JPH0981163A - Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experiment - Google Patents
Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experimentInfo
- Publication number
- JPH0981163A JPH0981163A JP23165395A JP23165395A JPH0981163A JP H0981163 A JPH0981163 A JP H0981163A JP 23165395 A JP23165395 A JP 23165395A JP 23165395 A JP23165395 A JP 23165395A JP H0981163 A JPH0981163 A JP H0981163A
- Authority
- JP
- Japan
- Prior art keywords
- acoustic
- space
- vps
- design
- room
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、音響情報の伝達が
重要な室空間において音の聴き易い空間を創造するた
め、聴感実験に基づく音響物理指標を用いた音響設計方
法及び対象空間の室容積及び/又は室総表面積を変化さ
せて行う制御方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic design method using an acoustic physical index based on a listening experiment and a room volume of a target space in order to create a space in which sound is easily heard in a room space where transmission of acoustic information is important. And / or a control method performed by changing the total surface area of the chamber.
【0002】[0002]
【従来の技術】コンサートホール,教会,オペラハウ
ス,講演会場などのように音響情報の伝達が重要な室空
間(以下、音響空間という)を設計する場合、室容積と
主な室用途に対して最も適した最適残響時間が推奨され
ており、それを目標とする音響設計が行われてきた。図
3が、各研究者の経験則から得られた現在一般に認めら
れている各室用途に対する室容積[m3]と最適最適残
響時間[s]との関係を示すものである。適用範囲は、
室容積約100ないし100,000[m3]である。
室用途は、該線図において、A,Bはコンサートホー
ル、C,Dは教会、Eはオペラハウス、Fは会議室、G
は講演会場となっている。こうして得られた最適最適残
響時間を満足するように吸音性の内装材の量を選定する
ことで、音響設計が行われてきた。2. Description of the Related Art When designing a room space (hereinafter referred to as an acoustic space) where transmission of acoustic information is important, such as a concert hall, church, opera house, lecture hall, etc. The most suitable optimum reverberation time has been recommended, and acoustic design has been performed with the goal. FIG. 3 shows the relationship between the room volume [m 3 ] and the optimum optimum reverberation time [s] for each room application, which is generally accepted at present, obtained from the empirical rule of each researcher. The applicable range is
The chamber volume is about 100 to 100,000 [m 3 ].
In the diagram, A and B are concert halls, C and D are churches, E is an opera house, F is a conference room, and G is a room.
Is a lecture hall. Acoustic design has been performed by selecting the amount of sound absorbing interior material so as to satisfy the optimum optimum reverberation time thus obtained.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、図3に
示す室容積−最適最適残響時間線図は、教会やコンサー
トホール,講堂といった規模を想定しているので、ドー
ムのような100,000[m3]を越える大容積室空
間の音響設計は考慮されておらず、該線図の範囲外とな
る。この場合、範囲外の部分を既存の線分を延長するこ
とで室容積と対応する最適最適残響時間となるように音
響設計を行ってきたが、その最適最適残響時間は確証の
ないものであった。また、既往の大空間の最適残響時間
測定率例を参考に、設計目標値を決める方法もあるが、
その大空間が必ずしも適正な音響空間ではない。また、
最適残響時間を極力短くするといった設計方針も確証が
ない。However, since the room volume-optimum optimum reverberation time diagram shown in FIG. 3 assumes the scale of a church, a concert hall, an auditorium, it is 100,000 [m] like a dome. The acoustic design of a large volume room exceeding 3 ] is not considered, and is outside the range of the diagram. In this case, we have designed the acoustic so that the optimal reverberation time corresponding to the room volume can be obtained by extending the existing line segment outside the range, but the optimal reverberation time is uncertain. It was There is also a method of determining the design target value by referring to the example of the optimal reverberation time measurement rate in a large space that has been used.
The large space is not necessarily a proper acoustic space. Also,
There is no proof of the design policy of shortening the optimum reverberation time as much as possible.
