JPH0982200A - Thermal overload relay - Google Patents

Thermal overload relay

Info

Publication number
JPH0982200A
JPH0982200A JP25941095A JP25941095A JPH0982200A JP H0982200 A JPH0982200 A JP H0982200A JP 25941095 A JP25941095 A JP 25941095A JP 25941095 A JP25941095 A JP 25941095A JP H0982200 A JPH0982200 A JP H0982200A
Authority
JP
Japan
Prior art keywords
bimetal
heater
heat
overload relay
thermal overload
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25941095A
Other languages
Japanese (ja)
Inventor
Toshikatsu Oogami
聡克 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25941095A priority Critical patent/JPH0982200A/en
Publication of JPH0982200A publication Critical patent/JPH0982200A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/14Electrothermal mechanisms
    • H01H71/16Electrothermal mechanisms with bimetal element
    • H01H71/164Heating elements

Landscapes

  • Breakers (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the performance of an indirectly heated thermal overload relay in transferring heat from a heater to a bimetal. SOLUTION: A heat-transfer plate 8 is provided which bridges a part of the portion between a heater 1 and a bimetal 6 placed parallelly to the heater with a gap between them. The heat of the heater 1 is therefore imparted to the bimetal 6 by heat transfer via the gap and also by heat conduction through the plate 8, resulting in enhanced heat-transfer performance and the amount and speed of curving of the bimetal 6 are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電流が通流する
ヒータの発熱によりバイメタルを湾曲させて接点の切り
換えを行う熱動形過負荷継電器(以下、サーマルリレー
という)に関し、特に傍熱形のサーマルリレーのヒート
エレメントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal overload relay (hereinafter referred to as a thermal relay) which bends a bimetal by heat generation of a heater through which an electric current flows to switch contacts, and particularly to an indirectly heated type relay. The present invention relates to a heat element of a thermal relay.

【0002】[0002]

【従来の技術】バイメタル式のサーマルリレーにはバイ
メタルにヒータを巻き付けた巻線形(例えば実開平3−
7249号公報参照)と、ヒータとバイメタルとを空隙
を介して平行配置した傍熱形とがある。巻線形は伝熱効
率に優れる反面、バイメタルに巻き付け可能なヒータは
通電容量を大きくすることが困難なので小型のものに限
られ、定格電流が例えば30A以上については傍熱形が
採用されている。図7〜図9は従来の傍熱形サーマルリ
レーにおけるヒートエレメント部分の一相分を示すもの
で、図7は側面図、図8はその下面図、図9は要部斜視
図である。これらの図において、短冊形のヒータ1の一
端は抵抗溶接などにより接合された接続棒2を介してコ
字状の電源側端子3に接続され、他端は同じく接続棒4
を介して平板状の負荷側端子5に接続されている。
2. Description of the Related Art A bimetal type thermal relay has a winding type in which a heater is wound around a bimetal (for example, an actual flat type
7249), and an indirect heating type in which a heater and a bimetal are arranged in parallel with a gap. While the wire-wound type has excellent heat transfer efficiency, it is difficult to increase the current carrying capacity of the heater that can be wound around the bimetal, so it is limited to a small size, and the indirectly heated type is used for rated currents of 30 A or more, for example. 7 to 9 show one phase portion of a heat element portion in a conventional indirectly heated thermal relay, FIG. 7 is a side view, FIG. 8 is a bottom view thereof, and FIG. 9 is a perspective view of essential parts. In these drawings, one end of a strip-shaped heater 1 is connected to a U-shaped power source side terminal 3 via a connecting rod 2 joined by resistance welding or the like, and the other end is also connected to the connecting rod 4 similarly.
Is connected to the load-side terminal 5 having a flat plate shape.

【0003】電源側端子3及び負荷側端子5はそれぞれ
ねじ穴3a及び5aを持ち、図示しないモールドケース
に嵌め込みにより固定される。ヒータ1には空隙を介し
てバイメタル6が平行配置され、このバイメタル6は一
端に抵抗溶接などにより接合された支え金具7を介して
モールドケースに固定される。図示ヒートエレメント部
分において電流経路は、電源側端子3→接続棒2→ヒー
タ1→接続棒4→負荷側端子5の順で形成される。そし
て、この電流経路を通流する電流により発熱したヒータ
1から空気層を介してバイメタル6に熱が伝達される
と、これにより温度上昇して湾曲したバイメタル6は図
示しない伝達板を介して接点反転機構を作動させて接点
を切り換える。
The power supply side terminal 3 and the load side terminal 5 have screw holes 3a and 5a, respectively, and are fixed by being fitted into a mold case (not shown). A bimetal 6 is arranged in parallel with the heater 1 with a gap therebetween, and the bimetal 6 is fixed to the mold case via a support metal fitting 7 joined to one end by resistance welding or the like. In the heat element portion shown in the figure, the current path is formed in the order of the power source side terminal 3, the connecting rod 2, the heater 1, the connecting rod 4, and the load side terminal 5. When heat is transferred from the heater 1 that has generated heat due to the current flowing through this current path to the bimetal 6 via the air layer, the temperature of the bimetal 6 that has risen due to this heat is curved and the bimetal 6 contacts through a transfer plate (not shown). The reversing mechanism is activated to switch the contact.

