JPH0984278A - Uninterruptible solar power source - Google Patents

Uninterruptible solar power source

Info

Publication number
JPH0984278A
JPH0984278A JP7262377A JP26237795A JPH0984278A JP H0984278 A JPH0984278 A JP H0984278A JP 7262377 A JP7262377 A JP 7262377A JP 26237795 A JP26237795 A JP 26237795A JP H0984278 A JPH0984278 A JP H0984278A
Authority
JP
Japan
Prior art keywords
power source
battery
power supply
uninterruptible
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7262377A
Other languages
Japanese (ja)
Inventor
Noboru Kubo
昇 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7262377A priority Critical patent/JPH0984278A/en
Publication of JPH0984278A publication Critical patent/JPH0984278A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an uninterruptible solar power source which further improves the reliability as a power source by manly forming a chargeable battery and a solar cell and further utilizing an AC power source for charging the chargeable battery, thereby forming complementary relationship between the output of the cell and the AC power source. SOLUTION: The uninterruptible solar power source comprises a chargeable battery 3, a solar cell 1, a solar cell connecting circuit having overcharge controlling function for connecting the output of the cell 1 to the battery 3, an AC power source 4, a charger 5 for connecting the power source 4 to the battery 3, an AC charge controller for monitoring the input current from the charger 5 to the battery 3 and the voltage of the battery 3 to control the charging from the AC power source, and a load connected to the output of the battery 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池、充電可
能な電池および交流電源を利用した無停電太陽光電源装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an uninterruptible solar power supply device using a solar cell, a rechargeable battery and an AC power source.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】無停電電
源装置として、商用電源断に対応してシステムの運用を
確保するために、発動発電機を利用した大規模な装置が
あり、病院や緊急通信システムなどの施設で利用されて
いる。太陽電池の利用は、水力、化石燃料や、原子力エ
ネルギーを利用する商用電源を補完できかつ、太陽から
のクリーンなエネルギーを利用できるので推奨されてい
る。また独立型太陽光発電システムは商用電源がない隔
絶した場所の電源として広く利用されている。本件発明
者等は、前記独立型太陽光発電システムとして、太陽電
池パネルを屋根とし、インバータ、二次電池を一体化し
たシステムを提案して、特願平7−125854号(発
明の名称,太陽光発電器)として出願している。本発明
の目的は、充電可能な電池、太陽電池を中心に形成し交
流電源をさらに前記充電可能な電池の充電に利用するこ
とにより、太陽電池の出力と交流電源間に相互補完の関
係を形成させて、電源としての信頼性を一層向上させた
無停電太陽光電源装置を提供することにある。
2. Description of the Related Art As an uninterruptible power supply, there is a large-scale device using an engine generator in order to ensure the operation of the system in response to the interruption of commercial power supply. It is used in facilities such as emergency communication systems. The use of solar cells is recommended as it can complement hydro, fossil fuels, and commercial power sources that use nuclear energy and can also use clean energy from the sun. In addition, the stand-alone photovoltaic power generation system is widely used as a power source in isolated areas where there is no commercial power source. The present inventors have proposed a system in which a solar cell panel is used as a roof, an inverter and a secondary battery are integrated as the independent solar power generation system, and Japanese Patent Application No. 7-125854 (name of the invention, solar Applied as a photovoltaic power generator). An object of the present invention is to form a rechargeable battery, a solar cell as a main component, and use an AC power supply for charging the rechargeable battery to form a complementary relationship between the output of the solar cell and the AC power supply. Accordingly, it is an object of the present invention to provide an uninterruptible solar power supply device with further improved reliability as a power supply.