【0004】そこで本発明は、コンピュータを用いて数
値解析によって様々な規模及び/又は音響仕様の異なる
空間の音場をシミュレーションし、音場シミュレータを
用いて様々な規模及び/又は音響性能の異なる空間を再
現し、それらの音場における聴き易さを求める聴感実験
を行い、その結果から最も聴き易い空間が得られる音響
物理指標を見出し、その指標を用いた音響設計・制御方
法を提供することを目的とする。Therefore, the present invention uses a computer to perform numerical analysis to simulate sound fields of various spaces having different scales and / or different acoustic specifications, and uses a sound field simulator to simulate spaces having different scales and / or different acoustic performances. By performing a listening experiment that seeks easiness of listening in those sound fields, finding an acoustic physical index that can obtain the most audible space from the results, and providing an acoustic design and control method using the index. To aim.
【0005】[0005]
【課題を解決するための手段】本発明は、以上の目的を
達成するために、既往の設計法では適用範囲外となる室
容積100,000[m3]を越える大きな空間に要求
される音響性能である聴き易さを最良とする設計指標を
明らかにするため、様々な規模及び/又は音響仕様の異
なる空間の音場をシミュレーションし、音場シミュレー
タを用いて様々な規模及び/又は音響性能の異なる空間
を再現し、それらの音場における聴き易さを求める聴感
実験を行い、その結果から見出した最も聴き易い空間が
得られる音響物理指標を用いて音響設計及び対象空間の
室容積と室総表面積を制御することを特徴とするもので
ある。更に、前記物理指標に、設計対象空間の室容積を
室総表面積で除することにより決定される値VPSと設
計対象空間の最適残響時間Tとの関係からなるVPS−
T曲線及び/又は設計対象空間の最適平均吸音率αとの
関係からなるVPS−α曲線を用いたことを特徴とする
ものである。また、前記制御方法が、一つの空間を様々
な用途として用いる際に、前記VPS−T曲線に従い、
可動の天井システム及び/又は可動の壁システムによっ
て対象空間の室容積及び/又は室総表面積を変化させて
行うことを特徴とするものである。In order to achieve the above object, the present invention is required for a large space exceeding a chamber volume of 100,000 [m 3 ] which is out of the applicable range in the existing design method. In order to clarify the design index that optimizes the ease of listening, which is the performance, a sound field in a space with various scales and / or different acoustic specifications is simulated, and various scales and / or acoustic performances are measured using a sound field simulator. Of different spaces, and conducting a listening experiment to find the easiness of hearing in those sound fields.The acoustic design and the volume of the target space and the volume of the target space were calculated using the acoustic physical index that found the most audible space from the results. It is characterized by controlling the total surface area. Further, the physical index is defined as VPS−, which is a relationship between a value VPS determined by dividing the room volume of the design target space by the total room surface area and the optimum reverberation time T of the design target space.
It is characterized by using a VPS-α curve having a relationship with the T curve and / or the optimum average sound absorption coefficient α of the design target space. Further, when the control method uses one space for various purposes, according to the VPS-T curve,
It is characterized in that the volume of the target space and / or the total surface area of the chamber are changed by a movable ceiling system and / or a movable wall system.
【0006】本発明に係わるVPS−T曲線及び/又は
VPS−α曲線を用いて音響設計・制御することによ
り、室容積が100,000[m3]を越えるような大
きな空間においても「聴き易さ」を最良とする音響空間
が創案される。また、そのような大空間で行われる多種
のイベントの内容,規模に対しても可動壁システム及び
/又は可動天井システム等を使用することによりVPS
−T曲線及び/又はVPS−α曲線に従って対象空間の
室容積と室総表面積を制御し、最適な音響空間を得るこ
とができる。By performing acoustic design and control using the VPS-T curve and / or VPS-α curve according to the present invention, even in a large space where the room volume exceeds 100,000 [m 3 ], "easy to hear" An acoustic space that maximizes the soundness is created. In addition, even for the contents and scales of various events performed in such a large space, by using a movable wall system and / or a movable ceiling system, VPS
An optimum acoustic space can be obtained by controlling the chamber volume and the total surface area of the target space according to the -T curve and / or the VPS-α curve.