【0004】図10〜図12は別の従来例のヒートエレ
メント部分を示すもので、図10は側面図、図11はそ
の下面図、図12は要部斜視図である。このサーマルリ
レーの図7〜図9の従来例との相違は、負荷側端子5と
支え金具7とが一部品に形成され、ヒータ1は一端でバ
イメタル6と一緒に抵抗溶接などで支え金具7に接合さ
れて接続棒4が省かれている点である。従って、電流経
路は、電源側端子3→接続棒2→ヒータ1→バイメタル
6→負荷側端子5の順になる。この場合、バイメタル6
はヒータ1から空気層を介しての熱伝達の他、接合点で
の熱伝導と自らの若干の発熱とにより加熱されて湾曲す
る。
10 to 12 show another conventional heat element portion. FIG. 10 is a side view, FIG. 11 is a bottom view of the same, and FIG. 12 is a perspective view of a main part. This thermal relay is different from the conventional example shown in FIGS. 7 to 9 in that the load side terminal 5 and the support metal 7 are formed as one component, and the heater 1 is supported at one end together with the bimetal 6 by resistance welding or the like. Is that the connecting rod 4 is omitted by being joined to. Therefore, the current path is in the order of the power source side terminal 3 → the connecting rod 2 → the heater 1 → the bimetal 6 → the load side terminal 5. In this case, bimetal 6
In addition to the heat transfer from the heater 1 through the air layer, it is heated and curved by the heat conduction at the joint point and its own slight heat generation.

【0005】[0005]

【発明が解決しようとする課題】ところで、バイメタル
式のサーマルリレーは動作特性として、定格電流付近の
過負荷でもバイメタルに十分な湾曲量が得られ、また定
格電流の数倍の過負荷では大きな湾曲スピードが得られ
ることが要求される。ところが、図7〜図9に示したよ
うな従来例においては、ヒータ1の総発熱量に対して空
気層を介してバイメタル6が受ける熱量の割合は少な
く、バイメタル6の大きな湾曲量と湾曲スピードを実現
することが困難であった。また、図10〜図12に示し
たような従来例は伝熱面では比較的有利である反面、負
荷側端子5に対する端子ねじの締め付け力でバイメタル
に位置ずれが生じやすく、動作特性が変化する危険があ
るという問題があった。そこで、この発明の課題は、傍
熱形のサーマルリレーにおいて、ヒータからバイメタル
への伝熱性能を向上して、バイメタルの大きな湾曲量と
湾曲スピードを得ることにある。
By the way, the operating characteristics of the bimetal type thermal relay are that the bimetal has a sufficient bending amount even under an overload in the vicinity of the rated current, and a large bending amount occurs under an overload of several times the rated current. Speed is required. However, in the conventional example as shown in FIGS. 7 to 9, the ratio of the amount of heat received by the bimetal 6 via the air layer to the total amount of heat generated by the heater 1 is small, and the large amount of bending and the bending speed of the bimetal 6 are large. Was difficult to achieve. Further, the conventional example as shown in FIGS. 10 to 12 is relatively advantageous in terms of heat transfer surface, but the bimetal is easily displaced due to the tightening force of the terminal screw against the load side terminal 5, and the operation characteristics change. There was a problem of danger. Therefore, an object of the present invention is to improve the heat transfer performance from the heater to the bimetal in the indirectly heated type thermal relay to obtain a large bending amount and bending speed of the bimetal.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、両端が電源側及び負荷側の端子にそれ
ぞれ接続され、前記端子間を通流する電流により発熱す
る短冊形のヒータと、このヒータと空隙を介して平行配
置され、その熱を受けて湾曲するバイメタルとを備えた
熱動形過負荷継電器において、前記ヒータと前記バイメ
タルとを伝熱性の板材で部分的に橋絡するものとする。
このような手段によれば、ヒータの熱は空気層を介して
の熱伝達に加えて、板材を介しての熱伝導によりバイメ
タルに与えられるので、その分、伝熱性能が向上する。
In order to solve the above-mentioned problems, the present invention has a strip-shaped heater whose both ends are respectively connected to terminals on a power source side and a load side, and which generates heat by a current flowing between the terminals. In the thermal dynamic overload relay, the heater and the bimetal are arranged in parallel with the heater via an air gap and curved by receiving heat from the heater, and the heater and the bimetal are partially bridged by a heat conductive plate material. It shall be.
According to such a means, the heat of the heater is given to the bimetal by heat conduction through the plate material in addition to heat conduction through the air layer, so that the heat transfer performance is improved accordingly.