【0003】[0003]

【課題を解決するための手段】前記目的を達成するため
に、本発明による無停電太陽光電源装置は、充電可能な
電池と、太陽電池と、前記太陽電池の出力を前記充電可
能な電池に接続する過充電制御機能をもつ太陽電池接続
回路と、交流電源と、前記交流電源を前記充電可能な電
池に接続する充電器と、前記充電可能な電池への充電器
からの入力電流および前記充電可能な電池の電圧を監視
して前記交流電源からの充電を制御する交流充電制御回
路と、前記充電可能な電池の出力に接続されている負荷
とから構成されている。
In order to achieve the above object, an uninterruptible solar power supply device according to the present invention provides a rechargeable battery, a solar cell, and an output of the solar cell to the rechargeable battery. A solar cell connection circuit having an overcharge control function for connection, an AC power supply, a charger connecting the AC power supply to the rechargeable battery, an input current from the charger to the rechargeable battery, and the charging It is composed of an AC charging control circuit that monitors the voltage of a battery that can be charged and controls charging from the AC power source, and a load that is connected to the output of the battery that can be charged.

【0004】[0004]

【発明の実施の形態】以下図面を参照して、本発明によ
る無停電太陽光電源装置の実施の形態を説明する。図1
は本発明による無停電太陽光電源装置のブロック図であ
る。充電可能な電池である二次電池3には太陽電池1か
らの電力が過充電制御機能をもつ太陽電池接続回路(過
充電コントローラ2)を介して接続されている。前記二
次電池3は、充電器5を介して交流電源4により充電さ
れる。交流充電制御回路が、前記電池3への充電器5か
らの入力電流および前記電池3の電圧を監視して前記交
流電源4からの充電を制御する。交流充電制御回路は、
電流監視6、電圧監視7およびそれらにより開閉される
リレー6a,7aを含んでいる。負荷9,10,11は
前記電池3に接続されている。なお交流の負荷があって
も、負荷には前記交流電源4から直接に交流電力が接続
されることはない。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an uninterruptible solar power supply device according to the present invention will be described below with reference to the drawings. FIG.
FIG. 1 is a block diagram of an uninterruptible solar power supply device according to the present invention. Electric power from the solar cell 1 is connected to the secondary battery 3 which is a rechargeable battery via a solar cell connection circuit (overcharge controller 2) having an overcharge control function. The secondary battery 3 is charged by the AC power source 4 via the charger 5. The AC charging control circuit monitors the input current from the charger 5 to the battery 3 and the voltage of the battery 3 to control the charging from the AC power supply 4. The AC charging control circuit
It includes a current monitor 6, a voltage monitor 7 and relays 6a, 7a which are opened and closed by them. The loads 9, 10, 11 are connected to the battery 3. Even if there is an AC load, AC power is not directly connected to the load from the AC power supply 4.

【0005】[0005]

【実施例】以下図2を参照して、実施例について詳しく
説明する。太陽電池1としては、最大出力64W,最適
動作電圧17.5V,最適動作電流は3.66Aのもの
を使用した。この出力は過充電コントローラ2を介して
二次電池3に接続されている。過充電コントローラ2の
出力電圧は14.9Vであって、二次電池電圧が14.
9Vに達すると太陽電池1をシャントする。二次電池3
はシール形サイクルサービス用バッテリであって、定格
は12Vで100Ah/5HRである。交流電源4とし
て例えばAC100V,50/60Hz(商用電源)が
適している。交流電源4はリレー接点6a,7aの並列
回路を介して充電器5に接続されている。充電器5は出
力電圧12V,出力電流10A,充電可能鉛蓄電池25
〜200Ah,入力電圧は90〜135VAC(48〜
62Hz)で、消費電流3Aである。そして、充電電圧
は13.8〜14.8Vにプリセット可能であり、充電
終始電圧は13.1〜14.2Vにプリセット可能であ
る。
EXAMPLE An example will be described in detail below with reference to FIG. As the solar cell 1, one having a maximum output of 64 W, an optimum operating voltage of 17.5 V and an optimum operating current of 3.66 A was used. This output is connected to the secondary battery 3 via the overcharge controller 2. The output voltage of the overcharge controller 2 is 14.9 V, and the secondary battery voltage is 14.
When it reaches 9V, the solar cell 1 is shunted. Secondary battery 3
Is a sealed cycle service battery, which is rated at 12 V and 100 Ah / 5HR. AC 100 V, 50/60 Hz (commercial power supply) is suitable as the AC power supply 4. The AC power supply 4 is connected to the charger 5 via a parallel circuit of relay contacts 6a and 7a. The charger 5 has an output voltage of 12V, an output current of 10A, and a rechargeable lead storage battery 25.
~ 200Ah, input voltage 90 ~ 135VAC (48 ~
The current consumption is 3 A at 62 Hz. Then, the charging voltage can be preset to 13.8 to 14.8V, and the charging end voltage can be preset to 13.1 to 14.2V.