【0007】[0007]
【発明の実施の形態】以下、本発明に係わる聴感実験に
基づく音の聴き易さの指標を用いた音響設計・制御方法
の実施の形態を図面を参照しながら詳述する。まず、聴
感実験について簡単に説明する。未だ、「聴き易さ」の
優劣を評価する物理量は明確になっていないため、実際
に異なる条件の音(アナウンス)をディジタル信号処理
により合成し直接聴き比べることにより、「聴き易さ」
の優劣を評価しようとする手法の一つである。具体的に
は、初めに室容積,室総表面積,最適残響時間をパラメ
ータとして変化させた場合の音源から受音点に至る伝達
関数を虚像法による数値計算で求める。求めた伝達関数
に、響きのついていない女性のアナウンスのフレーズ約
30秒をコンボリューションし、それぞれの条件の刺激
音(試験音)を作成する。この刺激音を音場シミュレー
タによって被験者に聴かせる。音場シミュレータとは、
受聴位置を取り囲むように配置した複数のスピーカか
ら、各方向から入射するに相当する音を放射すること
で、受聴位置の物理的特性及び聴感的な印象を再現する
再生システムである。この時の「聴き易さ」を1(非常
に聴き難い)から7(非常に聴き易い)の7段階の数字
で答えさせ、全被験者の回答の平均値をその刺激音に対
する「聴き易さ」の評価結果とする。BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a sound design / control method using an index of audibility of sound based on a hearing test according to the present invention will be described in detail below with reference to the drawings. First, the hearing experiment will be briefly described. Since the physical quantity for evaluating the superiority or inferiority of "easiness of hearing" has not been clarified yet, the sound "announcement" of different conditions is actually synthesized by digital signal processing and directly compared for listening.
This is one of the methods to evaluate the superiority or inferiority of. Specifically, first, the transfer function from the sound source to the sound receiving point when the room volume, the total surface area of the room, and the optimum reverberation time are changed as parameters is calculated by the virtual image method. The obtained transfer function is convoluted with a phrase of a female announcement without reverberation for about 30 seconds to create a stimulating sound (test sound) for each condition. The subject is made to hear this stimulus sound by the sound field simulator. What is a sound field simulator?
The reproduction system reproduces the physical characteristics of the listening position and the perceptual impression by radiating sounds corresponding to incidence from each direction from a plurality of speakers arranged so as to surround the listening position. The "easiness of listening" at this time was made to be answered in seven levels from 1 (very difficult to hear) to 7 (very easy to hear), and the average value of the responses of all the subjects was "easy to hear" for the stimulus sound. The evaluation result of
【0008】聴感実験の結果から、最適残響時間の設定
が同じでも「聴き易さ」はVPS(室容積/室総表面
積)により異なる。VPSに着目したのは、統計的に考
え方から平均自由行程4V/S(Vは室容積,Sは室総
表面積)が、反射した音が次の反射をするまでの平均伝
播距離となり、過去の経験から反射音密度とその反射音
の間隔が「聴き易さ」に影響することが想定されたため
である。また、「聴き易さ」の評価基準として後述のV
PS−T曲線及びVPS−α曲線が採用されるが、VP
S−T曲線はホール音響の分野で一般的に使われてきた
最適最適残響時間との係わりから直感的な判断をし易
い。一方、VPS−α曲線は、建築内装仕上を選定する
上で最適平均吸音率の設計目標値の決定を容易とする。From the results of the hearing test, the "easiness of listening" varies depending on the VPS (room volume / room total surface area) even when the optimum reverberation time is set. From a statistical perspective, the mean free path 4V / S (V is the chamber volume, S is the total surface area of the chamber) is the average propagation distance until the next reflection of the reflected sound. This is because, from experience, it was assumed that the reflected sound density and the interval between the reflected sounds affect the “easiness of listening”. In addition, as the evaluation standard of “easiness of listening”, V described later is used.
PS-T curve and VPS-α curve are adopted, but VP
The ST curve is easy to intuitively judge from the relationship with the optimum optimum reverberation time which is generally used in the field of hall acoustics. On the other hand, the VPS-α curve facilitates the determination of the design target value of the optimum average sound absorption coefficient when selecting the interior finish of the building.