【0007】上記板材を設けることによりバイメタルに
若干の拘束力が生じるが、板材を柔軟な薄板とするとと
もに弛みを持たせることにより、バイメタルの湾曲には
ほとんど影響しないようにすることが可能である。その
場合、伝熱性の板材を複数枚の薄板を積層して構成すれ
ば、伝導熱量を増やす上で効果的である。また、伝熱性
の板材をヒータ及びバイメタルの長手方向に沿って2箇
所に設けることにより、その間ではバイメタルを経由す
る電流経路を形成してバイメタル自身の発熱によりその
温度上昇を促進することができるとともに、板材間のの
距離を調節することにより、発熱量を加減してサーマル
リレーの動作特性を変えることが可能となる。
Although a slight restraining force is generated in the bimetal by providing the above plate material, it is possible to make the plate material a flexible thin plate and to have slack, so that the bending of the bimetal is hardly affected. . In this case, it is effective to increase the amount of conductive heat by constructing a heat conductive plate material by laminating a plurality of thin plates. Further, by providing the heat conductive plate material at two positions along the longitudinal direction of the heater and the bimetal, a current path passing through the bimetal can be formed between them and the temperature rise can be promoted by heat generation of the bimetal itself. By adjusting the distance between the plate materials, it is possible to adjust the heat generation amount and change the operating characteristics of the thermal relay.

【0008】[0008]

【発明の実施の形態】図1はこの発明の実施の形態を示
すヒートエレメント部分の斜視図、図2は図1の側面
図、図3はその下面図である。これらの図において、図
7〜図9の従来例と相違するのは、ヒータ1とバイメタ
ル6とが伝熱性の板材8により部分的に橋絡されている
点である。伝熱性の板材8は例えば厚さ0.1mm の銅の薄
板をコ字状に折り曲げて形成され、その両脚部でヒータ
1及びバイメタル6にそれぞれ抵抗溶接などの手段で接
合されている。このような構成によれば、ヒータ1から
の熱は空隙の空気層を介しての熱伝達に加えて、板材8
からの熱伝導によってもバイメタル6に与えられ、その
湾曲量と湾曲スピードが向上する。
1 is a perspective view of a heat element portion showing an embodiment of the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a bottom view thereof. In these figures, the difference from the conventional example of FIGS. 7 to 9 is that the heater 1 and the bimetal 6 are partially bridged by a heat conductive plate member 8. The heat-conducting plate member 8 is formed by bending a copper thin plate having a thickness of 0.1 mm in a U-shape, and is joined to the heater 1 and the bimetal 6 by means of resistance welding or the like at both legs thereof. According to this structure, the heat from the heater 1 is transferred to the plate member 8 in addition to the heat transfer through the air layer in the void.
It is also given to the bimetal 6 by heat conduction from, and the bending amount and bending speed thereof are improved.

【0009】その場合、板材8は適当な緩みが設けられ
ており、またバイメタル6の熱変形力に比べれば十分に
柔軟なので、バイメタル6の湾曲が板材8に阻害される
ことはほとんどない。もっとも、バイメタル6は先端に
近いほど湾曲量が大きくなるから、板材8の取付位置は
バイメタル6の支え金具7との結合端に近い方がよい
が、支え金具7に接近すると板材8からの熱が支え金具
7に向かって逃げやすくなる。従って、板材8の取付位
置としては上記結合端からバイメタル6の長さの1/4 程
度離れた位置が適当である。
In this case, the plate member 8 is provided with an appropriate slack and is sufficiently flexible as compared with the thermal deformation force of the bimetal 6, so that the plate member 8 hardly obstructs the curve of the bimetal 6. However, since the amount of bending of the bimetal 6 increases as it gets closer to the tip, the mounting position of the plate material 8 should be closer to the joint end of the bimetal 6 with the supporting metal fitting 7. Can easily escape toward the support metal fitting 7. Therefore, as a mounting position of the plate member 8, a position separated from the above-mentioned joint end by about 1/4 of the length of the bimetal 6 is suitable.

