the learning coefficient of each section. Is provided.
【0031】請求項5記載の発明に係る熱延鋼板の巻取
温度制御装置は、記憶手段に記憶されている学習係数を
更新する際、基準点を通過してからの経過時間または先
端部からの距離を複数の区間に分割するとともに、演算
して求めた学習係数を対応する区間に振り分けて各区間
の学習係数の直線近似式を求め、その直線近似の変化パ
ターンを各区間の学習係数として更新する更新手段を設
けたものである。In the coiling temperature control device for a hot-rolled steel sheet according to the invention of claim 5, when updating the learning coefficient stored in the storage means, the elapsed time after passing the reference point or the tip end portion The distance of is divided into a plurality of sections, and the learning coefficient obtained by calculation is distributed to the corresponding section to obtain the linear approximation formula of the learning coefficient of each section, and the change pattern of the linear approximation is used as the learning coefficient of each section. The updating means for updating is provided.
【0032】請求項6記載の発明に係る熱延鋼板の巻取
温度制御方法は、熱延鋼板の先端部がライン上の所定の
基準点を通過した時点から、熱延鋼板の各箇所がその基
準点を通過するまでの経過時間を計測するとともに、予
め経過時間に応じて設定された学習係数のなかから、そ
の計測した各経過時間に対応する学習係数を検索し、そ
の検索した各学習係数を各箇所の水冷却温度降下量にそ
れぞれ乗算して各箇所の水冷却量を演算するようにした
ものである。In the winding temperature control method for a hot-rolled steel sheet according to a sixth aspect of the present invention, from the time when the tip of the hot-rolled steel sheet passes a predetermined reference point on the line, each point of the hot-rolled steel sheet becomes While measuring the elapsed time until passing the reference point, the learning coefficient corresponding to each measured elapsed time is searched from among the learning coefficients set in advance according to the elapsed time, and each searched learning coefficient Is multiplied by the water cooling temperature drop amount at each location to calculate the water cooling amount at each location.
【0033】請求項7記載の発明に係る熱延鋼板の巻取
温度制御方法は、熱延鋼板の先端部から各箇所までの距
離を計測するとともに、予め距離に応じて設定された学
習係数のなかから、その計測した各距離に対応する学習
係数を検索し、その検索した各学習係数を各箇所の水冷
却温度降下量にそれぞれ乗算して各箇所の水冷却量を演
算するようにしたものである。According to a seventh aspect of the present invention, there is provided a method for controlling a winding temperature of a hot-rolled steel sheet, which measures a distance from a tip portion of the hot-rolled steel sheet to each position, and a learning coefficient preset according to the distance. Among them, the learning coefficient corresponding to each of the measured distances is searched, and the calculated learning coefficient is multiplied by the water cooling temperature drop amount at each location to calculate the water cooling amount at each location. Is.
【0034】請求項8記載の発明に係る熱延鋼板の巻取
温度制御方法は、各箇所の実際の水冷却温度降下量を演
算する一方、注水パターンから各箇所の水冷却温度降下
量を予測し、各箇所ごとに実際の水冷却温度降下量を予
測した水冷却温度降下量で除算して学習係数を求めるよ
うにしたものである。In the winding temperature control method for hot rolled steel sheet according to the present invention, the actual water cooling temperature drop amount at each location is calculated, while the water cooling temperature drop amount at each location is predicted from the water injection pattern. Then, the learning coefficient is obtained by dividing the actual water cooling temperature drop amount at each location by the predicted water cooling temperature drop amount.
【0035】請求項9記載の発明に係る熱延鋼板の巻取
温度制御方法は、予め設定されている学習係数を更新す
る際、基準点を通過してからの経過時間または先端部か
らの距離を複数の区間に分割するとともに、演算して求
めた学習係数を対応する区間に振り分けて各区間の学習
係数の平均値を求め、その平均値を各区間の学習係数と
して更新するようにしたものである。In the winding temperature control method for a hot rolled steel sheet according to a ninth aspect of the present invention, when the preset learning coefficient is updated, the elapsed time after passing the reference point or the distance from the tip portion. Is divided into a plurality of sections, and the learning coefficient calculated is distributed to the corresponding section to obtain the average value of the learning coefficient of each section, and the average value is updated as the learning coefficient of each section. Is.
【0036】請求項10記載の発明に係る熱延鋼板の巻
取温度制御方法は、予め設定されている学習係数を更新
する際、基準点を通過してからの経過時間または先端部
からの距離を複数の区間に分割するとともに、演算して
求めた学習係数を対応する区間に振り分けて各区間の学
習係数の直線近似式を求め、その直線近似の変化パター
ンを各区間の学習係数として更新するようにしたもので
ある。According to a tenth aspect of the present invention, there is provided a method for controlling a coiling temperature of a hot-rolled steel sheet, wherein when a preset learning coefficient is updated, an elapsed time after passing a reference point or a distance from a tip portion. Is divided into a plurality of sections, and the learning coefficient obtained by calculation is divided into corresponding sections to obtain a linear approximation formula of the learning coefficient of each section, and the change pattern of the linear approximation is updated as the learning coefficient of each section. It was done like this.
【0037】[0037]
【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の実施の形態1による熱
延鋼板の巻取温度制御装置を示す構成図であり、図にお
いて、1は仕上圧延機の最終スタンド、2は仕上圧延機
の最終スタンド1から出力された熱延鋼板、3は熱延鋼
板2を巻き取るコイラー、4は熱延鋼板2の板厚HF を
計測する板厚計、5は仕上圧延機の最終スタンド1を駆
動するモータ、6はモータ5の回転速度を計測して熱延
鋼板2の搬送速度V及び加速度aを求める演算器(測定
手段)、7は仕上圧延機の最終スタンド1から出力され
た熱延鋼板2の長手方向における各箇所(制御長n)の
仕上出側温度FDTを測定する仕上出側温度計(測定手
段)、8は熱延鋼板2がコイラー3に巻き取られる直前
の巻取温度CTを測定する巻取温度計(実測手段)、9
は熱延鋼板2の巻取温度制御に関する所定の初期値を設
定する初期データ入力装置、20は仕上出側温度計7等
の各種センサの出力や初期データ入力装置9に設定され
た初期値に基づいて注水パターンを決定する計算機、1
1は熱延鋼板2に冷却水を注水する冷却装置を注水パタ
ーンにしたがって制御するバルブ制御装置(制御手
段)、1U,2U,3U・・・NUは冷却装置の上部バ
ンク、1L,2L,3L・・・NLは冷却装置の下部バ
ンクである。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below. Embodiment 1. 1 is a block diagram showing a coiling temperature control device for hot-rolled steel sheets according to Embodiment 1 of the present invention, in which 1 is a final stand of a finishing rolling mill, and 2 is an output from a final stand 1 of the finishing rolling mill. has been hot-rolled steel sheet, coiler 3 is for winding the hot-rolled steel sheet 2, 4 thickness gauge for measuring the thickness H F of the hot-rolled steel sheet 2, 5 drives the final stand 1 of the finishing mill motor, 6 Is a calculator (measuring means) for measuring the rotation speed of the motor 5 to obtain the conveying speed V and the acceleration a of the hot-rolled steel sheet 2, and 7 is the longitudinal direction of the hot-rolled steel sheet 2 output from the final stand 1 of the finishing rolling mill. , A finish-side thermometer (measuring means) for measuring the finish-side temperature FDT at each position (control length n), and 8 is a winding for measuring the winding temperature CT immediately before the hot-rolled steel sheet 2 is wound around the coiler 3. Intake thermometer (measurement means), 9
Is an initial data input device for setting a predetermined initial value relating to the winding temperature control of the hot-rolled steel sheet 2, and 20 is an output of various sensors such as the finishing side thermometer 7 and an initial value set in the initial data input device 9. Calculator that determines water injection pattern based on 1
1 is a valve control device (control means) for controlling a cooling device for injecting cooling water into a hot-rolled steel plate 2 according to a water injection pattern, 1U, 2U, 3U ... NU is an upper bank of the cooling device, 1L, 2L, 3L ... NL is the lower bank of the cooling device.
【0038】また、図2は実施の形態1における計算機
20の詳細な構成を示す構成図であり、図において、2
1は仕上出側温度計7により測定された仕上出側温度F
DT及び演算器6により演算された搬送速度Vに基づい
て各制御長nの空冷却温度降下量ΔTair を推定すると
ともに、その仕上出側温度FDT,空冷却温度降下量Δ
Tair 及び目標巻取温度CT* から各制御長nの水冷却
温度降下量ΔTwaterを推定する推定手段、22は熱延
鋼板2の先端部が仕上出側温度計7(ライン上の所定の
基準点)を通過してからの経過時間tn に応じて設定さ
れた学習係数Cniを記憶する記憶手段である。FIG. 2 is a configuration diagram showing a detailed configuration of the computer 20 according to the first embodiment. In FIG.
1 is the finish outlet temperature F measured by the finish outlet thermometer 7.
The air cooling temperature drop amount ΔT air for each control length n is estimated based on the transport speed V calculated by the DT and the calculator 6, and the finish side temperature FDT and the air cooling temperature drop amount ΔT air are estimated.
Estimating means for estimating the water cooling temperature drop amount ΔT water of each control length n from T air and the target winding temperature CT * , and 22 is the end of the hot-rolled steel plate 2 at the finish side thermometer 7 (predetermined on the line). It is a storage unit that stores the learning coefficient C ni set according to the elapsed time t n after passing the reference point).
【0039】23は熱延鋼板2の先端部が仕上出側温度
計7を通過した時点から、各制御長nが仕上出側温度計
7を通過するまでの経過時間tn を計測して、各経過時
間tn に対応する学習係数Cniを記憶手段22から参照
し、各学習係数Cniを各制御長nの水冷却温度降下量Δ
Twater にそれぞれ乗算して各制御長nの水冷却量ΔT
pを演算する水冷却量演算手段、24は水冷却量演算手
段23により演算された各制御長nの水冷却量ΔTp及
び演算器6により演算された各制御長nの搬送速度Vか
ら注水パターンを決定する注水パターン決定手段であ
る。Reference numeral 23 indicates the elapsed time t n from the time when the tip of the hot-rolled steel sheet 2 passes the finishing outlet side thermometer 7 until each control length n passes the finishing outlet side thermometer 7, The learning coefficient C ni corresponding to each elapsed time t n is referred to from the storage means 22, and each learning coefficient C ni is the water cooling temperature drop Δ of each control length n.
T water is multiplied by each water cooling amount ΔT for each control length n
A water cooling amount calculation means for calculating p, and 24 is a water injection pattern from the water cooling amount ΔTp of each control length n calculated by the water cooling amount calculation means 23 and the transport speed V of each control length n calculated by the calculator 6. Is a means for determining the water injection pattern.