【0009】VPS−T曲線は、横軸をVPS(室容積
/室総表面積)[m],縦軸を最適残響時間T[s]と
したものであり、聴感実験によって様々な最適残響時間
に対して「聴き易さ」が最良となるVPSをそれぞれ求
め、それらをプロットした点を包絡して得たものであ
る。VPSとTとの関係は、数1に示すように方程式
(実験式)でも表せる。VPS−α曲線は、数2に示す
アイリングの残響式を用いて、VPS−T曲線の最適残
響時間Tを最適平均吸音率αに変換して得られたもので
あり、数1の方程式から数3に示す方程式となる。In the VPS-T curve, the horizontal axis represents VPS (room volume / total chamber surface area) [m] and the vertical axis represents the optimum reverberation time T [s]. On the other hand, the VPSs with the best "listening easiness" are obtained, and the plotted points are enveloped. The relationship between VPS and T can also be expressed by an equation (empirical formula) as shown in Equation 1. The VPS-α curve is obtained by converting the optimum reverberation time T of the VPS-T curve into the optimum average sound absorption coefficient α using the Eyring's reverberation equation shown in Formula 2, and from the equation of Formula 1. The equation is shown in Equation 3.
【0010】[0010]
【数1】 [Equation 1]
【0011】[0011]
【数2】 [Equation 2]
【0012】[0012]
【数3】 (Equation 3)
【0013】図1は、VPS−T曲線を示す。横軸は室
容積Vを室総表面積Sで除したV/Sの値VPS[m]
を表し、縦軸は最適残響時間T[s]を表す。図中、
「○」プロットは従来の実施設計例で、aは音楽アリー
ナ、bはイベントホール、c,dはプロ用大型スポーツ
ドーム、e,fは市民向けスポーツドーム(空席時)で
ある。ここで、アリーナであるaはVPS−T曲線上に
あり、ドームであるcは曲線から外れているというよう
に、これらのプロットと曲線の位置関係は、それぞれの
音響空間に対するこれまでの聴感的な印象や実際の評価
と一致していることからも、この曲線は実情に合ってい
るという、幅広く適用できることが想定される。「●」
プロットはVPS−T曲線に従って適正空間規模に制御
するための天井可変システム,壁可変システム,ムービ
ングブロックと呼ぶ座席移動システムを用いた大空間建
物の事例で、gはアリーナ(5,000人)、hはアリ
ーナ(20,000人)、iはスタジアム(30.00
0人)と用途に応じて規模を可変したときのものであ
る。なお、VPSが15を越える範囲を示していない
が、これは聴感実験の結果、VPSが15を越すと聴き
取り難いという判定が多く現れるようになるため、VP
S−T曲線の適用範囲外とした。FIG. 1 shows the VPS-T curve. The horizontal axis is the value of V / S obtained by dividing the chamber volume V by the total surface area S of the chamber VPS [m]
And the vertical axis represents the optimum reverberation time T [s]. In the figure,
“O” plot is a conventional implementation design example, a is a music arena, b is an event hall, c and d are large sports dome for professionals, and e and f are sports dome for citizens (when seats are empty). Here, the arena a is on the VPS-T curve, and the dome c is out of the curve. The positional relationship between these plots and the curve is such that the auditory perception of each acoustic space is different. It is assumed that this curve fits the actual situation and can be widely applied because it is consistent with the impression and the actual evaluation. "●"
The plot is an example of a large space building that uses a variable ceiling system, a variable wall system, and a seat moving system called a moving block for controlling a proper space scale according to the VPS-T curve, and g is an arena (5,000 people), h is the arena (20,000 people), i is the stadium (30.00
0) and the scale was changed according to the purpose. It should be noted that although the range where VPS exceeds 15 is not shown, as a result of the hearing test, it is often judged that it is difficult to hear when VPS exceeds 15, so VP
It was out of the applicable range of the ST curve.