【0006】電流監視6とリレー6aとして直流電流計
メータリレーが使用され、その定格は20A,電源AC
100Vであり、消費電力は3Wである。電圧監視7と
リレー7aとして電圧監視のために過放電コントローラ
を使用する。その定格は定格電圧12V,最大負荷電流
10A,消費電力0.4Wである。そして出力遮断電圧
の調整範囲は10V〜12Vである。リレー7aとして
一般のリレーが用いられる。ただし、長期連続通電のた
めAuメッキのツイン接点を使用し、接点電流の最大値
をAC100V,5Aとしており、コイルはDC12
V,消費電力0.9Wである。過放電コントローラ8は
負荷が直流の場合には前記電圧監視7と同様のものを使
用する。負荷が交流の場合にはインバータ9が過放電警
報,過放電出力遮断の機能をもっていることが多い。イ
ンバータ9の例として出力800W,出力電圧100V
RMS±5%,出力波形は疑似サイン波形であって、出
力周波数は50Hz±0.01%,入力電圧11〜15
VDCである。低電圧警報は約10.7Vであり、低電
圧出力遮断は10V,無負荷電流0.4A以下で行われ
る。
A DC ammeter meter relay is used as the current monitor 6 and the relay 6a, and its rating is 20 A, power supply AC.
The power consumption is 100 V and the power consumption is 3 W. An overdischarge controller is used for voltage monitoring as the voltage monitoring 7 and the relay 7a. The rating is a rated voltage of 12V, a maximum load current of 10A, and a power consumption of 0.4W. The adjustment range of the output cutoff voltage is 10V to 12V. A general relay is used as the relay 7a. However, Au-plated twin contacts are used for long-term continuous energization, the maximum contact current is AC100V, 5A, and the coil is DC12.
V, power consumption 0.9W. When the load is DC, the overdischarge controller 8 uses the same one as the voltage monitor 7. When the load is AC, the inverter 9 often has an over-discharge alarm and an over-discharge output cutoff function. As an example of the inverter 9, an output of 800 W and an output voltage of 100 V
RMS ± 5%, output waveform is pseudo sine waveform, output frequency is 50 Hz ± 0.01%, input voltage 11-15
VDC. The low voltage alarm is about 10.7V, and the low voltage output cutoff is performed at 10V and no load current 0.4A or less.

【0007】交流充電制御回路は、前述したように電流
監視6,電圧監視7およびそれらにより開閉されるリレ
ー6a,7aを含んでいる。電圧監視7により二次電池
3の電圧を監視し一定の値(例えば10.8V )より低下し
た場合にリレー7aにより交流電源4を接続し充電器5
を通して二次電池3を充電する。充電が開始される電流
監視6とそのリレー6aもオンとなり充電がすすみ、二
次電池3の電圧が上昇しかつ充電電流が減少(例えば0.
5A以下)になればリレーにより商用電源を遮断する。こ
の制御動作は二次電池3の状態のみを監視して行われて
おり、太陽電池1からの充電の動作とは独立している。
The AC charging control circuit includes the current monitor 6, the voltage monitor 7 and the relays 6a, 7a which are opened and closed by them as described above. The voltage of the secondary battery 3 is monitored by the voltage monitor 7, and when the voltage drops below a certain value (for example, 10.8V), the AC power source 4 is connected by the relay 7a to connect the charger 5
Through which the secondary battery 3 is charged. The current monitor 6 at which charging is started and its relay 6a are also turned on and charging proceeds, the voltage of the secondary battery 3 increases and the charging current decreases (for example, 0.
When it becomes 5A or less), commercial power is cut off by a relay. This control operation is performed by monitoring only the state of the secondary battery 3, and is independent of the operation of charging from the solar cell 1.