【0040】25は各制御長nごとに仕上出側温度計7
により仕上出側温度FDTが計測されてから巻取温度計
8が巻取温度を計測するまでの所要時間tres を実測す
る実測手段、26は各制御長nの仕上出側温度FDT及
び所要時間の実績値tres に基づいて上記各制御長nの
空冷却温度降下量の実績値ΔTair-res を演算するとと
もに、上記各制御長nの仕上出側温度FDT,空冷却温
度降下量ΔTair-res及び巻取温度CTから各制御長n
の水冷却温度降下量の実績値ΔTwater-res を演算する
降下量演算手段、27は注水パターン決定手段24によ
り決定された注水パターンから各制御長nの水冷却温度
降下量ΔTwater-ant を予測する降下量予測手段、28
は各制御長nごとに水冷却温度降下量の実績値ΔT
air-res を水冷却温度降下量の予測値ΔTwater-ant で
除算して学習係数Cniを求め、記憶手段22に記憶され
ている学習係数Cniを更新する更新手段である。因に、
図3は熱延鋼板の巻取温度制御装置が冷却装置を制御す
るアルゴリズムを示すフローチャートであり、図4は熱
延鋼板の巻取温度制御装置が学習係数を更新するアルゴ
リズムを示すフローチャートである。Numeral 25 is a finish side thermometer 7 for each control length n.
The measuring means for measuring the required time t res from the measurement of the finish outlet temperature FDT to the measurement of the winding temperature by the take-up thermometer 8, 26 is the finish outlet temperature FDT and the required time of each control length n. based on the actual values t res well as calculating the actual value [Delta] t air-res empty cooling temperature drop of each control length n of finishing delivery temperature FDT of each control length n, air cooling temperature drop [Delta] t air -res and winding temperature CT to control length n
A drop amount calculation means for calculating the actual value ΔT water-res of the water cooling temperature drop amount of 27, and a water cooling temperature drop amount ΔT water-ant of each control length n from the water injection pattern determined by the water injection pattern determination means 24. Predicting amount of descent amount, 28
Is the actual value ΔT of the water cooling temperature drop for each control length n
The air-res divided by the predicted value [Delta] T water-ant water cooling temperature drop seek learning coefficient C ni, an update means for updating the learning coefficient C ni in the storage unit 22 are stored. By the way,
FIG. 3 is a flowchart showing an algorithm for controlling the cooling device by the coiling temperature controller for the hot rolled steel sheet, and FIG. 4 is a flowchart showing an algorithm for updating the learning coefficient by the coiling temperature controller for the hot rolled steel sheet.
【0041】次に動作について説明する。仕上圧延機の
最終スタンド1から出力された熱延鋼板2は図示したホ
ットランテーブル上を搬送されてコイラー3に巻き取ら
れるが、コイラー3に巻き取られた熱延鋼板2の強度や
加工性等の品質を確保するためには、熱延鋼板2がコイ
ラー3に巻き取られる前に、熱延鋼板2の温度を所定の
目標巻取温度CT* まで冷却する必要がある。Next, the operation will be described. The hot-rolled steel sheet 2 output from the final stand 1 of the finish rolling mill is conveyed on the illustrated hot run table and wound around the coiler 3. The strength and workability of the hot-rolled steel sheet 2 wound around the coiler 3, etc. In order to ensure the quality of the hot rolled steel sheet 2, it is necessary to cool the temperature of the hot rolled steel sheet 2 to a predetermined target winding temperature CT * before the hot rolled steel sheet 2 is wound around the coiler 3.
【0042】そこで、熱延鋼板2を複数個(N個)に分
割し(例えば、分割した各部分の長さが冷却装置の各バ
ンクの長さと等しくなるように分割する。以下、分割し
た各部分を制御長という)、各制御長nごとに注水パタ
ーンを決定して冷却装置の各バンクを制御する。Therefore, the hot-rolled steel plate 2 is divided into a plurality (N pieces) (for example, the length of each divided portion is equal to the length of each bank of the cooling device. (The part is called a control length), and a water injection pattern is determined for each control length n to control each bank of the cooling device.
【0043】具体的には、まず、仕上圧延機の最終スタ
ンド1から熱延鋼板2が出力されると、各制御長nごと
に仕上出側温度計7及び板厚計4が、それぞれ熱延鋼板
2の仕上出側温度FDT,板厚HF を測定する(ステッ
プST1)。また、演算器6が、熱延鋼板2の各制御長
nが仕上出側温度計7を通過したときの搬送速度V及び
加速度aを、モータ5の回転速度を計測することにより
求める(ステップST2)。Specifically, first, when the hot-rolled steel plate 2 is output from the final stand 1 of the finish rolling mill, the finish outlet side thermometer 7 and the plate thickness gauge 4 are respectively hot-rolled for each control length n. The finish outlet temperature FDT and the plate thickness H F of the steel plate 2 are measured (step ST1). Further, the computing unit 6 obtains the transport speed V and the acceleration a when each control length n of the hot-rolled steel sheet 2 passes through the finishing outlet thermometer 7 by measuring the rotation speed of the motor 5 (step ST2). ).
【0044】そして、熱延鋼板2の搬送速度V等が求ま
ると、計算機20の推定手段21が、熱延鋼板2の各制
御長nが仕上出側温度計7を通過してから巻取温度計8
に到達するまでの所要時間tを下記に示すように計算す
る(ステップST3)。ただし、仕上出側温度計7から
巻取温度計8までの距離Lは、圧延機の設計時に決定さ
れるので、初期値として初期データ入力装置9から入力
されている。When the conveying speed V of the hot-rolled steel sheet 2 and the like are obtained, the estimation means 21 of the computer 20 causes the estimation temperature 21 of the hot-rolled steel sheet 2 to pass after the control lengths n of the hot-rolled steel sheet 2 have passed through the finishing outlet thermometer 7 and the coiling temperature. 8 in total
The time t required to reach (1) is calculated as shown below (step ST3). However, the distance L from the finish-side thermometer 7 to the take-up thermometer 8 is determined at the time of designing the rolling mill, and thus is input from the initial data input device 9 as an initial value.
【0045】[0045]
【数6】 (Equation 6)
【0046】そして、計算機20の推定手段21は、所
要時間tを計算すると、各制御長nごとに、その所要時
間tと仕上出側温度FDTに基づいて下記に示す演算を
行い、空冷却温度降下量ΔTair を推定する(ステップ
ST4)。ただし、式(12)中の輻射率ε,比熱CP
及び比重γは、圧延機の設計時に決定されるので、初期
値として初期データ入力装置9から入力されている。After calculating the required time t, the estimating means 21 of the computer 20 performs the following calculation for each control length n based on the required time t and the finish outlet temperature FDT to obtain the air cooling temperature. The amount of fall ΔT air is estimated (step ST4). However, the emissivity ε and the specific heat C P in the equation (12) are
Since the specific gravity γ and the specific gravity γ are determined at the time of designing the rolling mill, they are input as initial values from the initial data input device 9.
【0047】[0047]
【数7】 (Equation 7)
【0048】そして、計算機20の推定手段21は、空
冷却温度降下量ΔTair を推定すると、各制御長nごと
に、仕上出側温度FDTから目標巻取温度CT* 及び空
冷却温度降下量ΔTair を減算して水冷却温度降下量Δ
Twater を推定する(ステップST4)。 ΔTwater =FDT−CT* −ΔTair ・・・(13)Then, the estimating means 21 of the computer 20 estimates the air cooling temperature drop amount ΔT air , and then, for each control length n, from the finish outlet temperature FDT to the target winding temperature CT * and the air cooling temperature drop amount ΔT. Water cooling temperature drop Δ by subtracting air
Estimate T water (step ST4). ΔT water = FDT-CT * -ΔT air (13)
【0049】そして、水冷却温度降下量ΔTwater が推
定されると、計算機20の水冷却量演算手段23が、熱
延鋼板2の先端部が仕上出側温度計7を通過した時点か
ら、各制御長nが仕上出側温度計7を通過するまでの経
過時間tn を計測する(ステップST5)。そして、各
制御長nの経過時間tn を計測すると、図5に示すよう
に、経過時間tn に対応する学習係数Cniが記憶手段2
2に記憶されているので、各制御長nの経過時間tn に
対応する学習係数Cniを記憶手段22から検索する(ス
テップST6)。因に、図5は経過時間tn がt0 であ
る場合、学習係数CniとしてC0iの値を取得することを
示している。Then, when the water cooling temperature drop amount ΔT water is estimated, the water cooling amount calculating means 23 of the computer 20 starts each time the tip of the hot-rolled steel sheet 2 passes through the finishing outlet thermometer 7. The elapsed time t n until the control length n passes through the finishing outlet side thermometer 7 is measured (step ST5). When measuring the elapsed time t n of the respective control length n, as shown in FIG. 5, corresponding to the elapsed time t n the learning coefficient C ni is the storage means 2
2, the learning coefficient C ni corresponding to the elapsed time t n of each control length n is retrieved from the storage unit 22 (step ST6). Incidentally, FIG. 5 shows that when the elapsed time t n is t 0 , the value of C 0i is acquired as the learning coefficient C ni .
【0050】そして、計算機20の水冷却量演算手段2
3は、各制御長nごとの水冷却温度降下量ΔTwater
に、検索した各学習係数Cniを乗算して、各制御長nに
対する水冷却量ΔTpを演算する(ステップST7)。 ΔTp=Cni・ΔTwater ・・・(14)Then, the water cooling amount calculation means 2 of the computer 20
3 is a water cooling temperature drop amount ΔT water for each control length n.