【0014】図2、VPS−α曲線を示す。横軸はVP
S[m]を表し、縦軸は最適平均吸音率αを表す。図
中、「○」プロットは従来の実施設計例で、a′は音楽
アリーナ、b′はイベントホール、c′,d′はプロ用
大型スボーツドーム、e′,f′は市民向けスポーツド
ーム(空席時)である。VPS−T曲線と同じく、この
曲線も実情に合っているといえ、幅広く適用できること
が想定される。「●」プロットはVPS−T曲線に従っ
て適正空間規模に制御するための天井可変システム,壁
可変システム,ムービングブロックと呼ぶ座席移動シス
テムを用いた大空間建物の事例で、h′はアリーナ(2
0,000人)、i′はスタジアム(30,000人)
と用途に応じて規模を可変したときのものである。な
お、VPSが15を越える範囲を示していないが、これ
は聴感実験の結果、VPSが15を越すと聴き取り難い
という判定が多く現れるようになるため、VPS−α曲
線の適用範囲外とした。FIG. 2 shows the VPS-α curve. Horizontal axis is VP
S [m], and the vertical axis represents the optimum average sound absorption coefficient α. In the figure, the "○" plot is a conventional design example, a'is a music arena, b'is an event hall, c'and d'is a large professional sports dome, and e'and f'are sports domes for citizens ( (When seats are empty). Like the VPS-T curve, it can be said that this curve fits the actual situation and is widely applicable. The “●” plot is an example of a large space building using a ceiling variable system, a wall variable system, and a seat moving system called a moving block for controlling a proper space scale according to a VPS-T curve, and h ′ is an arena (2
I) is a stadium (30,000)
And when the scale is changed according to the application. It should be noted that although the range where VPS exceeds 15 is not shown, this is outside the applicable range of the VPS-α curve because, as a result of the hearing test, it is often found that it is difficult to hear when VPS exceeds 15. .
【0015】VPS−T曲線及び/又はVPS−α前線
を用いた具体的な音響設計・制御方法について説明す
る。例えば、縦,横,高さが100[m],100
[m]、30[m]の大空間建築を設計する場合には室
容積Vは300,000[m3]となり室総表面積Sは
32,000[m2]となる。従って、VPSは9.4
[m]となる。VPSが決定した段階で、設計月票値と
してVPS−T曲線から最適残響時間を求めるか、VP
S−α曲線から最適平均吸音率を求める。VPS−T曲
線を採用すると、図1より「聴き易さ」の良い最適残響
時間Tは約2.7[s]となる。次に、これが建築仕様
として実現できるか否かを判定し、内装仕上の音響性能
上の制限から、室容積あるいは室総表面積を変え、所要
のVPSになるように設計変更、調整をすることにな
る。なお、内装仕上をどうするかという時には素早く最
適平均吸音率からも参照可能なVPS−α曲線を利用す
るということもできる。A specific acoustic design / control method using the VPS-T curve and / or VPS-α front will be described. For example, the height, width, and height are 100 [m], 100
When designing a large space building of [m] and 30 [m], the chamber volume V is 300,000 [m 3 ] and the total chamber surface area S is 32,000 [m 2 ]. Therefore, VPS is 9.4.
[M]. At the stage where VPS is determined, the optimum reverberation time is calculated from the VPS-T curve as the design monthly vote value, or
The optimum average sound absorption coefficient is obtained from the S-α curve. When the VPS-T curve is adopted, the optimum reverberation time T with good "audibility" is about 2.7 [s] as shown in FIG. Next, it is decided whether or not this can be realized as a building specification, and due to the limitation of the acoustic performance of the interior finish, the room volume or the total surface area of the room will be changed, and the design will be changed and adjusted to achieve the required VPS. Become. It should be noted that when deciding what to do with the interior finish, it can be said that the VPS-α curve that can be referred to quickly from the optimum average sound absorption coefficient is used.
【0016】[0016]
【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)音響仕様の異なる空間の音場を音場シミュレータに
用いて再現し、その時の「聴き易さ」の最適値を聴感実
験によって検証した音響設計指標になるため、従来に比
べて確証の高い音響空間を形成することができる。 2)「聴き易さ」の最適値を満足する建築仕様を吟味し
ながら音響空間の設計・制御を行うことができるため、
具体性の高い音響空間の設計が可能になる。 3)100,000[m3]を越える大空間の設計も可
能となる。 4)可動壁システム,可動天井システムなどにより、用
途によって対象空間の室容積及び/又は室総表面積を制
御し、最良な音響空間の提供が可能になる。According to the present invention, the following remarkable effects are obtained. 1) The sound field in a space with different acoustic specifications is reproduced using a sound field simulator, and the optimum value of "easiness of listening" at that time becomes a sound design index verified by a hearing test, so it is more reliable than before. An acoustic space can be formed. 2) It is possible to design and control the acoustic space while examining the architectural specifications that satisfy the optimum value of "easiness of listening".