【0010】図4は板材8が複数枚の薄板からなる実施
の形態を示す斜視図である。すなわち、板材8は厚さ0.
1mm の銅の薄板が数枚積層されて構成され、各薄板は一
点8aで抵抗溶接などで互いに接合されて一体化されて
いる。このような構成によれば、板材8の伝熱断面積が
増え、その分、伝熱効率が向上する。
FIG. 4 is a perspective view showing an embodiment in which the plate member 8 is composed of a plurality of thin plates. That is, the plate material 8 has a thickness of 0.
It is constructed by laminating several 1 mm thick copper thin plates, and each thin plate is integrated by being joined to each other at a point 8a by resistance welding or the like. According to such a configuration, the heat transfer cross-sectional area of the plate member 8 increases, and the heat transfer efficiency improves accordingly.

【0011】図5は板材8を長手方向に沿って2箇所に
設けた実施の形態を示す側面図、図6はその下面図であ
る。この場合、電流は左右の板材8の間ではヒータ1を
経由する他に、板材8(右)→バイメタル6→板材8
(左)の経路を通過する。従って、バイメタル6はヒー
タ1から受ける熱の他に、上記経路での自身の発熱によ
っても温度上昇し、湾曲量及び湾曲スピードがより向上
する。また、左右の板材8間の距離Lによりバイメタル
6自身の発熱量が変化するので、距離Lを調整してサー
マルリレーの動作特性を変えることができる。
FIG. 5 is a side view showing an embodiment in which the plate member 8 is provided at two locations along the longitudinal direction, and FIG. 6 is a bottom view thereof. In this case, the electric current goes through the heater 1 between the left and right plate materials 8 and also the plate material 8 (right) → bimetal 6 → plate material 8
Go through the route (left). Therefore, the temperature of the bimetal 6 rises not only by the heat received from the heater 1 but also by the heat generated by itself in the above path, and the bending amount and the bending speed are further improved. Moreover, since the amount of heat generated by the bimetal 6 itself changes depending on the distance L between the left and right plate members 8, the operating characteristics of the thermal relay can be changed by adjusting the distance L.

【0012】[0012]

【発明の効果】この発明によれば、空気層を介しての熱
伝達に加えて、伝熱性の板材を通しての熱伝導によって
もヒータの熱をバイメタルに与えることができるので、
傍熱形のサーマルリレーにあっても十分に大きなバイメ
タルの湾曲量と湾曲スピードを実現することができる。
その場合、板材を複数枚の薄板を積層して構成すれば伝
導熱量を増やすのに効果的であり、またヒータ及びバイ
メタルの長手方向に沿って2箇所に板材を設ければバイ
メタル自身の発熱が得られる上、板材間の距離を調整し
てサーマルリレーの動作特性を変えることが可能とな
る。
According to the present invention, in addition to the heat transfer through the air layer, the heat of the heater can be applied to the bimetal by the heat transfer through the heat conductive plate material.
Even in an indirectly heated thermal relay, a sufficiently large bimetal bending amount and bending speed can be realized.
In that case, it is effective to increase the amount of heat conduction by stacking a plurality of thin plates, and if the plates are provided at two locations along the longitudinal direction of the heater and the bimetal, the bimetal itself generates heat. Moreover, it is possible to change the operating characteristics of the thermal relay by adjusting the distance between the plate materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態を示すヒートエレメント
部分の斜視図である。
FIG. 1 is a perspective view of a heat element portion showing an embodiment of the present invention.

【図2】図1の側面図である。FIG. 2 is a side view of FIG.

【図3】図2の下面図である。FIG. 3 is a bottom view of FIG.

【図4】複数枚の薄板を積層して構成した板材の実施の
形態を示す斜視図である。
FIG. 4 is a perspective view showing an embodiment of a plate member configured by laminating a plurality of thin plates.

【図5】板材を2箇所に設けたこの発明の実施の形態を
示すヒートエレメント部分の側面図である。
FIG. 5 is a side view of a heat element portion showing an embodiment of the present invention in which plate members are provided at two places.

【図6】図5の下面図である。FIG. 6 is a bottom view of FIG.