Is multiplied by each retrieved learning coefficient C ni to calculate the water cooling amount ΔTp for each control length n (step ST7). ΔTp = C ni · ΔT water (14)
【0051】ここで、学習係数Cniは、予測した水冷却
温度降下量に対する実際の水冷却温度降下量の比であ
り、経過時間tn に対応する係数である。このように、
水冷却温度降下量ΔTwater に学習係数Cniを乗算する
理由は、予測した水冷却温度降下量と実際の水冷却温度
降下量の間に誤差がある場合、次回搬送されてくる熱延
鋼板2の冷却についても同程度の誤差を生ずる可能性が
高いので、かかる誤差を吸収する必要があるからであ
る。例えば、予測した水冷却温度降下量が100℃で、
実際の水冷却温度降下量が120℃になった場合、20
℃の誤差が発生しているので、その20℃の誤差を吸収
する必要がある。従って、詳細は後述するが、次回搬送
されてくる熱延鋼板2の冷却に用いる学習係数はC
n(i+1)=120/100=1.2となり(ここでは、説
明の簡単のため、今回の冷却に用いた学習係数Cniは考
慮していない)、次回搬送されてくる熱延鋼板2の水冷
却温度降下量を100℃と予測した場合には、当該水冷
却量はΔTp=1.2×100=120℃となる。よっ
て、予測した水冷却温度降下量が100℃であっても、
熱延鋼板2の温度を120℃だけ低下させる注水パター
ンを決定することになり、20℃の誤差を吸収すること
ができる。Here, the learning coefficient C ni is the ratio of the actual water cooling temperature drop amount to the predicted water cooling temperature drop amount, and is a coefficient corresponding to the elapsed time t n . in this way,
The reason for multiplying the water cooling temperature drop amount ΔT water by the learning coefficient C ni is that when there is an error between the predicted water cooling temperature drop amount and the actual water cooling temperature drop amount, the hot rolled steel sheet 2 to be conveyed next time This is because there is a high possibility that the same degree of error will occur in the case of cooling, and it is necessary to absorb such an error. For example, if the predicted water cooling temperature drop is 100 ° C,
If the actual water cooling temperature drop is 120 ° C, 20
Since an error of ° C has occurred, it is necessary to absorb the error of 20 ° C. Therefore, although the details will be described later, the learning coefficient used for cooling the hot rolled steel sheet 2 to be conveyed next time is C.
n (i + 1) = 120/100 = 1.2 (for simplicity of explanation, the learning coefficient C ni used for the cooling this time is not considered), and the hot rolled steel sheet to be conveyed next time When the water cooling temperature drop amount of 2 is predicted to be 100 ° C., the water cooling amount is ΔTp = 1.2 × 100 = 120 ° C. Therefore, even if the predicted water cooling temperature drop is 100 ° C,
The water injection pattern for lowering the temperature of the hot-rolled steel sheet 2 by 120 ° C. is determined, and the error of 20 ° C. can be absorbed.
【0052】そして、計算機20の注水パターン決定手
段24は、各制御長nに対する水冷却量ΔTpが演算さ
れると、各制御長nごとに、その水冷却量ΔTpに基づ
いて注水パターンを決定する(使用するバンクの数と、
その使用するバンクに実装されているノズルのなかで、
実際に使用するノズルの本数Nを決定する)。例えば、
水冷却量ΔTpが100℃で、各バンクの最大冷却能力
(実装しているノズルをすべて使用したときの冷却能
力)を40℃とすると、2台のバンクを最大冷却能力で
使用することによって80℃の水冷却量を確保し、1台
のバンクの半分のノズルを使用することによって残り2
0℃の水冷却量を確保する等の注水パターンを決定する
(ステップST8)。なお、下記に示す式(15)は、
使用するノズルの本数を決定するための計算式である。
ただし、式(15)中の各バンクの実装ノズル数N0 ,
冷却バンク長M及び熱流束係数fは、圧延機の設計時に
決定されるので、初期値として初期データ入力装置9か
ら入力されている。When the water cooling amount ΔTp for each control length n is calculated, the water injection pattern determining means 24 of the computer 20 determines the water injection pattern for each control length n based on the water cooling amount ΔTp. (The number of banks used,
Among the nozzles installed in the bank used,
Determine the number N of nozzles actually used). For example,
If the water cooling amount ΔTp is 100 ° C and the maximum cooling capacity of each bank (cooling capacity when all mounted nozzles are used) is 40 ° C, it is possible to use two banks with the maximum cooling capacity of 80 The water cooling amount of ℃ is secured, and by using half the nozzles of one bank, the remaining 2
A water injection pattern such as ensuring a water cooling amount of 0 ° C. is determined (step ST8). The formula (15) shown below is
It is a calculation formula for determining the number of nozzles to be used.
However, the number of mounted nozzles N 0 in each bank in Expression (15),
Since the cooling bank length M and the heat flux coefficient f are determined at the time of designing the rolling mill, they are input as initial values from the initial data input device 9.
【0053】[0053]
【数8】 (Equation 8)
【0054】そして、計算機10の注水パターン決定手
段24により注水パターンが決定されると、バルブ制御
装置11が、その注水パターンにしたがって各バンクの
バルブを制御し、熱延鋼板2に冷却水を注水する(ステ
ップST9)。これにより、熱延鋼板2は目標巻取温度
CT* まで冷却され、コイラー3に巻き取られることに
なるが、熱延鋼板2の巻取温度CTは必ずしも目標巻取
温度CT* に一致せず誤差を伴う場合があり、今回の冷
却に用いた学習係数Cniをそのまま次回搬送されてくる
熱延鋼板2の冷却にも用いると、同程度の誤差を生ずる
可能性が高い。そこで、かかる誤差を吸収するため、今
回の冷却結果に基づいて学習係数Cniを更新する必要が
ある。When the water injection pattern determining means 24 of the computer 10 determines the water injection pattern, the valve control device 11 controls the valves of each bank in accordance with the water injection pattern to inject the cooling water into the hot rolled steel sheet 2. Yes (step ST9). As a result, the hot-rolled steel sheet 2 is cooled to the target winding temperature CT * and wound around the coiler 3, but the winding temperature CT of the hot-rolled steel sheet 2 does not always match the target winding temperature CT *. An error may occur, and if the learning coefficient C ni used for the current cooling is also used as it is for cooling the hot-rolled steel sheet 2 that is conveyed next time, there is a high possibility that the same degree of error will occur. Therefore, in order to absorb such an error, it is necessary to update the learning coefficient C ni based on the current cooling result.
【0055】以下、学習係数Cniの更新について説明す
る。まず、上記の通り熱延鋼板2が冷却装置によって冷
却されると、巻取温度計8が、コイラー3に巻き取られ
る直前の各制御長nの巻取温度CTを測定するととも
に、計算機20の実測手段25が、実際に、各制御長n
が仕上出側温度計7を通過してから巻取温度計8に到達
するまでに要した時間の実績値tres を測定する(ステ
ップST11)。The updating of the learning coefficient C ni will be described below. First, when the hot-rolled steel sheet 2 is cooled by the cooling device as described above, the coiling thermometer 8 measures the coiling temperature CT of each control length n immediately before being coiled by the coiler 3, and at the same time, the computer 20 calculates the coiling temperature. The measuring means 25 actually determines each control length n.
Measures the actual value t res of the time required from reaching the take-up thermometer 8 after passing through the finishing outlet thermometer 7 (step ST11).
【0056】そして、所要時間の実績値tres が測定さ
れると、計算機20の降下量演算手段26が、その所要
時間の実績値tres 等に基づいて、各制御長nの空冷却
温度降下量の実績値ΔTair-res を演算する(ステップ
ST12)。When the actual value t res of the required time is measured, the drop amount calculating means 26 of the computer 20 determines the air cooling temperature drop of each control length n based on the actual value t res of the required time. The actual value ΔT air-res of the amount is calculated (step ST12).
【0057】[0057]
【数9】 [Equation 9]
【0058】そして、計算機20の降下量演算手段26
は、各制御長nの空冷却温度降下量の実績値ΔT
air-res を演算すると、各制御長nの実績仕上出側温度
FDTから実績巻取温度CT及び空冷却温度降下量の実
績値ΔTair-res を減算して水冷却温度降下量の実績値
ΔTwater-res を演算する(ステップST12)。 ΔTwater-res =FDT−CT−ΔTair-res ・・・(17)Then, the descent amount calculating means 26 of the computer 20
Is the actual value ΔT of the air-cooling temperature drop amount for each control length n.
When air-res is calculated, the actual winding temperature CT and the actual value ΔT of the air cooling temperature drop amount are subtracted from the actual finish-side temperature FDT of each control length n, and the actual value ΔT of the water cooling temperature drop amount is subtracted from air-res. Calculate water-res (step ST12). ΔT water-res = FDT-CT-ΔT air-res (17)
【0059】また、計算機20の降下量予測手段27
は、各制御長nごとに、バルブ制御装置11が冷却に用
いた注水パターン(使用したノズルの数N)から計算上
予測される水冷却温度降下量ΔTwater-ant を計算する
(ステップST13)。Further, the descent amount prediction means 27 of the computer 20
Calculates the water cooling temperature drop amount ΔT water-ant, which is computationally predicted from the water injection pattern (the number N of nozzles used) used for cooling by the valve control device 11 for each control length n (step ST13). .
【0060】[0060]
【数10】 (Equation 10)
【0061】このようにして、各制御長nの水冷却温度
降下量の予測値ΔTwater-ant と実績値ΔTwater-res
が計算されると、計算機20の更新手段28が、その予
測値ΔTwater-ant と実績値ΔTwater-res から、次回
搬送されてくる熱延鋼板2の冷却に用いる学習係数C
n(i+1)を計算する(ステップST14)。 Cn(i+1)=ΔTwater-res /ΔTwater-ant ・・・(19)In this way, the predicted value ΔT water-ant and the actual value ΔT water-res of the water cooling temperature drop amount of each control length n are obtained.
Is calculated, the updating unit 28 of the computer 20 uses the predicted value ΔT water-ant and the actual value ΔT water-res to learn coefficient C used for cooling the hot-rolled steel sheet 2 to be conveyed next time.
Calculate n (i + 1) (step ST14). Cn (i + 1) = ΔT water-res / ΔT water-ant (19)
【0062】そして、計算機20の更新手段28は、式
(19)から求めた学習係数Cn(i+ 1)は、今回用いた学
習係数Cniを考慮していないので、今回用いた学習係数
Cniを考慮して、学習係数の精度を更に向上させるべ
く、下記に示すように、適当な重み係数αを学習係数C
n(i+1)等に乗算して、学習係数Cn(i+1)を修正する。 Cn(i+1)←(1−α)Cni+α・Cn(i+1) ・・・(20)The updating means 28 of the computer 20 does not consider the learning coefficient C ni used this time in the learning coefficient C n (i + 1) obtained from the equation (19), so that the learning coefficient C used this time is used. In order to further improve the accuracy of the learning coefficient in consideration of ni , an appropriate weighting coefficient α is set to the learning coefficient C as shown below.