This makes it possible to design a highly specific acoustic space. 3) It is possible to design a large space exceeding 100,000 [m 3 ]. 4) The movable wall system, the movable ceiling system, and the like allow the volume of the target space and / or the total surface area of the chamber to be controlled depending on the application, thereby providing the best acoustic space.
【図1】「聴き易さ」の最良値を求めるためのVPS−
T曲線。FIG. 1 VPS-for obtaining the best value of “easiness of listening”
T curve.
【図2】「聴き易さ」の最良値を求めるためのVPS−
α曲線。FIG. 2 is a VPS- for obtaining the best value of “easiness of listening”.
α curve.
【図3】従来の音響設計に用いられる室容積−最適最適
残響時間線図。FIG. 3 is a room volume-optimum optimum reverberation time diagram used in conventional acoustic design.
a 音楽アリーナ b イベントホール c プロ用大型スポーツドーム d プロ用大型スポーツドーム e 市民向けスポーツドーム(空席時) f 市民向けスポーツドーム(空席時) g アリーナ(5,000人) h アリーナ(20,000人) i スタジアム(30,000人) a′ 音楽アリーナ b′ イベントホール c′ プロ用大型スポーツドーム d′ プロ用大型スポーツドーム e′ 市民向けスポーツドーム(空席時) f′ 市民向けスポーツドーム(空席時) h′ アリーナ(20,000人) i′ スタジアム(30,000人) A コンサートホール B コンサートホール C 教会 D 教会 E オペラハウス F 会議室 G 講演会場 a Music arena b Event hall c Large sports dome for professionals Large sports dome for professionals e Sports dome for citizens (empty seat) f Sports dome for citizens (empty seat) g Arena (5,000 people) h Arena (20,000) I) Stadium (30,000 people) a'Music Arena b'Event Hall c'Professional large sports dome d'Professional large sports dome e'Citizen sports dome (empty seat) f'Citizen sports dome (vacant seat) H) Arena (20,000 people) i'Stadium (30,000 people) A Concert Hall B Concert Hall C Church D Church E Opera House F Conference Room G Lecture Room
Claims (4)
ことを特徴とする聴感実験に基づく音の聴き易さの指標
を用いた音響設計・制御方法。1. An acoustic design / control method using an index of audibility of sound based on a hearing test, wherein an acoustic physical index based on a hearing test is used.
設計対象空間の室容積を室総表面積で除することにより
決定される値VPSと設計対象空間の最適残響時間Tと
の関係からなるVPS−T曲線を用いた方法である聴感
実験に基づく音の聴き易さの指標を用いた音響設計方
法。2. A design method using the acoustic physical index,
A sound based on a audible experiment, which is a method using a VPS-T curve consisting of the relationship between the value VPS determined by dividing the room volume of the design target space by the total surface area of the room and the optimum reverberation time T of the design target space A sound design method using an index of audibility.
設計対象空間の室容積を室総表面積で除することにより
決定される値VPSと設計対象空間の最適平均吸音率α
との関係からなるVPS−α曲線を用いた方法である聴
感実験に基づく音の聴き易さの指標を用いた音響設計方
法。3. A design method using the acoustic physical index,
The value VPS determined by dividing the room volume of the design target space by the total surface area of the room and the optimum average sound absorption coefficient α of the design target space
A sound design method using an index of audibility of sound based on a hearing test, which is a method using a VPS-α curve having a relationship with
として用いる際に、前記VPS−T曲線及び/又はVP
S−α曲線に従い、可動天井システム及び/又は可動壁
システムによって対象空間の室容積及び/又は室総表面
積を変化させて行う音響制御方法。4. The VPS-T curve and / or VP when the control method uses one space for various purposes.