【図7】従来例を示すヒートエレメント部分の側面図で
ある。
FIG. 7 is a side view of a heat element portion showing a conventional example.

【図8】図7の下面図である。FIG. 8 is a bottom view of FIG. 7;

【図9】図8の要部斜視図である。9 is a perspective view of an essential part of FIG.

【図10】別の従来例を示すヒートエレメント部分の側面
図である。
FIG. 10 is a side view of a heat element portion showing another conventional example.

【図11】図10の下面図である。11 is a bottom view of FIG. 10.

【図12】図11の要部斜視図である。FIG. 12 is a perspective view of a main part of FIG. 11.

【符号の説明】[Explanation of symbols]

1 ヒータ 2 接続棒 3 電源側端子 4 接続棒 5 負荷側端子 6 バイメタル 7 支え金具 8 伝熱性の板材 1 Heater 2 Connection rod 3 Power supply side terminal 4 Connection rod 5 Load side terminal 6 Bimetal 7 Support metal fittings 8 Heat transfer plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】両端が電源側及び負荷側の端子にそれぞれ
接続され、前記端子間を通流する電流により発熱する短
冊形のヒータと、このヒータと空隙を介して平行配置さ
れ、その熱を受けて湾曲するバイメタルとを備えた熱動
形過負荷継電器において、 前記ヒータと前記バイメタルとを伝熱性の板材で部分的
に橋絡したことを特徴とする熱動形過負荷継電器。
1. A strip-shaped heater, both ends of which are respectively connected to a power source side terminal and a load side terminal and generates heat by an electric current flowing between the terminals, and the heater is arranged in parallel with this heater via a gap, A thermal overload relay including a bimetal that receives and curves, wherein the heater and the bimetal are partially bridged by a heat conductive plate material.
【請求項2】伝熱性の板材を複数枚の薄板を積層して構
成したことを特徴とする請求項1記載の熱動形過負荷継
電器。
2. The thermal overload relay according to claim 1, wherein the heat conductive plate material is formed by laminating a plurality of thin plates.
【請求項3】伝熱性の板材をヒータ及びバイメタルの長
手方向に沿って2箇所に設けたことを特徴とする請求項
1又は請求項2記載の熱動形過負荷継電器。
3. The thermal overload relay according to claim 1 or 2, wherein heat conductive plate members are provided at two positions along the longitudinal direction of the heater and the bimetal.
JP25941095A 1995-09-12 1995-09-12 Thermal overload relay Pending JPH0982200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25941095A JPH0982200A (en) 1995-09-12 1995-09-12 Thermal overload relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25941095A JPH0982200A (en) 1995-09-12 1995-09-12 Thermal overload relay

Publications (1)

Publication Number Publication Date
JPH0982200A true JPH0982200A (en) 1997-03-28

Family

ID=17333735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25941095A Pending JPH0982200A (en) 1995-09-12 1995-09-12 Thermal overload relay

Country Status (1)

Country Link
JP (1) JPH0982200A (en)

Similar Documents

Publication Publication Date Title
KR100236901B1 (en) Thermal protector
JP2001035330A (en) Thermal protector
JP5281689B2 (en) Thermal protector
BRPI0901524A2 (en) contact device for a high resistance power contactor
JP2002124172A (en) Thermal protector
JPH0982200A (en) Thermal overload relay
US1780302A (en) Actuator for controlling devices
WO2018193667A1 (en) Thermally operated switch
JP7247796B2 (en) Bimetal device, overcurrent tripping device for circuit breaker incorporating this bimetal device, and method for forming heater for bimetal device
JP4317064B2 (en) Snow melting equipment
US3805207A (en) Thermoresponsive switch actuator
JP3813180B2 (en) Current connections for power semiconductor devices
JP3830664B2 (en) Circuit breaker
CN216698261U (en) Thermal overload release of circuit breaker
US3153125A (en) Snap-action switches having booily shifting of the line of tension of the strand portion
KR830000551Y1 (en) Bimetal of Inferior Overload Relay
WO2023135887A1 (en) Thermal relay
CN216849824U (en) Thermal-magnetic release and molded case circuit breaker
JP2006073405A (en) Heat element for thermal relay
JPH089878Y2 (en) Bimetal support device
JP3849387B2 (en) Thermal protector
US3447113A (en) Positive-acting lower power thermally-responsive bimetallic switch
JPH10106418A (en) Relay having overload preventive function
JP2021182502A (en) Circuit breaker
JP3303965B2 (en) Thermal overload relay