The learning coefficient C n (i + 1) is corrected by multiplying n (i + 1) or the like. C n (i + 1) ← (1-α) C ni + α · C n (i + 1) ... (20)
【0063】そして、計算機20の更新手段28は、学
習係数Cn(i+1)を修正すると、各制御長nが仕上出側温
度計7を通過してからの経過時間tn を図5に示すよう
に複数の区間に分割し(図5の場合、7つの区間に分割
している)、各制御長nごとに求めた学習係数Cn(i+1)
を対応する区間に振り分けて各区間の学習係数の平均値
を求める(ステップST15)。例えば、区間1が0秒
から10秒である場合において、0秒から10秒の間に
制御長1から制御長3までが仕上出側温度計7を通過し
た場合には、少なくとも次の3つの学習係数C1(i+1),
C2(i+1),C3(i+1)が区間1に属するので(ただし、各
制御長nにおいて複数個(d個)の学習係数を求めるよ
うにしている場合には、3×d個の学習係数が区間1に
属することになる。なお、各制御長nごとに、求める学
習係数の数が異なる場合もある)、少なくともその3つ
の学習係数Cn(i+1)の平均値を求める。When the updating means 28 of the computer 20 corrects the learning coefficient C n (i + 1) , the elapsed time t n after each control length n has passed through the finishing outlet thermometer 7 is shown in FIG. As shown in FIG. 5, the learning coefficient C n (i + 1) is obtained by dividing into a plurality of sections (7 sections in the case of FIG. 5) and obtained for each control length n.
Are divided into corresponding sections, and the average value of the learning coefficient in each section is obtained (step ST15). For example, in the case where the section 1 is from 0 second to 10 seconds, if the control length 1 to the control length 3 have passed through the finishing outlet thermometer 7 in the range from 0 second to 10 seconds, at least the following three Learning coefficient C 1 (i + 1) ,
Since C 2 (i + 1) and C 3 (i + 1) belong to the interval 1, (3 × (d) learning coefficients are obtained for each control length n). This means that d learning coefficients belong to the interval 1. The number of learning coefficients to be obtained may differ for each control length n), and at least the average of the three learning coefficients C n (i + 1) . Find the value.
【0064】そして、計算機20の更新手段28は、各
区間ごとに、当該区間に属する学習係数Cn(i+1)の平均
値を求めると、その平均値を各区間の学習係数として更
新し(ステップST16)、一連の処理を終了する。Then, the updating means 28 of the computer 20 obtains the average value of the learning coefficients C n (i + 1) belonging to the section for each section, and updates the average value as the learning coefficient of each section. (Step ST16), a series of processing ends.
【0065】以上より、この実施の形態1によれば、熱
延鋼板2の先端部が仕上出側温度計7を通過した時点か
ら、熱延鋼板2の各制御長nがその仕上出側温度計7を
通過するまでの経過時間tn を計測して、各経過時間t
n に対応する学習係数Cniを記憶手段22から参照し、
各学習係数Cniから各制御長nの水冷却量ΔTpを演算
するようにしたので、熱延鋼板2の搬送速度Vが変化し
ても、各制御長nごとに適切な水冷却量ΔTpを決定す
ることができ、その結果、冷却後の巻取温度を目標の巻
取温度に対して、極めて精度よく一致させることができ
る。つまり、コイラー3の巻取速度が熱延鋼板2の先端
部と中間部と終端部とでは異なるため、熱延鋼板2の各
部に生じる誤差も異なるが、その巻取速度の変化パター
ンは、搬送される各熱延鋼板2ごとに大きく変わるもの
ではなくほぼ一定であるので、熱延鋼板2の各部に対応
する学習係数Cniを用いると、即ち、各経過時間tn に
対応する学習係数Cniを用いると、その巻取速度の変化
パターンに適用した学習制御が可能になり、そのため熱
延鋼板2の搬送速度V(コイラー3の巻取速度)が変化
しても、各制御長nごとに適切な水冷却量ΔTpを決定
することができる。As described above, according to the first embodiment, from the time when the tip of the hot-rolled steel sheet 2 passes the finish-side thermometer 7, each control length n of the hot-rolled steel sheet 2 is changed to the finish-side temperature. The elapsed time t n until passing the total 7 is measured, and each elapsed time t
The learning coefficient C ni corresponding to n is referred from the storage means 22,
Since the water cooling amount ΔTp for each control length n is calculated from each learning coefficient C ni , even if the transport speed V of the hot-rolled steel sheet 2 changes, an appropriate water cooling amount ΔTp for each control length n can be obtained. It can be determined, and as a result, the coiling temperature after cooling can be matched with the target coiling temperature with extremely high accuracy. That is, since the winding speed of the coiler 3 is different between the front end portion, the intermediate portion, and the end portion of the hot-rolled steel sheet 2, the error generated in each portion of the hot-rolled steel sheet 2 is different, but the change pattern of the winding speed is Since the hot-rolled steel sheet 2 does not change significantly and is substantially constant, the learning coefficient C ni corresponding to each part of the hot-rolled steel sheet 2 is used, that is, the learning coefficient C corresponding to each elapsed time t n. When ni is used, learning control applied to the change pattern of the winding speed becomes possible. Therefore, even if the transport speed V of the hot-rolled steel sheet 2 (winding speed of the coiler 3) changes, each control length n A proper water cooling amount ΔTp can be determined.
【0066】また、実施の形態1によれば、各制御長n
ごとに、実際の水冷却温度降下量ΔTwater-res を予測
した水冷却温度降下量ΔTwater-ant で除算して学習係
数Cn(i+1)を求めるようにしたので、次回搬送されてく
る熱延鋼板2の冷却に用いる学習係数Cn(i+1)を経過時
間tn に対応するように更新することができ、次回搬送
されてくる熱延鋼板2の冷却においても、各制御長nご
とに適切な水冷却量ΔTpを決定することができる。Further, according to the first embodiment, each control length n
For each time, the learning coefficient C n (i + 1) is obtained by dividing the actual water cooling temperature drop ΔT water-res by the predicted water cooling temperature drop ΔT water-ant. The learning coefficient C n (i + 1) used for cooling the hot rolled steel sheet 2 can be updated so as to correspond to the elapsed time t n , and each control is performed also in the cooling of the hot rolled steel sheet 2 that is conveyed next time. An appropriate amount of water cooling ΔTp can be determined for each length n.
【0067】さらに、実施の形態1によれば、求めた学
習係数Cn(i+1)を対応する区間に振り分けて各区間の学
習係数Cn(i+1)の平均値を求め、その平均値を各区間の
学習係数として更新するようにしたので、求める学習係
数Cn(i+1)の数が少なくても、経過時間tn に対応する
学習係数を維持することができる。Further, according to the first embodiment, the obtained learning coefficient C n (i + 1) is distributed to the corresponding section, and the average value of the learning coefficient C n (i + 1) in each section is calculated, Since the average value is updated as the learning coefficient of each section, the learning coefficient corresponding to the elapsed time t n can be maintained even if the number of learning coefficients C n (i + 1) to be obtained is small.
【0068】実施の形態2.図6は実施の形態2におけ
る計算機20の詳細な構成を示す構成図であり、図にお
いて、31は熱延鋼板2の先端部からの距離Ln に応じ
て設定された学習係数Cniを記憶する記憶手段、32は
熱延鋼板2の先端部から各制御長nまでの距離Ln を計
測して、各距離Ln に対応する学習係数Cniを記憶手段
31から参照し、各学習係数Cniを各制御長nの水冷却
温度降下量ΔTwater にそれぞれ乗算して各制御長nの
水冷却量ΔTpを演算する水冷却量演算手段である。因
に、図7は熱延鋼板の巻取温度制御装置が冷却装置を制
御するアルゴリズムを示すフローチャートである。Embodiment 2 FIG. 6 is a configuration diagram showing a detailed configuration of the computer 20 according to the second embodiment. In the figure, 31 stores the learning coefficient C ni set according to the distance L n from the tip of the hot-rolled steel sheet 2. The storage means 32 measures the distance L n from the tip of the hot-rolled steel sheet 2 to each control length n, and refers to the learning coefficient C ni corresponding to each distance L n from the storage means 31 to learn each learning coefficient. This is a water cooling amount calculation means for multiplying C ni by the water cooling temperature drop amount ΔT water of each control length n to calculate the water cooling amount ΔTp of each control length n. Incidentally, FIG. 7 is a flowchart showing an algorithm for controlling the cooling device by the coiling temperature control device for the hot rolled steel sheet.
【0069】次に動作について説明する。記憶手段31
及び水冷却量演算手段32以外は、上記実施の形態1と
同様であるため、記憶手段31及び水冷却量演算手段3
2についてのみ説明する。上記実施の形態1と同様にし
て、計算機20の推定手段21により水冷却温度降下量
ΔTwater が推定されると、計算機20の水冷却量演算
手段32が、熱延鋼板2の先端部から各制御長nまでの
距離Ln を計測する(ステップST21)。具体的に
は、制御長nごとの注水パターンの決定に際して、熱延
鋼板2を複数個に分割するとき、各制御長nの長さを認
識し得るので、各制御長nの長さに基づいて熱延鋼板2
の先端部から各制御長nまでの距離Ln を演算する。Next, the operation will be described. Storage means 31
The storage unit 31 and the water cooling amount calculating unit 3 are the same as those in the first embodiment except the water cooling amount calculating unit 32.
Only 2 will be described. When the water cooling temperature drop amount ΔT water is estimated by the estimating means 21 of the computer 20 in the same manner as in the first embodiment, the water cooling amount calculating means 32 of the computer 20 calculates each from the tip of the hot-rolled steel sheet 2. The distance L n to the control length n is measured (step ST21). Specifically, when determining the water injection pattern for each control length n, the length of each control length n can be recognized when the hot-rolled steel plate 2 is divided into a plurality of parts. Hot rolled steel plate 2
The distance L n from the tip of the control length n to each control length n is calculated.
【0070】そして、計算機20の水冷却量演算手段3
2は、各制御長nまでの距離Ln を計測すると、図8に
示すように、距離Ln に対応する学習係数Cniが記憶手
段31に記憶されているので、各制御長nの距離Ln に
対応する学習係数Cniを記憶手段31から検索する(ス
テップST22)。因に、図8は距離Ln がL0 である
場合、学習係数CniとしてC0iの値を取得することを示
している。Then, the water cooling amount calculation means 3 of the computer 20
When the distance L n to each control length n is measured, the learning coefficient C ni corresponding to the distance L n is stored in the storage means 31 as shown in FIG. The learning coefficient C ni corresponding to L n is retrieved from the storage means 31 (step ST22). Incidentally, FIG. 8 shows that when the distance L n is L 0 , the value of C 0i is acquired as the learning coefficient C ni .
【0071】そして、計算機20の水冷却量演算手段3
2は、各制御長nごとの水冷却温度降下量ΔTwater
に、検索した各学習係数Cniを乗算して、各制御長nに
対する水冷却量ΔTpを演算する(ステップST2
3)。 ΔTp=Cni・ΔTwater ・・・(21)The water cooling amount calculation means 3 of the computer 20
2 is a water cooling temperature drop amount ΔT water for each control length n
Is multiplied by each retrieved learning coefficient C ni to calculate the water cooling amount ΔTp for each control length n (step ST2).