【0008】本発明の無停電太陽光電源装置は、商用電
源などの交流電源4と太陽光電源1が等価な電源として
利用可能であり、かつ両電源の弱点を補い合っており、
利用者は従来より優れた電源として無停電太陽光電源を
考えることができる。そして、これは集中型の商用電源
と分散型の太陽光電源が系統ネットワークのなかで最適
な結合をしているとはいえ、あたかも集中型の大型コン
ピュータと分散型のパソコンが高速通信を介して有機的
なネットワークを形成しているのと同様である。その観
点から次のような用途が考えられる。 1)遠隔計測用無停電太陽光電源 遠隔地での気象データ、地震データ、公害物質量などの
自動計測 災害による停電が発生しても太陽光電源が動作していれ
ば測定は継続できる。 2)パソコン用無停電太陽光電源 現在ある無停電電源装置(UPS)は5分から10分程
度の停電補償を想定しているが、数時間から数十時間の
停電補償を想定することができる。また無停電太陽光電
源の構成上、災害時停電や瞬時停電やサージ電圧のパソ
コンへの影響を最小限にできる。 3)ネットワーク・サーバ用無停電太陽光電源 ネットワーク・サーバは一日24時間稼働が必須であ
り、電源に対する負荷が大きいので、商用電源を主、太
陽光電源を従とした使い方になると思われるが、今後コ
ンデンサ電池やリチウムイオン電池などの高性能、大容
量の二次電池が利用できるようになれば有効に活用でき
る。現在無停電電源装置で使用されている鉛電池やアル
カリ電池でも、充電器出力電流量を負荷電流と同じ程度
に大きくし、かつ充電開始電圧を蓄電池の満充電近くに
してやれば、常に蓄電池が満充電近くで動作するので、
蓄電池寿命が長くなり、突然の停電の場合も蓄電池余裕
度が最大になる。つまり、これは現在の無停電電源のよ
うに充電器を整流器として使うのと同じことである。 4)家庭用無停電太陽光電源 マルチメディアの進展に伴い、家庭にパソコンや情報端
末が入ってきた場合に、瞬時停電やサージ電圧の影響を
なくすとともに、非常時の電源として有効なので、無停
電太陽光電源が各家庭に導入されることが期待できる。
コンデンサ電池が利用できるようになれば、エネルギー
取り出し効率が90%近くあるので、夜間の商用電力を
貯蔵して使えるようになり、商用電力使用量を節約でき
る。そして雨が多ければ商用電源の中の水力発電、日照
りが続けば太陽光発電というように安定した電源を確保
することができる。 5)防災無線用無停電太陽光電源 現在、防災無線はCVCFにより数分から数十分のバッ
テリのバックアップがあり、その後は自家発電で電気の
供給を受けるようになっているが、無停電太陽光電源を
利用すれば、自家発電の供給を受ける前により長時間の
電源供給を受けることができる。 6)商用電源不安定地域用無停電太陽光電源 開発途上国あるいは先進国においても、商用電源があっ
ても停電や電圧低下などがあり、一部不安定な地域があ
るので、そういうところでは太陽光電源を主とし、商用
電源を従とした無停電太陽光電源が有効である。
In the uninterruptible solar power supply device of the present invention, the AC power supply 4 such as a commercial power supply and the solar power supply 1 can be used as an equivalent power supply, and the weak points of both power supplies are complemented.
Users can think of uninterruptible solar power as a better power source than before. And although this is an optimal combination of a centralized commercial power source and a distributed solar power source in a grid network, it is as if a centralized large computer and a distributed personal computer are connected via high-speed communication. It is similar to forming an organic network. From this point of view, the following uses are possible. 1) Uninterruptible solar power supply for remote measurement Automatic measurement of meteorological data, seismic data, amount of pollutant substances, etc. at remote locations Even if a blackout occurs due to a disaster, measurement can be continued if the solar power supply is operating. 2) Uninterruptible solar power supply for personal computers Although the existing uninterruptible power supply (UPS) is supposed to provide power outage compensation for 5 to 10 minutes, power outage compensation for several hours to tens of hours can be expected. In addition, the uninterruptible solar power supply configuration minimizes the effects of disaster power outages, instantaneous power outages, and surge voltage on the PC. 3) Uninterruptible solar power supply for network server The network server is required to operate 24 hours a day, and the load on the power supply is heavy. , In the future, if high-performance, large-capacity secondary batteries such as capacitor batteries and lithium-ion batteries become available, they can be effectively used. Even with lead batteries and alkaline batteries currently used in uninterruptible power supplies, if the charger output current amount is made as large as the load current and the charging start voltage is set near the full charge of the storage battery, the storage battery will always be full. Since it works near charging,
The battery life is extended and the battery margin is maximized even in the event of a sudden power failure. In other words, this is the same as using a charger as a rectifier like the current uninterruptible power supplies. 4) Household uninterruptible solar power supply With the progress of multimedia, when a personal computer or information terminal enters the home, it is possible to eliminate the effects of momentary power failure and surge voltage, and it is effective as an emergency power source, so uninterruptible It can be expected that solar power will be introduced into each home.
If the condenser battery can be used, the energy extraction efficiency is close to 90%, so that the commercial power at night can be stored and used, and the commercial power consumption can be saved. And if there is a lot of rain, it is possible to secure a stable power source such as hydroelectric power generation in the commercial power supply, and solar power generation if the sunshine continues. 5) Uninterruptible solar power supply for disaster prevention radio At present, the disaster prevention radio has a backup of several minutes to several tens of minutes by CVCF, and after that, it is designed to receive electricity by private power generation. By using the power supply, it is possible to receive the power supply for a longer time before receiving the supply of the private power generation. 6) Uninterruptible solar power for unstable commercial power supply In developing and developed countries, there are some unstable areas due to blackouts and brownouts even when commercial power is available. An uninterruptible solar power source mainly consisting of an optical power source and a commercial power source is effective.