An acoustic control method performed by changing a room volume and / or a total surface area of a target space by a movable ceiling system and / or a movable wall system according to an S-α curve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23165395A JPH0981163A (en) | 1995-09-08 | 1995-09-08 | Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experiment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23165395A JPH0981163A (en) | 1995-09-08 | 1995-09-08 | Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experiment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0981163A true JPH0981163A (en) | 1997-03-28 |
Family
ID=16926871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23165395A Pending JPH0981163A (en) | 1995-09-08 | 1995-09-08 | Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experiment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0981163A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105893A (en) * | 2001-09-28 | 2003-04-09 | Taisei Corp | Indoor acoustic designing method |
FR2895542A1 (en) * | 2005-12-28 | 2007-06-29 | Audition Intelligibilite Acous | Room e.g. class room, acoustic optimization data generating method for e.g. audition field, involves determining acoustic optimization of room from acoustic characteristics, and providing optimization data related to acoustic optimization |
US9723419B2 (en) | 2014-09-29 | 2017-08-01 | Bose Corporation | Systems and methods for determining metric for sound system evaluation |
WO2023027152A1 (en) * | 2021-08-26 | 2023-03-02 | 日本音響エンジニアリング株式会社 | Sound-field evaluation method, sound-field evaluation program, and computer-readable recording medium recording same |
-
1995
- 1995-09-08 JP JP23165395A patent/JPH0981163A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003105893A (en) * | 2001-09-28 | 2003-04-09 | Taisei Corp | Indoor acoustic designing method |
FR2895542A1 (en) * | 2005-12-28 | 2007-06-29 | Audition Intelligibilite Acous | Room e.g. class room, acoustic optimization data generating method for e.g. audition field, involves determining acoustic optimization of room from acoustic characteristics, and providing optimization data related to acoustic optimization |
US9723419B2 (en) | 2014-09-29 | 2017-08-01 | Bose Corporation | Systems and methods for determining metric for sound system evaluation |
WO2023027152A1 (en) * | 2021-08-26 | 2023-03-02 | 日本音響エンジニアリング株式会社 | Sound-field evaluation method, sound-field evaluation program, and computer-readable recording medium recording same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Effects of room acoustics on the intelligibility of speech in classrooms for young children | |
Gade | Acoustics in halls for speech and music | |
Bech | Timbral aspects of reproduced sound in small rooms. I | |
KR20200047414A (en) | Systems and methods for modifying room characteristics for spatial audio rendering over headphones | |
US20040247134A1 (en) | System and method for compatible 2D/3D (full sphere with height) surround sound reproduction | |
Martellotta | Subjective study of preferred listening conditions in Italian Catholic churches | |
Akeroyd et al. | The detection of differences in the cues to distance by elderly hearing-impaired listeners | |
Lindau | Binaural resynthesis of acoustical environments: Technology and perceptual evaluation | |
Hidaka et al. | Acoustical design of the Tokyo Opera City (TOC) concert hall, Japan | |
Hodgson et al. | Comparison of predicted, measured and auralized sound fields with respect to speech intelligibility in classrooms using CATT-Acoustic and ODEON | |
Cabrera et al. | Auditory Versus Visual Spatial Impression: A Study of Two Auditoria. | |
Tommasini et al. | A computational model to implement binaural synthesis in a hard real-time auditory virtual environment | |
Whitlock et al. | Speech intelligibility in classrooms: Specific acoustical needs for primary school children | |
JPH0981163A (en) | Acoustic design and control method using index for easiness of sound listening based on acoustic feeling experiment | |
Beranek | Concert hall design: Some considerations. | |
Lindau | Binaural resynthesis of acoustical environments | |
Arias | Acoustical Parameters Comparison of Two Halls:" Teatro Argentino de La Plata" and" Teatro Margarita Xirgu | |
Begault et al. | Early reflection thresholds for anechoic and reverberant stimuli within a 3-D sound display | |
JPH0338695A (en) | Audible in-room sound field simulator | |
Ziemer et al. | Spatial Acoustics | |
EDVALDSSON et al. | Latency-free real-time auralisation in hemi-anechoic chambers | |
Robinson et al. | Investigations of architectural configurations and acoustic parameters for multiple sources | |
Fidecki | Room Acoustics and Sound Reinforcement Systems | |
Utami | Characterizing the audibility of sound field with diffusion in architectural spaces | |
Ahnert et al. | Room Acoustics and Sound System Design |