3). ΔTp = C ni · ΔT water (21)
【0072】以下の処理は、上記実施の形態1と同様で
あるため説明を省略する。ただし、この実施の形態2で
は、距離Ln に対応する学習係数Cniを記憶手段31に
記憶させているので、学習係数を更新する際、経過時間
tn の代わりに距離Ln を複数の区間に分割し(図8の
場合、7つの区間に分割している)、各制御長nごとに
求めた学習係数Cn(i+1)を対応する区間に振り分けて各
区間の学習係数の平均値を求めるようにする(図4のス
テップST15)。The subsequent processing is the same as that of the above-described first embodiment, and therefore its explanation is omitted. However, in the second embodiment, since the learning coefficient C ni corresponding to the distance L n is stored in the storage means 31, when the learning coefficient is updated, the distance L n is set to a plurality of values instead of the elapsed time t n . The learning coefficient C n (i + 1) is divided into sections (in FIG. 8, it is divided into 7 sections), and the learning coefficient C n (i + 1) obtained for each control length n is distributed to the corresponding section to obtain the learning coefficient of each section. An average value is obtained (step ST15 in FIG. 4).
【0073】以上より、この実施の形態2によれば、熱
延鋼板2の先端部から、熱延鋼板2の各制御長nまでの
距離Ln を計測して、各距離Ln に対応する学習係数C
niを記憶手段31から参照し、各学習係数Cniから各制
御長nの水冷却量ΔTpを演算するようにしたので、熱
延鋼板2の搬送速度Vが変化しても、各制御長nごとに
適切な水冷却量ΔTpを決定することができ、その結
果、冷却後の巻取温度を目標の巻取温度に対して、極め
て精度よく一致させることができる。つまり、コイラー
3の巻取速度が熱延鋼板2の先端部と中間部と終端部と
では異なるため、熱延鋼板2の各部に生じる誤差も異な
るが、その巻取速度の変化パターンは、搬送される各熱
延鋼板2ごとに大きく変わるものではなくほぼ一定であ
るので、熱延鋼板2の各部に対応する学習係数Cniを用
いると、即ち、各距離Ln に対応する学習係数Cniを用
いると、その巻取速度の変化パターンに適用した学習制
御が可能になり、そのため熱延鋼板2の搬送速度V(コ
イラー3の巻取速度)が変化しても、各制御長nごとに
適切な水冷却量ΔTpを決定することができる。As described above, according to the second embodiment, the distance L n from the tip of the hot rolled steel sheet 2 to each control length n of the hot rolled steel sheet 2 is measured and corresponds to each distance L n . Learning coefficient C
Since the water cooling amount ΔTp of each control length n is calculated from each learning coefficient C ni by referring to ni from the storage means 31, even if the transport speed V of the hot-rolled steel sheet 2 changes, each control length n. An appropriate water cooling amount ΔTp can be determined for each of the conditions, and as a result, the coiling temperature after cooling can be matched with the target coiling temperature extremely accurately. That is, since the winding speed of the coiler 3 is different between the front end portion, the intermediate portion, and the end portion of the hot-rolled steel sheet 2, the error generated in each portion of the hot-rolled steel sheet 2 is different, but the change pattern of the winding speed is Since it does not significantly change for each hot-rolled steel sheet 2 and is substantially constant, the learning coefficient C ni corresponding to each part of the hot-rolled steel sheet 2 is used, that is, the learning coefficient C ni corresponding to each distance L n. By using, the learning control applied to the change pattern of the winding speed becomes possible. Therefore, even if the transport speed V of the hot-rolled steel sheet 2 (the winding speed of the coiler 3) changes, each control length n An appropriate water cooling amount ΔTp can be determined.
【0074】実施の形態3.上記実施の形態1,2で
は、学習係数を更新する際、各区間ごとに学習係数の平
均値を求め、その平均値を各区間の学習係数として更新
するものについて示したが、各区間ごとに学習係数の直
線近似式を求め、その直線近似の変化パターンを各区間
の学習係数として更新するようにしてもよい。Embodiment 3 In the first and second embodiments, when the learning coefficient is updated, the average value of the learning coefficient is obtained for each section, and the average value is updated as the learning coefficient for each section. A linear approximation formula for the learning coefficient may be obtained, and the change pattern of the linear approximation may be updated as the learning coefficient for each section.
【0075】まず、説明の便宜上、図9に示すように、
各区間ごとに、S個の学習係数が求まっているとする。
この場合、各点間の直線近似式は下記に示すように記述
することができる(下記の式では、tj を用いたが、L
j を用いてもよい)。 Cj =a・tj +b ・・・(22) ただし、Cj :当該区間に属する学習係数 tj :経過時間 Lj :距離 a,b:未知数First, for convenience of explanation, as shown in FIG.
It is assumed that S learning coefficients have been obtained for each section.
In this case, the linear approximation formula between each point can be described as follows (In the formula below, t j was used, but L
j may be used). C j = a · t j + b (22) where C j : learning coefficient belonging to the section t j : elapsed time L j : distance a, b: unknown number
【0076】従って、未知数a,bが求まれば、上記直
線近似式を特定することができるが、未知数a,bに対
してそれぞれS個の式が存在し、2元の連立方程式では
未知数a,bを求めることができないので、回帰計算を
用いて未知数a,bを決定する。即ち、S個の式を最小
自乗法によって誤差の2乗和を最小にするように未知数
a,bを決定する。具体的には、下記に示す式が最小と
なるa,bを求める。Therefore, if the unknowns a and b are obtained, the above linear approximation formula can be specified. However, there are S formulas for each of the unknowns a and b, and in the simultaneous equation of two elements, the unknown a , B cannot be obtained, the unknowns a and b are determined using regression calculation. That is, the unknowns a and b are determined so that the sum of squares of the error is minimized by the least squares method of the S expressions. Specifically, a and b that minimize the following formula are obtained.
【0077】[0077]
【数11】 [Equation 11]
【0078】そして、式(23)から下記に示すよう
に、各区間ごとに未知数a,bを求めると、そのa,b
の値を式(22)に代入して、経過時間tj (または距
離Lj)に対応する学習係数Cj を求め、その学習係数
Cj を次回搬送されてくる熱延鋼板2の冷却に用いる学
習係数として更新する(図10及び図11を参照)。Then, as shown below from the equation (23), when the unknowns a and b are obtained for each section, the unknowns a and b are obtained.
By substituting values into equation (22), the elapsed time t j (or distance L j) corresponding to the search of the learning coefficient C j, the learning coefficient C j for cooling the hot-rolled steel sheet 2 conveyed next The learning coefficient to be used is updated (see FIGS. 10 and 11).
【0079】[0079]
【数12】 (Equation 12)
【0080】以上より、この実施の形態3によれば、各
区間ごとに学習係数Cj の直線近似式を求め、その直線
近似の変化パターンを各区間の学習係数として更新する
ようにしたので、隣接する区間にわたって学習係数を連
続的に変化させることができ、そのため、上記実施の形
態1,2のように学習係数をステップ状に変化させる場
合よりも、搬送速度Vの変化パターンに適した学習制御
が可能になり、更に精度の高い巻取温度制御を行うこと
ができる。As described above, according to the third embodiment, the linear approximation formula of the learning coefficient C j is obtained for each section, and the change pattern of the linear approximation is updated as the learning coefficient of each section. The learning coefficient can be continuously changed over the adjacent sections, and therefore, learning that is more suitable for the change pattern of the transport speed V than the case where the learning coefficient is changed stepwise as in the first and second embodiments. As a result, the winding temperature can be controlled with higher accuracy.
【0081】[0081]
【発明の効果】以上のように、請求項1の発明によれ
ば、熱延鋼板の先端部が所定の基準点を通過した時点か
ら、熱延鋼板の各箇所がその基準点を通過するまでの経
過時間を計測して、各経過時間に対応する学習係数を記
憶手段から参照し、各学習係数を各箇所の水冷却温度降
下量にそれぞれ乗算して各箇所の水冷却量を演算する水
冷却量演算手段を設けるように構成したので、熱延鋼板
の搬送速度が変化しても、各箇所ごとに適切な水冷却量
を決定することができ、その結果、冷却後の巻取温度を
目標の巻取温度に対して、極めて精度よく一致させるこ
とができる効果がある。As described above, according to the invention of claim 1, from the time when the tip of the hot-rolled steel sheet passes a predetermined reference point to the time when each point of the hot-rolled steel sheet passes the reference point. Of the water, the learning coefficient corresponding to each elapsed time is referred from the storage means, and each learning coefficient is multiplied by the water cooling temperature drop amount at each location to calculate the water cooling amount at each location. Since the cooling amount calculation means is provided, even if the transport speed of the hot-rolled steel sheet changes, an appropriate water cooling amount can be determined for each location, and as a result, the winding temperature after cooling can be determined. There is an effect that the target winding temperature can be matched very accurately.
【0082】請求項2の発明によれば、熱延鋼板の先端
部から各箇所までの距離を計測して、各距離に対応する
学習係数を記憶手段から参照し、各学習係数を各箇所の
水冷却温度降下量にそれぞれ乗算して各箇所の水冷却量
を演算する水冷却量演算手段を設けるように構成したの
で、熱延鋼板の搬送速度が変化しても、各箇所ごとに適
切な水冷却量を決定することができ、その結果、冷却後
の巻取温度を目標の巻取温度に対して、極めて精度よく
一致させることができる効果がある。According to the invention of claim 2, the distance from the tip of the hot-rolled steel sheet to each location is measured, the learning coefficient corresponding to each distance is referred from the storage means, and each learning coefficient is determined for each location. Since the water cooling amount calculation means for calculating the water cooling amount at each place by multiplying the water cooling temperature drop amount is provided, even if the hot-rolled steel sheet transfer speed changes, it is possible to obtain an appropriate value for each place. The amount of water cooling can be determined, and as a result, there is an effect that the winding temperature after cooling can be matched with the target winding temperature extremely accurately.
【0083】請求項3の発明によれば、各箇所の実際の
水冷却温度降下量を演算する降下量演算手段と、注水パ
ターン決定手段により決定された注水パターンから各箇
所の水冷却温度降下量を予測する降下量予測手段とを設
け、各箇所ごとに、実際の水冷却温度降下量を予測した
水冷却温度降下量で除算して学習係数を求めるように構
成したので、次回搬送されてくる熱延鋼板の冷却に用い
る学習係数を今回の冷却結果に基づいて更新することが
でき、そのため次回搬送されてくる熱延鋼板の冷却にお
いても、各箇所ごとに適切な水冷却量を決定することが
できる効果がある。According to the third aspect of the present invention, the drop amount calculating means for calculating the actual drop amount of the water cooling temperature at each location, and the drop amount of the water cooling temperature at each location based on the water injection pattern determined by the water injection pattern determining means. Since it is configured so that the learning coefficient is obtained by dividing the actual water cooling temperature drop amount by the predicted water cooling temperature drop amount for each location, it is carried next time. The learning coefficient used for cooling the hot-rolled steel sheet can be updated based on the cooling result this time, and therefore, when cooling the hot-rolled steel sheet that will be conveyed next time, an appropriate water cooling amount must be determined for each location. There is an effect that can be.