【0009】次に前述したデータの実施例装置に関連し
て数値を上げて利用例についてさらに説明する。ただ
し、 太陽電池 1 最大出力 64W 最適動作電圧 17.5V 最適動作電流 3.66A 二次電池 3 電圧 12V 容量 100Ah/5HR 充電器 5 出力電圧 12V 出力電流 10A 最大出力64Wの太陽電池による1日の発電量(年間平均) Pd(W)×Q×K ここで、Pd(W):太陽電池最大出力 Q:1日の日射量(kWh/m2 )(年間平均) 3.92 kWh/m2:東京で傾斜角 32.7 度 真南に設置した場合 K:補正係数 Kd : 直流補正係数 0.8 Kt : 温度補正係数 0.85 1KB : 蓄電池回路補正係数 0.8 ηINV : インバータ効率 0.9 1日の発電量(インバータがない場合) 64×3.92×0.8×0.85×0.8=136Wh 1日の発電量(インバータがある場合) 64×3.92×0.8×0.85×0.8×0.9=123Wh 利用例(1)計測器 DC12V 消費電力30W 1日24時間稼動 1日の消費電力量 30W×25h=720Wh 商用電源から供給する電力量 (720Wh−136Wh)÷0.85=687Wh (充電器効率:0.85) 負荷の消費電流 30W÷12V=2.5A(DC12V)
Next, an example of use will be further described by increasing the numerical value in relation to the above-described data embodiment device. However, solar cell 1 maximum output 64W optimum operating voltage 17.5V optimum operating current 3.66A secondary battery 3 voltage 12V capacity 100Ah / 5HR charger 5 output voltage 12V output current 10A solar battery with maximum output 64W Annual average) Pd (W) × Q × K where Pd (W): Maximum output of solar cell Q: Insolation amount per day (kWh / m 2 ) (annual average) 3.92 kWh / m 2 : Inclination angle in Tokyo When installed at the south of 32.7 degrees K: Correction coefficient Kd: DC correction coefficient 0.8 Kt: Temperature correction coefficient 0.85 1KB: Storage battery circuit correction coefficient 0.8 ηINV: Inverter efficiency 0.9 Daily power generation ( 64 × 3.92 × 0.8 × 0.85 × 0.8 = 136 Wh Daily power generation (with inverter) 64 × 3.92 × 0.8 × 0.85 × 0 .8 × 0.9 = 123Wh Example of use (1) Measuring instrument DC12V Electric power consumption 30W 24 hours a day operation Power consumption per day 30W × 25h = 720Wh Electric power supplied from commercial power source (720Wh-136Wh) ÷ 0.85 = 687Wh (charger efficiency: 0.85) Load current consumption 30W / 12V = 2.5A (DC12V)

【0010】商用電源が停電した場合の給電時間の予測 100Ah×0.7=70Ah(使用可能容量) 70Ah÷2=35Ah(停電時の平均的残容量) 35Ah÷2.7A=13h(平均的ケース)(DC1
1V) 最悪ケースとして二次電池の電圧が下がり、商用電源か
らの充電開始直前,あるいは直後に停電した場合、充電
開始電圧を残容量が10Ahあるときの電圧に設定する
ことにより、次のように計算できる。 10Ah÷2.8A=3.6h(最悪ケース)(DC10.8V) 利用例(2)パソコン AC100V 消費電力100W 1日6時間使用 1日の消費電力量 100W×6h=600Wh 商用電源から供給する電力量 (600Wh−123Wh)÷0.85=561Wh 負荷の消費電流 100W÷0.9÷12V=9.3A(DC12V) (インバータ効率:0.9) 商用電源が停電した場合の給電時間の予測 35Ah÷10A=3.5h(平均的ケース)(DC11V) 10Ah÷10.3A=0.97h(最悪ケース)(DC10.8V)
Prediction of power supply time when a commercial power source fails: 100 Ah × 0.7 = 70 Ah (usable capacity) 70 Ah / 2 = 35 Ah (average remaining capacity at power failure) 35 Ah ÷ 2.7 A = 13 h (average Case) (DC1
1V) In the worst case, when the voltage of the secondary battery drops and a power outage occurs immediately before or immediately after the start of charging from the commercial power source, the charging start voltage is set to the voltage when the remaining capacity is 10 Ah. Can be calculated. 10Ah ÷ 2.8A = 3.6h (worst case) (DC10.8V) Usage example (2) Personal computer AC100V Power consumption 100W 6 hours a day Power consumption per day 100W × 6h = 600Wh Electric power supplied from commercial power source Quantity (600Wh-123Wh) ÷ 0.85 = 561Wh Load consumption current 100W ÷ 0.9 ÷ 12V = 9.3A (DC12V) (Inverter efficiency: 0.9) Prediction of power supply time when commercial power supply fails 35Ah ÷ 10A = 3.5h (average case) (DC11V) 10Ah ÷ 10.3A = 0.97h (worst case) (DC10.8V)

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による無停電太陽光電源装置のブロック
図である。
FIG. 1 is a block diagram of an uninterruptible solar power supply device according to the present invention.

【図2】本発明による無停電太陽光電源装置の実施例を
示す回路ブロック図である。
FIG. 2 is a circuit block diagram showing an embodiment of an uninterruptible solar power supply device according to the present invention.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 過充電コントローラ 3 二次電池 4 商用(交流)電源 5 充電器 6 電流監視 7 電圧監視 8 過放電コントローラ 9 インバータ 10 交流負荷 11 直流負荷 1 Solar Battery 2 Overcharge Controller 3 Secondary Battery 4 Commercial (AC) Power Supply 5 Charger 6 Current Monitor 7 Voltage Monitor 8 Overdischarge Controller 9 Inverter 10 AC Load 11 DC Load

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 充電可能な電池と、 太陽電池と、 前記太陽電池の出力を前記充電可能な電池に接続する過
充電制御機能をもつ太陽電池接続回路と、 交流電源と、 前記交流電源を前記充電可能な電池に接続する充電器
と、 前記充電可能な電池への充電器からの入力電流および前
記充電可能な電池の電圧を監視して前記交流電源からの
充電を制御する交流充電制御回路と、 前記充電可能な電池の出力に接続されている負荷とから
構成した無停電太陽光電源装置。
1. A rechargeable battery, a solar cell, a solar cell connection circuit having an overcharge control function for connecting the output of the solar cell to the rechargeable battery, an AC power supply, and the AC power supply A charger connected to a rechargeable battery, and an AC charging control circuit for controlling the charging from the AC power supply by monitoring the input current from the charger to the rechargeable battery and the voltage of the rechargeable battery. An uninterruptible solar power supply device comprising a load connected to the output of the rechargeable battery.
JP7262377A 1995-09-14 1995-09-14 Uninterruptible solar power source Pending JPH0984278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7262377A JPH0984278A (en) 1995-09-14 1995-09-14 Uninterruptible solar power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7262377A JPH0984278A (en) 1995-09-14 1995-09-14 Uninterruptible solar power source

Publications (1)

Publication Number Publication Date
JPH0984278A true JPH0984278A (en) 1997-03-28

Family

ID=17374915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7262377A Pending JPH0984278A (en) 1995-09-14 1995-09-14 Uninterruptible solar power source

Country Status (1)

Country Link
JP (1) JPH0984278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395950C (en) * 2002-06-05 2008-06-18 欧姆龙株式会社 Transforming device of push-pull circuit type
JP2008148370A (en) * 2006-12-06 2008-06-26 Nippon Telegr & Teleph Corp <Ntt> Power supply system, control method of power supply system, and control program of power supply system
WO2010002743A3 (en) * 2008-07-02 2010-04-08 Nnw Ventures, Llc. Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods
KR101256132B1 (en) * 2011-03-31 2013-04-23 현대중공업 주식회사 Apparatus for desalinating seawater in container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395950C (en) * 2002-06-05 2008-06-18 欧姆龙株式会社 Transforming device of push-pull circuit type
JP2008148370A (en) * 2006-12-06 2008-06-26 Nippon Telegr & Teleph Corp <Ntt> Power supply system, control method of power supply system, and control program of power supply system
WO2010002743A3 (en) * 2008-07-02 2010-04-08 Nnw Ventures, Llc. Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods
US8227937B2 (en) 2008-07-02 2012-07-24 Nnw Ventures, Llc Uninterruptible power supplies, solar power kits for uninterruptible power supplies and related methods
KR101256132B1 (en) * 2011-03-31 2013-04-23 현대중공업 주식회사 Apparatus for desalinating seawater in container

Similar Documents

Publication Publication Date Title
KR101268356B1 (en) Storage system that maximizes the utilization of renewable energy
JP7009612B2 (en) Energy storage system
EP3087655B1 (en) Power supply system
JP5988079B2 (en) Control device, conversion device, control method, and power distribution system
JP4619298B2 (en) Power converter
US20170201098A1 (en) Photovoltaic microstorage microinverter
JP2013183612A (en) Control unit and power distribution system
KR20140137545A (en) Smart switchgear having energy storage module
JP3469678B2 (en) DC power supply system
JPH09163626A (en) Sunlight generator
CN211183508U (en) Power supply control device
JPH0965582A (en) Power supply system utilizing solar cell
JPH0984278A (en) Uninterruptible solar power source
JPH11332125A (en) Residential home power supply system
CN113541297A (en) New energy-based microgrid reverse power protection method and system
GB2474305A (en) Smoothing domestic electricity consumption using an electricity storage device
AU2005100876A4 (en) System and method for supplementing or storing electricity to or from an electrical power grid
CN220172917U (en) Standby power supply device for photovoltaic power generation
JP2003219578A (en) Uninterruptible power source system
CN116231833B (en) Multi-energy coupling non-disturbance uninterrupted AC/DC power supply system
CN218101411U (en) Unattended hydropower station diesel generator starting battery management device
CN219145023U (en) Power supply system
KR20140058770A (en) Method and system for operation mode decision of power management system
CN216599126U (en) Portable emergency power supply suitable for 10kV distribution automation feeder terminal FTU
JPH10201130A (en) Power generation installation making use of solar energy