【0084】請求項4の発明によれば、記憶手段に記憶
されている学習係数を更新する際、基準点を通過してか
らの経過時間または先端部からの距離を複数の区間に分
割するとともに、演算して求めた学習係数を対応する区
間に振り分けて各区間の学習係数の平均値を求め、その
平均値を各区間の学習係数として更新する更新手段を設
けるように構成したので、演算して求めた学習係数の数
が少なくても、搬送速度の変化パターンに適した学習係
数を維持できる効果がある。According to the invention of claim 4, when the learning coefficient stored in the storage means is updated, the elapsed time after passing the reference point or the distance from the tip is divided into a plurality of sections. , The learning coefficient obtained by the calculation is distributed to the corresponding section, the average value of the learning coefficient of each section is obtained, and the updating means for updating the average value as the learning coefficient of each section is provided. Even if the number of learning coefficients calculated as described above is small, it is possible to maintain the learning coefficient suitable for the change pattern of the transport speed.
【0085】請求項5の発明によれば、記憶手段に記憶
されている学習係数を更新する際、基準点を通過してか
らの経過時間または先端部からの距離を複数の区間に分
割するとともに、演算して求めた学習係数を対応する区
間に振り分けて各区間の学習係数の直線近似式を求め、
その直線近似の変化パターンを各区間の学習係数として
更新する更新手段を設けるように構成したので、隣接す
る区間にわたって学習係数を連続的に変化させることが
でき、そのため、学習係数をステップ状に変化させる場
合よりも、搬送速度の変化パターンに適した学習制御が
可能になり、更に精度の高い巻取温度制御を行うことが
できる効果がある。According to the invention of claim 5, when updating the learning coefficient stored in the storage means, the elapsed time after passing the reference point or the distance from the tip is divided into a plurality of sections. , The learning coefficient obtained by calculation is distributed to the corresponding section, and the linear approximation formula of the learning coefficient in each section is calculated,
Since the updating means for updating the change pattern of the linear approximation as the learning coefficient of each section is provided, the learning coefficient can be continuously changed over the adjacent section, and therefore the learning coefficient is changed stepwise. Compared with the case of performing it, learning control suitable for the change pattern of the transport speed becomes possible, and there is an effect that more accurate winding temperature control can be performed.
【0086】請求項6の発明によれば、熱延鋼板の先端
部がライン上の所定の基準点を通過した時点から、熱延
鋼板の各箇所がその基準点を通過するまでの経過時間を
計測するとともに、予め経過時間に応じて設定された学
習係数のなかから、その計測した各経過時間に対応する
学習係数を検索し、その検索した各学習係数を各箇所の
水冷却温度降下量にそれぞれ乗算して各箇所の水冷却量
を演算するように構成したので、熱延鋼板の搬送速度が
変化しても、各箇所ごとに適切な水冷却量を決定するこ
とができ、その結果、冷却後の巻取温度を目標の巻取温
度に対して、極めて精度よく一致させることができる効
果がある。According to the invention of claim 6, the elapsed time from the time when the tip of the hot-rolled steel sheet passes a predetermined reference point on the line to the time when each point of the hot-rolled steel sheet passes the reference point. While measuring, the learning coefficient corresponding to each measured elapsed time is searched from among the learning coefficients set in advance according to the elapsed time, and each searched learning coefficient is used as the water cooling temperature drop amount at each location. Since it is configured to calculate the water cooling amount at each location by multiplying each, it is possible to determine an appropriate water cooling amount for each location even if the transport speed of the hot-rolled steel sheet changes, and as a result, There is an effect that the winding temperature after cooling can be matched with the target winding temperature with extremely high accuracy.
【0087】請求項7の発明によれば、熱延鋼板の先端
部から各箇所までの距離を計測するとともに、予め距離
に応じて設定された学習係数のなかから、その計測した
各距離に対応する学習係数を検索し、その検索した各学
習係数を各箇所の水冷却温度降下量にそれぞれ乗算して
各箇所の水冷却量を演算するように構成したので、熱延
鋼板の搬送速度が変化しても、各箇所ごとに適切な水冷
却量を決定することができ、その結果、冷却後の巻取温
度を目標の巻取温度に対して、極めて精度よく一致させ
ることができる効果がある。According to the invention of claim 7, the distance from the tip portion of the hot-rolled steel sheet to each position is measured, and the measured distance is corresponded to from the learning coefficient preset according to the distance. Since the learning coefficient to be searched is searched for and the water cooling temperature drop at each location is multiplied by each of the found learning coefficients to calculate the water cooling quantity at each location, the transport speed of the hot-rolled steel sheet changes. Even so, it is possible to determine an appropriate water cooling amount for each location, and as a result, there is an effect that the winding temperature after cooling can be made to match the target winding temperature with extremely high accuracy. .
【0088】請求項8の発明によれば、各箇所の実際の
水冷却温度降下量を演算する一方、注水パターンから各
箇所の水冷却温度降下量を予測し、各箇所ごとに実際の
水冷却温度降下量を予測した水冷却温度降下量で除算し
て学習係数を求めるように構成したので、次回搬送され
てくる熱延鋼板の冷却に用いる学習係数を今回の冷却結
果に基づいて更新することができ、そのため次回搬送さ
れてくる熱延鋼板の冷却においても、各箇所ごとに適切
な水冷却量を決定することができる効果がある。According to the invention of claim 8, while calculating the actual water cooling temperature drop amount of each location, the water cooling temperature drop amount of each location is predicted from the water injection pattern, and the actual water cooling temperature of each location is calculated. Since the learning coefficient is calculated by dividing the temperature drop amount by the predicted water cooling temperature drop amount, the learning coefficient used for cooling the hot rolled steel sheet that will be conveyed next time should be updated based on the cooling result this time. Therefore, in cooling the hot-rolled steel sheet that is conveyed next time, there is an effect that an appropriate water cooling amount can be determined for each location.
【0089】請求項9の発明によれば、予め設定されて
いる学習係数を更新する際、基準点を通過してからの経
過時間または先端部からの距離を複数の区間に分割する
とともに、演算して求めた学習係数を対応する区間に振
り分けて各区間の学習係数の平均値を求め、その平均値
を各区間の学習係数として更新するように構成したの
で、演算して求めた学習係数の数が少なくても、搬送速
度の変化パターンに適した学習係数を維持できる効果が
ある。According to the ninth aspect of the present invention, when the preset learning coefficient is updated, the elapsed time after passing the reference point or the distance from the tip is divided into a plurality of sections and the calculation is performed. The learning coefficient obtained in step S1 is distributed to the corresponding sections to obtain the average value of the learning coefficients in each section, and the average value is updated as the learning coefficient in each section. Even if the number is small, there is an effect that the learning coefficient suitable for the change pattern of the transport speed can be maintained.
【0090】請求項10の発明によれば、予め設定され
ている学習係数を更新する際、基準点を通過してからの
経過時間または先端部からの距離を複数の区間に分割す
るとともに、演算して求めた学習係数を対応する区間に
振り分けて各区間の学習係数の直線近似式を求め、その
直線近似の変化パターンを各区間の学習係数として更新
するように構成したので、隣接する区間にわたって学習
係数を連続的に変化させることができ、そのため、学習
係数をステップ状に変化させる場合よりも、搬送速度の
変化パターンに適した学習制御が可能になり、更に精度
の高い巻取温度制御を行うことができる効果がある。According to the tenth aspect of the invention, when the preset learning coefficient is updated, the elapsed time after passing the reference point or the distance from the tip portion is divided into a plurality of sections and the calculation is performed. The learning coefficients obtained in this way are distributed to the corresponding sections to obtain the linear approximation formulas of the learning coefficients of each section, and the change pattern of the linear approximation is configured to be updated as the learning coefficient of each section. Since the learning coefficient can be changed continuously, learning control that is more suitable for the change pattern of the transport speed is possible than when changing the learning coefficient stepwise, and more accurate winding temperature control is possible. There is an effect that can be done.
【図1】 この発明の実施の形態1による熱延鋼板の巻
取温度制御装置を示す構成図である。FIG. 1 is a configuration diagram showing a winding temperature control device for hot-rolled steel sheets according to Embodiment 1 of the present invention.
【図2】 実施の形態1における計算機の詳細な構成を
示す構成図である。FIG. 2 is a configuration diagram showing a detailed configuration of a computer according to the first embodiment.
【図3】 熱延鋼板の巻取温度制御装置が冷却装置を制
御するアルゴリズムを示すフローチャートである。FIG. 3 is a flowchart showing an algorithm for controlling a cooling device by a coiling temperature control device for hot-rolled steel sheets.
【図4】 熱延鋼板の巻取温度制御装置が学習係数を更
新するアルゴリズムを示すフローチャートである。FIG. 4 is a flowchart showing an algorithm in which a coiling temperature control device for hot-rolled steel sheets updates a learning coefficient.
【図5】 経過時間に対応する学習係数を示すグラフ図
である。FIG. 5 is a graph showing a learning coefficient corresponding to elapsed time.
【図6】 実施の形態2における計算機の詳細な構成を
示す構成図である。FIG. 6 is a configuration diagram showing a detailed configuration of a computer according to the second embodiment.
【図7】 熱延鋼板の巻取温度制御装置が冷却装置を制
御するアルゴリズムを示すフローチャートである。FIG. 7 is a flowchart showing an algorithm for controlling the cooling device by the coiling temperature control device for the hot-rolled steel sheet.
【図8】 距離に対応する学習係数を示すグラフ図であ
る。FIG. 8 is a graph showing a learning coefficient corresponding to a distance.
【図9】 各点間の直線近似式を説明するグラフ図であ
る。FIG. 9 is a graph illustrating a linear approximation formula between points.
【図10】 経過時間に対応する学習係数を示すグラフ
図である。FIG. 10 is a graph showing a learning coefficient corresponding to elapsed time.
【図11】 距離に対応する学習係数を示すグラフ図で
ある。FIG. 11 is a graph showing a learning coefficient corresponding to a distance.
【図12】 従来の熱延鋼板の巻取温度制御装置を示す
構成図である。FIG. 12 is a configuration diagram showing a conventional winding temperature control device for hot-rolled steel sheets.
1 最終スタンド、2 熱延鋼板、6 演算器(測定手
段)、7 仕上出側温度計(測定手段)、8 巻取温度
計(実測手段)、11 バルブ制御装置(制御手段)、
21 推定手段、22,31 記憶手段、23,32
水冷却量演算手段、24 注水パターン決定手段、25
実測手段、26 降下量演算手段、27 降下量予測
手段、28 更新手段。1 final stand, 2 hot rolled steel plate, 6 calculator (measuring means), 7 finishing thermometer (measuring means), 8 winding thermometer (measuring means), 11 valve control device (control means),
21 estimation means, 22, 31 storage means, 23, 32
Water cooling amount calculation means, 24 Water injection pattern determination means, 25
Measuring means, 26 descent amount calculating means, 27 descent amount predicting means, 28 updating means.
Claims (10)
延鋼板の長手方向における各箇所の仕上出側温度及び搬
送速度を測定する測定手段と、上記測定手段により測定
された仕上出側温度及び搬送速度に基づいて上記各箇所
の空冷却温度降下量を推定するとともに、その仕上出側
温度,空冷却温度降下量及び目標巻取温度から上記各箇
所の水冷却温度降下量を推定する推定手段と、上記熱延
鋼板の先端部がライン上の所定の基準点を通過してから
の経過時間に応じて設定された学習係数を記憶する記憶
手段と、上記熱延鋼板の先端部が上記基準点を通過した
時点から、上記各箇所が上記基準点を通過するまでの経
過時間を計測して、各経過時間に対応する学習係数を上
記記憶手段から参照し、各学習係数を上記各箇所の水冷
却温度降下量にそれぞれ乗算して上記各箇所の水冷却量
を演算する水冷却量演算手段と、上記水冷却量演算手段
により演算された各箇所の水冷却量及び上記測定手段に
より測定された各箇所の搬送速度から注水パターンを決
定する注水パターン決定手段と、上記熱延鋼板に冷却水
を注水する冷却装置を上記注水パターンにしたがって制
御する制御手段とを備えた熱延鋼板の巻取温度制御装
置。1. A measuring means for measuring a finish outlet temperature and a conveying speed at each position in a longitudinal direction of a hot rolled steel sheet output from a final stand of a rolling mill, and a finish outlet temperature measured by the measuring means and Estimating means for estimating the air-cooling temperature drop amount at each location based on the transport speed, and estimating the water-cooling temperature drop amount at each location from the finish side temperature, the air-cooling temperature drop amount, and the target winding temperature. And a storage unit that stores a learning coefficient set according to the elapsed time after the tip of the hot-rolled steel sheet passes a predetermined reference point on the line, and the tip of the hot-rolled steel sheet is the reference. The elapsed time from the point of passing the point until each of the points passes the reference point is measured, the learning coefficient corresponding to each elapsed time is referred from the storage means, and the learning coefficient of each of the points is calculated. Water cooling temperature drop it Water cooling amount calculating means for multiplying each to calculate the water cooling amount at each location, and water cooling amount at each location calculated by the water cooling quantity computing means and conveyance of each location measured by the measuring means A coiling temperature control device for a hot-rolled steel sheet, comprising: a water-pouring pattern determining means for determining a water-pouring pattern based on a speed;
延鋼板の長手方向における各箇所の仕上出側温度及び搬
送速度を測定する測定手段と、上記測定手段により測定
された仕上出側温度及び搬送速度に基づいて上記各箇所
の空冷却温度降下量を推定するとともに、その仕上出側
温度,空冷却温度降下量及び目標巻取温度から上記各箇
所の水冷却温度降下量を推定する推定手段と、上記熱延
鋼板の先端部からの距離に応じて設定された学習係数を
記憶する記憶手段と、上記熱延鋼板の先端部から各箇所
までの距離を計測して、各距離に対応する学習係数を上
記記憶手段から参照し、各学習係数を上記各箇所の水冷
却温度降下量にそれぞれ乗算して上記各箇所の水冷却量
を演算する水冷却量演算手段と、上記水冷却量演算手段
により演算された各箇所の水冷却量及び上記測定手段に
より測定された各箇所の搬送速度から注水パターンを決
定する注水パターン決定手段と、上記熱延鋼板に冷却水
を注水する冷却装置を上記注水パターンにしたがって制
御する制御手段とを備えた熱延鋼板の巻取温度制御装
置。2. A measuring means for measuring the finish-side temperature and the conveying speed at each position in the longitudinal direction of the hot-rolled steel sheet output from the final stand of the rolling mill, and the finish-side temperature and the finish-side temperature measured by the measuring means. Estimating means for estimating the air-cooling temperature drop amount at each location based on the transport speed, and estimating the water-cooling temperature drop amount at each location from the finish side temperature, the air-cooling temperature drop amount, and the target winding temperature. And storage means for storing a learning coefficient set according to the distance from the tip of the hot-rolled steel sheet, and measuring the distance from the tip of the hot-rolled steel sheet to each location, and corresponding to each distance A water cooling amount calculation means for calculating the water cooling amount at each location by multiplying the learning coefficient by the learning coefficient from the storage means and multiplying each learning coefficient by the water cooling temperature drop amount at each location. Each calculated by means A water cooling pattern determining means for determining the water injection pattern from the water cooling amount of the location and the transport speed of each location measured by the measuring means, and a cooling device for injecting cooling water into the hot rolled steel sheet are controlled according to the water injection pattern. A coiling temperature control device for hot-rolled steel sheet, comprising: a control means.
後の上記各箇所の巻取温度を計測するとともに、上記各
箇所ごとに上記測定手段により仕上出側温度が計測され
てからその巻取温度を計測するまでの所要時間を実測す
る実測手段と、上記各箇所の仕上出側温度及び所要時間
に基づいて上記各箇所の空冷却温度降下量を演算すると
ともに、上記各箇所の仕上出側温度,空冷却温度降下量
及び巻取温度から各箇所の水冷却温度降下量を演算する
降下量演算手段と、上記注水パターン決定手段により決
定された注水パターンから上記各箇所の水冷却温度降下
量を予測する降下量予測手段と、上記各箇所ごとに上記
降下量演算手段により演算された水冷却温度降下量を上
記降下量予測手段により予測された水冷却温度降下量で
除算して学習係数を求め、上記記憶手段に記憶されてい
る学習係数を更新する更新手段とを設けたことを特徴と
する請求項1または請求項2記載の熱延鋼板の巻取温度
制御装置。3. The winding temperature of each of the points after the cooling water is poured by the cooling device is measured, and the winding temperature is measured after the finish outlet temperature is measured by the measuring means at each of the points. Measuring means for actually measuring the time required to measure the temperature, and the finish-out side of each of the above-mentioned locations. A drop amount calculating means for calculating the water cooling temperature drop amount at each location from the temperature, the air cooling temperature drop amount, and the winding temperature, and the water cooling temperature drop amount at each location from the water injection pattern determined by the water injection pattern determining means. And a learning coefficient by dividing the water cooling temperature drop amount calculated by the drop amount calculation means for each location by the water cooling temperature drop amount predicted by the drop amount prediction means. The hot-rolled steel sheet winding temperature control device according to claim 1 or 2, further comprising: update means for obtaining and updating the learning coefficient stored in the storage means.
れている学習係数を更新する際、上記基準点を通過して
からの経過時間または上記先端部からの距離を複数の区
間に分割するとともに、上記求めた学習係数を対応する
区間に振り分けて各区間の学習係数の平均値を求め、そ
の平均値を各区間の学習係数として更新することを特徴
とする請求項3記載の熱延鋼板の巻取温度制御装置。4. The updating means divides an elapsed time after passing the reference point or a distance from the tip portion into a plurality of sections when updating the learning coefficient stored in the storage means. The hot-rolled steel sheet according to claim 3, further comprising: dividing the obtained learning coefficient into corresponding sections to obtain an average value of learning coefficients in each section, and updating the average value as a learning coefficient in each section. Winding temperature control device.
れている学習係数を更新する際、上記基準点を通過して
からの経過時間または上記先端部からの距離を複数の区
間に分割するとともに、上記求めた学習係数を対応する
区間に振り分けて各区間の学習係数の直線近似式を求
め、その直線近似の変化パターンを各区間の学習係数と
して更新することを特徴とする請求項3記載の熱延鋼板
の巻取温度制御装置。5. The updating means divides the elapsed time after passing the reference point or the distance from the tip portion into a plurality of sections when updating the learning coefficient stored in the storage means. Along with this, the obtained learning coefficient is distributed to the corresponding section to obtain a linear approximation formula of the learning coefficient of each section, and the change pattern of the linear approximation is updated as the learning coefficient of each section. Winding temperature control device for hot rolled steel sheet.
延鋼板の長手方向における各箇所の仕上出側温度及び搬
送速度を測定し、その仕上出側温度及び搬送速度に基づ
いて上記各箇所の空冷却温度降下量を推定するととも
に、その仕上出側温度,空冷却温度降下量及び目標巻取
温度から上記各箇所の水冷却温度降下量を推定する一
方、上記熱延鋼板の先端部がライン上の所定の基準点を
通過した時点から、上記各箇所が上記基準点を通過する
までの経過時間を計測して、上記経過時間に応じて予め
設定された学習係数のなかから、上記計測した各経過時
間に対応する学習係数を検索したのち、その検索した各
学習係数を上記各箇所の水冷却温度降下量にそれぞれ乗
算して上記各箇所の水冷却量を演算するとともに、上記
各箇所の水冷却量及び搬送速度から注水パターンを決定
し、上記熱延鋼板に冷却水を注水する冷却装置を上記注
水パターンにしたがって制御する熱延鋼板の巻取温度制
御方法。6. The finish outlet temperature and the transport speed of each location in the longitudinal direction of the hot-rolled steel sheet output from the final stand of the rolling mill are measured, and based on the finish outlet temperature and the transport speed, each of the above locations is measured. While estimating the air cooling temperature drop amount, the water cooling temperature drop amount at each of the above locations is estimated from the finish outlet temperature, the air cooling temperature drop amount, and the target winding temperature, while the tip of the hot-rolled steel sheet is lined. From the time of passing the above predetermined reference point, the elapsed time until each of the above points passes the reference point is measured, and from the learning coefficient preset according to the elapsed time, the above is measured. After searching for the learning coefficient corresponding to each elapsed time, each of the searched learning coefficients is multiplied by the water cooling temperature drop amount at each location to calculate the water cooling amount at each location, and Water cooling amount and transportation A method for controlling a coiling temperature of a hot-rolled steel sheet, which comprises determining a water injection pattern from a feed rate and controlling a cooling device for injecting cooling water into the hot-rolled steel sheet according to the water injection pattern.
延鋼板の長手方向における各箇所の仕上出側温度及び搬
送速度を測定し、その仕上出側温度及び搬送速度に基づ
いて上記各箇所の空冷却温度降下量を推定するととも
に、その仕上出側温度,空冷却温度降下量及び目標巻取
温度から上記各箇所の水冷却温度降下量を推定する一
方、上記熱延鋼板の先端部から上記各箇所までの距離を
計測して、上記距離に応じて予め設定された学習係数の
なかから、上記計測した各距離に対応する学習係数を検
索したのち、その検索した各学習係数を上記各箇所の水
冷却温度降下量にそれぞれ乗算して上記各箇所の水冷却
量を演算するとともに、上記各箇所の水冷却量及び搬送
速度から注水パターンを決定し、上記熱延鋼板に冷却水
を注水する冷却装置を上記注水パターンにしたがって制
御する熱延鋼板の巻取温度制御方法。7. The finish exit side temperature and the transport speed of each location in the longitudinal direction of the hot rolled steel sheet output from the final stand of the rolling mill are measured, and the finish exit side temperature and the transport speed of each location are measured based on the finish exit side temperature and the transport speed. While estimating the air-cooling temperature drop, the water-cooling temperature drop at each of the above locations is estimated from the finish outlet temperature, the air-cooling temperature drop, and the target coiling temperature, while the tip of the hot-rolled steel sheet is used to The distance to each location is measured, and the learning coefficient corresponding to each of the above measured distances is searched from among the learning coefficients set in advance according to the above distance. The water cooling temperature drop amount is calculated to calculate the water cooling amount at each location, and the water injection amount is determined from the water cooling rate at each location and the transport speed, and the cooling water is injected into the hot rolled steel sheet. Cooler up A method for controlling a winding temperature of a hot rolled steel sheet, which is controlled according to a water injection pattern.
後の上記各箇所の巻取温度を計測して、上記各箇所ごと
に上記仕上出側温度が計測されてからその巻取温度を計
測するまでの所要時間を実測し、上記各箇所の仕上出側
温度及び所要時間に基づいて上記各箇所の空冷却温度降
下量を演算するとともに、上記各箇所の仕上出側温度,
空冷却温度降下量及び巻取温度から各箇所の水冷却温度
降下量を演算する一方、上記注水パターンから上記各箇
所の水冷却温度降下量を予測し、上記各箇所ごとに上記
演算した水冷却温度降下量を上記予測した水冷却温度降
下量で除算して学習係数を求め、上記予め設定されてい
る学習係数を更新することを特徴とする請求項6または
請求項7記載の熱延鋼板の巻取温度制御方法。8. The winding temperature is measured at each of the points after cooling water is poured by the cooling device, and the finish side temperature is measured at each of the points, and then the winding temperature is measured. The time required to measure the air cooling temperature drop at each location is calculated based on the finish temperature and the required time at each location.
The water cooling temperature drop amount at each location is calculated from the air cooling temperature drop amount and the winding temperature, while the water cooling temperature drop amount at each location is predicted from the water injection pattern, and the water cooling temperature is calculated at each location. The hot rolling steel sheet according to claim 6 or 7, wherein the learning coefficient is obtained by dividing the temperature drop amount by the predicted water cooling temperature drop amount, and the preset learning coefficient is updated. Winding temperature control method.
する際、上記基準点を通過してからの経過時間または上
記先端部からの距離を複数の区間に分割するとともに、
上記求めた学習係数を対応する区間に振り分けて各区間
の学習係数の平均値を求め、その平均値を各区間の学習
係数として更新することを特徴とする請求項8記載の熱
延鋼板の巻取温度制御方法。9. When updating the preset learning coefficient, the elapsed time after passing the reference point or the distance from the tip portion is divided into a plurality of sections,
The winding of the hot-rolled steel sheet according to claim 8, wherein the obtained learning coefficient is distributed to corresponding sections to obtain an average value of the learning coefficient of each section, and the average value is updated as a learning coefficient of each section. Temperature control method.
新する際、上記基準点を通過してからの経過時間または
上記先端部からの距離を複数の区間に分割するととも
に、上記求めた学習係数を対応する区間に振り分けて各
区間の学習係数の直線近似式を求め、その直線近似の変
化パターンを各区間の学習係数として更新することを特
徴とする請求項8記載の熱延鋼板の巻取温度制御方法。10. When updating the preset learning coefficient, the elapsed time after passing the reference point or the distance from the tip is divided into a plurality of sections, and the obtained learning coefficient is calculated. 9. The hot-rolled steel sheet winding according to claim 8, wherein the linear approximation formula of the learning coefficient of each section is obtained by allocating to the corresponding section, and the change pattern of the linear approximation is updated as the learning coefficient of each section. Temperature control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24009995A JP3423500B2 (en) | 1995-09-19 | 1995-09-19 | Hot rolled steel sheet winding temperature control apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24009995A JP3423500B2 (en) | 1995-09-19 | 1995-09-19 | Hot rolled steel sheet winding temperature control apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0985328A true JPH0985328A (en) | 1997-03-31 |
JP3423500B2 JP3423500B2 (en) | 2003-07-07 |
Family
ID=17054485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24009995A Expired - Lifetime JP3423500B2 (en) | 1995-09-19 | 1995-09-19 | Hot rolled steel sheet winding temperature control apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3423500B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100425602B1 (en) * | 1999-12-14 | 2004-04-03 | 주식회사 포스코 | Cooling control method of hot strip |
KR100496824B1 (en) * | 2000-11-08 | 2005-06-22 | 주식회사 포스코 | Cooling control method of hot strip using intermediate pyrometer on run-out table |
JP2006122987A (en) * | 2004-10-29 | 2006-05-18 | Jfe Steel Kk | Cooling control apparatus and method for metallic sheet |
WO2008078908A1 (en) * | 2006-12-22 | 2008-07-03 | Posco | Temperature controlling method and apparatus in hot strip mill |
WO2011074632A1 (en) * | 2009-12-16 | 2011-06-23 | 新日本製鐵株式会社 | Method for cooling hot-rolled steel plate |
CN102794315A (en) * | 2012-08-22 | 2012-11-28 | 北京科技大学 | Self-learning method for improving forecasting precision of overall length coiling temperature of strip steel |
KR101439777B1 (en) * | 2013-06-14 | 2014-09-11 | 주식회사 포스코 | Apparatus and method of controlling finishign mill delevery temperature using interstand spray |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102284511A (en) * | 2011-07-28 | 2011-12-21 | 山西太钢不锈钢股份有限公司 | Band steel laminar flow cooling temperature self-adaptive method |
KR101406499B1 (en) * | 2012-08-24 | 2014-06-12 | 주식회사 포스코 | Apparatus and method of cooling top portion of rolled steel plate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0716635A (en) * | 1993-06-18 | 1995-01-20 | Mitsubishi Electric Corp | Controller for cooling rolling material |
JPH0747415A (en) * | 1993-06-18 | 1995-02-21 | Mitsubishi Electric Corp | Cooling control method for steel sheet |
JPH07200005A (en) * | 1993-12-28 | 1995-08-04 | Mitsubishi Electric Corp | Learning control method |
-
1995
- 1995-09-19 JP JP24009995A patent/JP3423500B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0716635A (en) * | 1993-06-18 | 1995-01-20 | Mitsubishi Electric Corp | Controller for cooling rolling material |
JPH0747415A (en) * | 1993-06-18 | 1995-02-21 | Mitsubishi Electric Corp | Cooling control method for steel sheet |
JPH07200005A (en) * | 1993-12-28 | 1995-08-04 | Mitsubishi Electric Corp | Learning control method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100425602B1 (en) * | 1999-12-14 | 2004-04-03 | 주식회사 포스코 | Cooling control method of hot strip |
KR100496824B1 (en) * | 2000-11-08 | 2005-06-22 | 주식회사 포스코 | Cooling control method of hot strip using intermediate pyrometer on run-out table |
JP2006122987A (en) * | 2004-10-29 | 2006-05-18 | Jfe Steel Kk | Cooling control apparatus and method for metallic sheet |
WO2008078908A1 (en) * | 2006-12-22 | 2008-07-03 | Posco | Temperature controlling method and apparatus in hot strip mill |
WO2011074632A1 (en) * | 2009-12-16 | 2011-06-23 | 新日本製鐵株式会社 | Method for cooling hot-rolled steel plate |
JP4938159B2 (en) * | 2009-12-16 | 2012-05-23 | 新日本製鐵株式会社 | Method for cooling hot-rolled steel sheet |
US8359894B2 (en) | 2009-12-16 | 2013-01-29 | Nippon Steel Corporation | Method for cooling hot-rolled steel strip |
CN102794315A (en) * | 2012-08-22 | 2012-11-28 | 北京科技大学 | Self-learning method for improving forecasting precision of overall length coiling temperature of strip steel |
KR101439777B1 (en) * | 2013-06-14 | 2014-09-11 | 주식회사 포스코 | Apparatus and method of controlling finishign mill delevery temperature using interstand spray |
Also Published As
Publication number | Publication date |
---|---|
JP3423500B2 (en) | 2003-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000167615A (en) | Method for controlling coiling temperature and controller | |
WO2009011070A1 (en) | Method of cooling control, cooling control unit and cooling water quantity computing unit | |
JP5647917B2 (en) | Control apparatus and control method | |
CN104271277B (en) | Temperature control equipment | |
JP4221002B2 (en) | Cooling control method, cooling control device, and cooling water amount calculation device | |
JP2008149354A (en) | Device and method for controlling winding temperature | |
JP3423500B2 (en) | Hot rolled steel sheet winding temperature control apparatus and method | |
JP5565200B2 (en) | Finishing temperature control device in hot rolling | |
JP4208505B2 (en) | Winding temperature controller | |
JPH0732024A (en) | Method for controlling temperature of hot rolled steel products | |
JP4402502B2 (en) | Winding temperature controller | |
JP6668280B2 (en) | Winding cooling control device and winding cooling control method | |
JP2012011448A (en) | Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied | |
JP2001300628A (en) | Method for cooling joined steel sheet | |
JP2007301603A (en) | Method for controlling coiling temperature of rolled stock and rolling equipment | |
JPH0919712A (en) | Device for controlling cooling of steel sheet | |
JPH02179827A (en) | Controller for cooling hot-rolled steel sheet | |
JPH08103809A (en) | Cooling control method of steel plate in hot rolling | |
JP3450108B2 (en) | Hot rolled sheet cooling control device | |
JP4701677B2 (en) | Metal plate cooling control device and cooling control method | |
JPH01162508A (en) | Cooling control method for steel material | |
JPS63317208A (en) | Control device for cooling hot rolled steel strip | |
JP3767832B2 (en) | Thickness control method in hot rolling | |
JP2744415B2 (en) | Hot rolled steel coiling temperature control device | |
JP3194447B2 (en) | Rolled material cooling control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080425 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100425 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |