JPH098029A - Insulation film containing fluorine and formation thereof - Google Patents

Insulation film containing fluorine and formation thereof

Info

Publication number
JPH098029A
JPH098029A JP14904795A JP14904795A JPH098029A JP H098029 A JPH098029 A JP H098029A JP 14904795 A JP14904795 A JP 14904795A JP 14904795 A JP14904795 A JP 14904795A JP H098029 A JPH098029 A JP H098029A
Authority
JP
Japan
Prior art keywords
fluorine
insulating film
plasma
sih
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14904795A
Other languages
Japanese (ja)
Inventor
Haruhiko Ikesu
春彦 生巣
Tadashi Nakano
正 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14904795A priority Critical patent/JPH098029A/en
Publication of JPH098029A publication Critical patent/JPH098029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE: To obtain an insulation film which has both characteristics of a low dielectric coefficient and low hygroscopicity and is also excellent in flatness by making such a constitution that both Si-H coupling and Si-F coupling are included wherein SiH(OR)3 and fluorine-containing substance are simultaneously made into plasma, reacted and deposited. CONSTITUTION: Vapor of SiH(OR)3 having an arbitrary alkyl radical with R as a silicon source is used, and the silicon source is made into plasma simultaneously with gas containing fluorine to have them reacted and deposited. Such an insulation film is to include both Si-H coupling and Si-F coupling. For example, a substrate 7 is fixed to a heater 5 in a reduced pressure chamber 1 and heated while exhaustion is made from an exhaust port 6. Then while process gas 10 (O2 ), the silicon source (SiH(C2 H5 )3 +N2 ) and a fluorine source 9 (C2 F6 ) are supplied to parallel plate electrode 2 which also serves as a gas supply shower nozzle, RF is applied simultaneously from a plasma power source 3 to generate plasma.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特に超LSI半導体装置の配線層間絶縁
膜や表面保護膜に用いられるフッ素を含有する絶縁膜及
びその形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and more particularly to an insulating film containing fluorine used for a wiring interlayer insulating film and a surface protective film of a VLSI semiconductor device and a method of forming the same.

【0002】[0002]

【従来の技術】半導体装置の製造における配線層間絶縁
膜や表面保護膜の形成工程には、半導体基板をプラズマ
中に置き、気相反応を用いて絶縁膜を形成するプラズマ
CVD法が多用されている。なかでもケイ素源にTEO
S(テトラエトキシシラン;Si(OC2H5)4)を用いた、い
わゆるPE(Plasma enhanced )−TEOS−CVDプ
ロセスは、下地段差の埋め込み性等の点で、従来のシラ
ン(SiH4)を用いた方法より優れているため、今日広く
実用に供されている。
2. Description of the Related Art In a process of forming a wiring interlayer insulating film and a surface protective film in the manufacture of a semiconductor device, a plasma CVD method of placing a semiconductor substrate in plasma and forming an insulating film by using a gas phase reaction is often used. There is. Above all, TEO as a silicon source
The so-called PE (Plasma enhanced) -TEOS-CVD process using S (tetraethoxysilane; Si (OC 2 H 5 ) 4 ) uses conventional silane (SiH 4 ) in view of the filling property of the underlying step. Since it is superior to the method used, it is widely used today.

【0003】しかし、近年半導体素子の微細化が進んだ
結果、素子そのものの動作遅延は減少してきているのに
対し、配線の抵抗及び容量に起因する配線遅延はむしろ
増大傾向にあり、近い将来に配線遅延が半導体装置の動
作速度を律速するであろうとの危惧がもたれ始めた。こ
れを避ける手段として、層間絶縁膜の誘電率を低減する
ことが知られている。そのひとつは、従来用いられてい
るSi-O系の絶縁膜にフッ素を導入してSiOF膜を形成する
方法、例えば応用物理学会 '94春 29p-Xv-14に開示され
るように、C2F6などのフッ素を含むガスをPE−TEO
S−CVDプロセスに導入して絶縁膜中にF原子を混入
する方法である。これによれば、高い埋め込み段差性が
得られるとともに、比誘電率を低減することができる。
このようにして絶縁膜をSiOF膜化することによる誘電率
の低減理由は、導入したF原子とSi原子が結合してSi-F
結合をつくり、これが分子の分極を変化させるためであ
ると考えられている。なお、絶縁膜へのフッ素の導入に
関しては、ケイ素源にSiF4を用い、O2又はN2O との混合
雰囲気中でプラズマCVDを行う方法もある(特開平6-
333919号公報参照)。
However, as semiconductor devices have been miniaturized in recent years, the operation delay of the device itself has decreased, whereas the wiring delay due to the resistance and capacitance of the wiring tends to increase, and in the near future. There was a fear that wiring delay would limit the operating speed of semiconductor devices. As a means for avoiding this, it is known to reduce the dielectric constant of the interlayer insulating film. One of them is a method of forming a SiOF film by introducing fluorine into a conventionally used Si-O insulating film, for example, C 2 as disclosed in Applied Physics Society '94 Spring 29p-Xv-14. A gas containing fluorine such as F 6 is used for PE-TEO
This is a method of introducing F atoms into the insulating film by introducing it into the S-CVD process. According to this, a high buried step difference can be obtained, and the relative permittivity can be reduced.
The reason why the dielectric constant is reduced by forming the insulating film into a SiOF film in this manner is that the introduced F atoms and Si atoms are combined to form Si-F.
It is believed to create bonds, which change the polarization of the molecule. Regarding the introduction of fluorine into the insulating film, there is also a method in which SiF 4 is used as a silicon source and plasma CVD is performed in a mixed atmosphere with O 2 or N 2 O (JP-A-6-
(See Japanese Patent No. 333919).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、その反
面Si-F結合は絶縁膜の吸湿性を高める性質をも有してお
り、吸湿の結果フッ素が該絶縁膜から離脱するので、せ
っかく低下した誘電率が再び上昇してしまう。またこの
とき遊離したフッ素や吸着した水分が絶縁膜中を拡散
し、下層の半導体素子に達すると、その電気的特性が劣
化する。SiOF膜ではSiO2膜に比し、膜応力や緻密性が低
いためにこのような電気的特性の劣化がより起こりやす
い。この弊害を未然に防止するための従来の対策は、水
分を透過しにくい膜を積層するなどの吸湿防止措置のみ
であって、これらの対策実施には、できれば省略したい
余分な吸湿防止専用の膜積層工程を付加せざるを得ない
という問題がある。
However, on the other hand, the Si-F bond also has the property of enhancing the hygroscopicity of the insulating film, and fluorine is released from the insulating film as a result of moisture absorption, so that the dielectric constant is lowered. The rate will rise again. Further, at this time, when free fluorine or adsorbed moisture diffuses in the insulating film and reaches the lower semiconductor element, its electrical characteristics deteriorate. Since the SiOF film is lower in film stress and denseness than the SiO 2 film, such deterioration of electrical characteristics is more likely to occur. Conventional measures to prevent this adverse effect are only moisture absorption prevention measures such as stacking a film that does not allow water to easily pass through.To implement these measures, an extra moisture absorption prevention film that should be omitted if possible. There is a problem in that a lamination process must be added.

【0005】そこで本発明は上述の課題に鑑み、低誘電
率でかつ低吸湿性という両特性を兼備し、しかも平坦性
に優れた絶縁膜及びその形成方法を提供することを目的
とする。
In view of the above-mentioned problems, it is an object of the present invention to provide an insulating film having both low dielectric constant and low hygroscopicity and excellent flatness, and a method for forming the insulating film.

【0006】[0006]

【課題を解決するための手段】本発明者らは鋭意検討の
結果、上記目的は、絶縁膜を、Si-H結合及びSi-F結合を
ともに含有する構造のものとすること、そして該絶縁膜
は、SiH(OR)3とフッ素含有物質とを同時にプラズマ化し
て反応させ、堆積すれば最適に形成できることを知見
し、それに基づいて本発明を完成させた。
As a result of intensive investigations by the present inventors, the above-mentioned object is to provide an insulating film having a structure containing both Si—H bond and Si—F bond, and It was found that the film can be optimally formed by simultaneously converting SiH (OR) 3 and a fluorine-containing substance into plasma and reacting them, and depositing them, and based on this, the present invention was completed.

【0007】すなわち本発明は、ケイ素源としてRを任
意のアルキル基とするSiH(OR)3の蒸気を用い、該ケイ素
源を、フッ素を含有する気体と同時にプラズマ化して反
応させ、堆積させた絶縁膜であって、Si-H結合及びSi-F
結合をともに含有することを特徴とするフッ素を含有す
る絶縁膜である。また本発明は、半導体基板表面にフッ
素を含有する酸化ケイ素質の絶縁膜を形成する方法にお
いて、ケイ素源としてRを任意のアルキル基とするSiH
(OR)3の蒸気を用い、該ケイ素源を、フッ素を含有する
気体と同時にプラズマ化して反応させ、堆積させること
を特徴とするフッ素を含有する絶縁膜の形成方法であ
る。
That is, according to the present invention, a vapor of SiH (OR) 3 having R as an arbitrary alkyl group is used as a silicon source, and the silicon source is plasma-reacted at the same time as a fluorine-containing gas to be reacted and deposited. Insulating film, Si-H bond and Si-F
It is an insulating film containing fluorine, which is characterized by containing both bonds. The present invention also provides a method for forming a fluorine-containing silicon oxide insulating film on a semiconductor substrate surface, wherein SiH containing R as an arbitrary alkyl group as a silicon source is used.
A method for forming a fluorine-containing insulating film, characterized in that the vapor of (OR) 3 is used and the silicon source is made into plasma and reacted at the same time as a fluorine-containing gas to be deposited.

【0008】本発明の方法の実施に際しては、ケイ素源
としてRを任意のアルキル基とするSiH(OR)3(トリアル
コキシシラン)なる化合物を用いる以外は、特に新たな
材料・装置の準備は不要であり、例えば平行平板電極を
有する公知のプラズマCVD装置で対応できる。そし
て、誘電率や吸湿性、膜応力、エッチングレート、段差
埋め込み性などの所望の膜特性を得るには、ガス供給量
やチャンバ内の圧力、電極間の距離、プラズマ強度など
を調整して、成膜反応に影響する要因である材料ガス濃
度及び反応エネルギー並びにそれらの分布を制御すれば
よい。プラズマ発生に用いる電源は、平行平板電極間に
例えば13.56MHzのRFを印加できるものでよいが、RF
印加電源と数百kHz 程度の低周波電源を組み合わせたも
のでもよい。また膜の緻密化や透水性の制御を図る上で
は、このようなプラズマシステム以外のシステム、例え
ばECR(電子サイクロトロン共鳴)、ヘリコン波ある
いはICP(Inductively Coupled Plasma)等を使用す
ることも有効である。
In carrying out the method of the present invention, it is not necessary to prepare any new material or apparatus except that a compound of SiH (OR) 3 (trialkoxysilane) having R as an arbitrary alkyl group is used as a silicon source. For example, a known plasma CVD apparatus having parallel plate electrodes can be used. Then, in order to obtain desired film characteristics such as dielectric constant, hygroscopicity, film stress, etching rate, and step filling property, the gas supply amount, the pressure in the chamber, the distance between the electrodes, the plasma intensity, etc. are adjusted, The material gas concentration and reaction energy, which are factors affecting the film formation reaction, and their distribution may be controlled. The power source used for plasma generation may be one that can apply RF of 13.56 MHz between the parallel plate electrodes.
A combination of an applied power source and a low frequency power source of about several hundred kHz may be used. Further, in order to control the film densification and water permeability, it is effective to use a system other than such a plasma system, for example, ECR (electron cyclotron resonance), helicon wave, or ICP (Inductively Coupled Plasma). .

【0009】ケイ素源SiH(OR)3のアルキル基Rとして
は、特に限定されないが、得られる絶縁膜の特性(膜特
性)並びに材料の費用や取り扱いの容易さの観点から、
炭素数が1〜5のものが好ましく、なかでもCH3,C2H5
特に好適である。ケイ素源SiH(OR)3は常温で液体なの
で、公知のバブラにより気化させて供給してもよく、ま
たバブラ以外の供給システム、例えば公知の液体インジ
ェクションシステムなどを使用してもよい。なお、搬送
ガスとしては、N2,Ar,Heなどの不活性ガスが望ましい。
The alkyl group R of the silicon source SiH (OR) 3 is not particularly limited, but from the viewpoint of the characteristics of the obtained insulating film (film characteristics), the cost of the material and the ease of handling,
Those having 1 to 5 carbon atoms are preferable, and CH 3 and C 2 H 5 are particularly preferable. Since the silicon source SiH (OR) 3 is a liquid at room temperature, it may be vaporized and supplied by a known bubbler, or a supply system other than the bubbler, for example, a known liquid injection system may be used. The carrier gas is preferably an inert gas such as N 2 , Ar, He.

【0010】このケイ素源と混合させて反応させるプロ
セスガスは、O2,N2O,NH3,H2 などを、単独で又は適宜組
み合わせて使用できるが、良質な絶縁膜を得るには、
O2,N2Oが好ましい。絶縁膜にフッ素を導入するためのフ
ッ素系ガスは、F2,NF3,CF4,C2F6,C3F8,CHF 3,SF6,SiF4,C
lF3 など、フッ素を含むあらゆるガスが使用可能である
が、安全性や効果の観点からCF4 とC2F6が好適である。
[0010] A professional that is mixed with the silicon source to react
Seth Gas is O2, N2O, NHThree, H2 Etc. individually or in appropriate groups
Can be used in combination, but to obtain a good insulating film,
O2, N2O is preferred. A film for introducing fluorine into the insulating film.
Fluorine gas is F2, NFThree, CFFour, C2F6, CThreeF8, CHF Three,SCIENCE FICTION6, SiFFour, C
lFThree Any gas containing fluorine can be used
However, from the perspective of safety and effectiveness, CFFourAnd C2F6Is preferred.

【0011】成膜は、200 ℃以上の基板温度が確保でき
れば可能であるが、良好な膜特性が得られるのは 300〜
400 ℃である。
Film formation is possible if a substrate temperature of 200 ° C. or higher can be secured, but good film characteristics can be obtained in 300 to
It is 400 ℃.

【0012】[0012]

【作用】ケイ素源である原料ガスSiH(OR)3とフッ素源と
なるフッ素系ガスとを同時にプラズマ化して反応させ、
堆積させた本発明の絶縁膜は、フッ素源に由来するSi-F
結合と原料ガスに由来するSi-H結合の双方をその膜厚全
域にわたって均一に含有する。それゆえ当該絶縁膜にお
いては、Si-H結合特有の水トラップ性及び疎水性が、そ
の膜厚全域にわたって均一に発現し、その結果、誘電率
低減の目的で膜中に導入したSi-F結合による吸湿性上昇
作用は打ち消されることになって、絶縁膜の吸湿性が劇
的に低下する。すなわち、絶縁膜にSi-H結合とSi-F結合
を共存させることによって、Si-F結合の有害副作用であ
る吸湿性上昇を抑えつつ、その誘電率低減効果を充分に
発揮させることができる。原料ガスSiH(OR)3とフッ素系
ガスとを同時に反応させることが必須であるとした理由
は、例えばそれらの供給時期を変えるなどして同時に反
応するガス組成を変えると、Si-H結合とSi-F結合の分布
にムラが生じ、これらを同時に有することにより発揮さ
れる当発明の効果が損なわれ、例えば誘電率の上昇を招
くなどの、不本意な結果を招くからである。なお、有機
シラン化合物系原料特有の長所である優れた下地段差埋
め込み性や被覆性は、Si(OR)原子団の存在により従来通
り維持される。したがって本発明の絶縁膜は、低誘電率
でかつ低吸湿性という両特性を兼備し、しかも平坦性に
優れたものとなる。
[Function] A source gas SiH (OR) 3 as a silicon source and a fluorine-based gas as a fluorine source are simultaneously plasmatized and reacted,
The deposited insulating film of the present invention is Si-F derived from a fluorine source.
Both the bond and the Si—H bond derived from the source gas are uniformly contained throughout the film thickness. Therefore, in the insulating film, the water trapping property and hydrophobicity peculiar to the Si-H bond are uniformly expressed over the entire film thickness, and as a result, the Si-F bond introduced into the film for the purpose of reducing the dielectric constant. The effect of increasing the hygroscopicity due to is canceled out, and the hygroscopicity of the insulating film is dramatically reduced. That is, by coexisting Si—H bonds and Si—F bonds in the insulating film, it is possible to sufficiently exhibit the effect of reducing the dielectric constant while suppressing an increase in hygroscopicity which is a harmful side effect of Si—F bonds. The reason why it is essential to simultaneously react the raw material gas SiH (OR) 3 and the fluorine-based gas is that, for example, if the gas composition that reacts at the same time is changed by changing the supply timing of them, Si-H bond and This is because the distribution of Si—F bonds becomes uneven, and the effect of the present invention exerted by having these at the same time is impaired, resulting in undesired results such as an increase in the dielectric constant. It should be noted that the excellent underlying step embedding property and covering property, which are the unique advantages of the organosilane compound-based raw material, are maintained as they are conventionally due to the presence of the Si (OR) atomic group. Therefore, the insulating film of the present invention has both low dielectric constant and low hygroscopicity and is excellent in flatness.

【0013】また、成膜プロセスの観点からすれば、本
発明の成膜方法において従来と相違するのは、ケイ素源
として、従来のTEOSに代えてSiH(OR)3を用いるとい
う点のみであるから、本発明の成膜方法の実施に際し既
存の製造装置がそのまま利用できる。なお、SiH(OR)3
TEOSに比べ蒸気圧が高いため、膜成長に要する時間
が短縮できるという利点も生ずる。さらに、成膜後の絶
縁膜は低誘電率でかつ低吸湿性という両特性を兼備しか
つ平坦性にも優れるので、吸湿防止用あるいは平坦化用
に余分の膜積層工程を付加する必要もない。
From the viewpoint of the film forming process, the film forming method of the present invention is different from the conventional one only in that SiH (OR) 3 is used as the silicon source instead of the conventional TEOS. Therefore, the existing manufacturing apparatus can be used as it is when performing the film forming method of the present invention. Since SiH (OR) 3 has a higher vapor pressure than TEOS, there is an advantage that the time required for film growth can be shortened. Furthermore, since the insulating film after film formation has both the characteristics of low dielectric constant and low hygroscopicity and is excellent in flatness, it is not necessary to add an extra film laminating step for moisture absorption prevention or flattening. .

【0014】[0014]

【実施例】本発明の実施に好適な成膜装置の断面図を図
1に示す。図1において、1は減圧チャンバ,2は平行
平板電極兼ガス供給シャワーノズル,3はプラズマ電
源,4はガス供給管,5はヒータ,6は排気口,7は基
板,8はケイ素源,9はフッ素源,10はプロセスガスで
ある。 (実施例1)図1に示される成膜装置を用いて、基板7
として6インチのSiウエハを、ケイ素源8としてトリア
ルコキシシラン(SiH(C2H5)3)を用い、次の要領で本発
明方法を実施し、本発明の絶縁膜を得た。
EXAMPLE FIG. 1 is a sectional view of a film forming apparatus suitable for carrying out the present invention. In FIG. 1, 1 is a decompression chamber, 2 is a parallel plate electrode and gas supply shower nozzle, 3 is a plasma power supply, 4 is a gas supply pipe, 5 is a heater, 6 is an exhaust port, 7 is a substrate, 8 is a silicon source, 9 Is a fluorine source and 10 is a process gas. (Embodiment 1) A substrate 7 is formed by using the film forming apparatus shown in FIG.
Using a 6-inch Si wafer as the silicon source 8 and trialkoxysilane (SiH (C 2 H 5 ) 3 ) as the silicon source 8, the method of the present invention was carried out in the following manner to obtain an insulating film of the present invention.

【0015】すなわち、まず減圧チャンバ1内のヒータ
5に基板7を固着し、排気口6から排気して減圧チャン
バ1の内部圧力を 100Paに保ちながら350 ℃に加熱し
た。次に、基板7から25mmの位置に対面設置した平行
平板電極兼ガス供給シャワーノズル2に、ガス供給管4
からプロセスガス10(本実施例ではO2),ケイ素源8
(本実施例ではSiH(C2H5)3,搬送ガス:N2,図示しない
バブラ使用)及びフッ素源9(本実施例ではC2F6)を供
給すると同時にプラズマ電源3から13.56MHzのRFを印
加し、基板7面上でこれらガスの混合プラズマを得た。
このとき、膜特性を左右するプロセス要因の目標値とし
て、RF印加電力を100W、並びに搬送ガス,プロセスガ
ス及びフッ素系ガスの流量比を、N2 :O2 :C2 6
=2:3:2に設定した。こうして成膜した絶縁膜を本
発明例Aとした。なお、ケイ素源8にTEOSを用いた
以外は前記本発明例と同じ実施要領で成膜した絶縁膜を
比較例Cとし、また、前記本発明例の実施要領において
反応の初期段階ではC2F6の供給を行わず、成膜プロセス
の40%が経過した後にC2F6を供給して上記流量比で成膜
した絶縁膜を比較例Dとした。 (実施例2)ケイ素源8としてトリイソブトキシシラン
(SiH(OC4H9)3 )を用いた以外は、実施例1と同じ要領
で本発明方法を実施し、本発明例Bの絶縁膜を得た。
That is, first, the substrate 7 was fixed to the heater 5 in the decompression chamber 1, exhausted from the exhaust port 6, and heated to 350 ° C. while maintaining the internal pressure of the decompression chamber 1 at 100 Pa. Next, the gas supply pipe 4 is connected to the parallel plate electrode / gas supply shower nozzle 2 facing the substrate 7 at a position of 25 mm.
To process gas 10 (O 2 in this example), silicon source 8
(SiH (C 2 H 5 ) 3 , carrier gas: N 2 , a bubbler (not shown) is used in this embodiment) and a fluorine source 9 (C 2 F 6 in this embodiment) are supplied at the same time from the plasma power supply 3 to 13.56 MHz. RF was applied to obtain a mixed plasma of these gases on the surface of the substrate 7.
At this time, as target values of the process factors that influence the film characteristics, the RF applied power is 100 W and the flow rate ratio of the carrier gas, the process gas and the fluorine-based gas is N 2 : O 2 : C 2 F 6
= 2: 3: 2. The insulating film thus formed was designated as Inventive Example A. An insulating film formed in the same manner as in the example of the present invention except that TEOS was used as the silicon source 8 was used as Comparative Example C, and C 2 F was used in the initial stage of the reaction in the example of the present invention. 6 without supply of a sample of Comparative example D with the formed insulating film in the flow rate by supplying the C 2 F 6 after 40% of the film forming process has elapsed. (Example 2) except for using tri-isobutoxy silane as the silicon source 8 (SiH (OC 4 H 9 ) 3) is to carry out the present invention method in the same manner as in Example 1, the insulating film of the present invention Example B Got

【0016】本発明例及び比較例の絶縁膜について、乾
燥時の比誘電率と吸湿処理後のそれ(吸湿条件:基板を
超純水中に浸し、1時間放置)を評価し、かつFT−IR法
により膜中のSi-H結合及びSi-F結合の存否を調べた。そ
れらの結果を表1に示す。
With respect to the insulating films of the present invention example and the comparative example, the relative dielectric constant during drying and that after moisture absorption treatment (moisture absorption condition: the substrate was immersed in ultrapure water and left for 1 hour) were evaluated, and FT- The presence or absence of Si-H bond and Si-F bond in the film was investigated by IR method. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示されるように、本発明例の絶縁膜
の誘電率は比較例のそれに比べ、乾燥時において低く、
かつ吸湿処理後の上昇も格段に抑えられていることがわ
かる。
As shown in Table 1, the dielectric constant of the insulating film of the present invention is lower than that of the comparative example in the dry state,
Moreover, it can be seen that the rise after the moisture absorption treatment is significantly suppressed.

【0019】[0019]

【発明の効果】以上のように、原料ガスの有機シラン化
合物として、従来のTEOSに代えて、Rを任意のアル
キル基とするSiH(OR)3を用い、フッ素含有ガスとの同時
共存環境下でプラズマCVDを行って絶縁膜を形成する
という本発明によれば、低誘電率でかつ吸湿性の低い高
品質の層間絶縁膜を、既存プロセスとの整合性よく、簡
単かつ低コストに得ることができるという、産業上極め
て有益な効果を奏する。
As described above, SiH (OR) 3 in which R is an arbitrary alkyl group is used as the organosilane compound of the raw material gas in place of the conventional TEOS, under the coexisting environment with the fluorine-containing gas. According to the present invention in which plasma CVD is performed to form an insulating film, it is possible to obtain a high-quality interlayer insulating film having a low dielectric constant and low hygroscopicity with good compatibility with existing processes, easily and at low cost. It has an extremely beneficial effect on the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に好適な成膜装置の断面図。FIG. 1 is a sectional view of a film forming apparatus suitable for implementing the present invention.

【符号の説明】[Explanation of symbols]

1 減圧チャンバ 2 平行平板電極兼ガス供給シャワーノズル 3 プラズマ電源 4 ガス供給管 5 ヒータ 6 排気口 7 基板(Siウエハ) 8 ケイ素源(SiH(OR)3ガス及び搬送ガス) 9 フッ素源(フッ素系ガス) 10 プロセスガス1 Decompression chamber 2 Parallel plate electrode / gas supply shower nozzle 3 Plasma power supply 4 Gas supply pipe 5 Heater 6 Exhaust port 7 Substrate (Si wafer) 8 Silicon source (SiH (OR) 3 gas and carrier gas) 9 Fluorine source (fluorine-based) Gas) 10 process gas

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ケイ素源としてRを任意のアルキル基と
するSiH(OR)3の蒸気を用い、該ケイ素源を、フッ素を含
有する気体と同時にプラズマ化して反応させ、堆積させ
た絶縁膜であって、Si-H結合及びSi-F結合をともに含有
することを特徴とするフッ素を含有する絶縁膜。
1. An insulating film deposited by using SiH (OR) 3 vapor in which R is an arbitrary alkyl group as a silicon source, and simultaneously reacting the silicon source with a gas containing fluorine to form a plasma. An insulating film containing fluorine, which contains both Si—H bond and Si—F bond.
【請求項2】 半導体基板表面にフッ素を含有する酸化
ケイ素質の絶縁膜を形成する方法において、ケイ素源と
してRを任意のアルキル基とするSiH(OR)3の蒸気を用
い、該ケイ素源を、フッ素を含有する気体と同時にプラ
ズマ化して反応させ、堆積させることを特徴とするフッ
素を含有する絶縁膜の形成方法。
2. A method for forming a fluorine-containing silicon oxide insulating film on a surface of a semiconductor substrate, wherein SiH (OR) 3 vapor containing R as an arbitrary alkyl group is used as a silicon source, A method for forming an insulating film containing fluorine, which comprises simultaneously forming a plasma containing a gas containing fluorine, causing the reaction, and depositing the plasma.
JP14904795A 1995-06-15 1995-06-15 Insulation film containing fluorine and formation thereof Pending JPH098029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14904795A JPH098029A (en) 1995-06-15 1995-06-15 Insulation film containing fluorine and formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14904795A JPH098029A (en) 1995-06-15 1995-06-15 Insulation film containing fluorine and formation thereof

Publications (1)

Publication Number Publication Date
JPH098029A true JPH098029A (en) 1997-01-10

Family

ID=15466493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14904795A Pending JPH098029A (en) 1995-06-15 1995-06-15 Insulation film containing fluorine and formation thereof

Country Status (1)

Country Link
JP (1) JPH098029A (en)

Similar Documents

Publication Publication Date Title
CN107104036B (en) Method for selectively forming silicon nitride film on trench sidewall or planar surface
US8187951B1 (en) CVD flowable gap fill
US8728958B2 (en) Gap fill integration
JP5455626B2 (en) Dielectric deposition process and etchback process for bottom-up gap filling
US7718553B2 (en) Method for forming insulation film having high density
US7498273B2 (en) Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
KR101853802B1 (en) Conformal layers by radical-component cvd
KR20200104923A (en) Processing methods for silicon nitride thin films
KR100627098B1 (en) Method of forming low dielectric constant insulating film
JP2015521375A (en) Improved densification for flowable membranes
WO2013036667A2 (en) Flowable silicon-carbon-nitrogen layers for semiconductor processing
WO2007118026A2 (en) Step coverage and pattern loading for dielectric films
KR20140010449A (en) Uv assisted silylation for recovery and pore sealing of damaged low k films
US7309662B1 (en) Method and apparatus for forming a film on a substrate
KR102109482B1 (en) Method to reduce dielectric constant of a porous low-k film
WO2015073188A1 (en) Method of depositing a low-temperature, no-damage hdp sic-like film with high wet etch resistance
JP3406250B2 (en) Method of forming silicon nitride based film
JPH05102040A (en) Film formation method
WO1997007537A1 (en) Method of producing semiconductor device
JPH09167766A (en) Plasma chemical vapor growth device and manufacturing method of semiconductor device
JPH098029A (en) Insulation film containing fluorine and formation thereof
TWI766014B (en) Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
KR101008490B1 (en) Method of depositing an oxide film using a low temperature CVD
US6432839B2 (en) Film forming method and manufacturing method of semiconductor device
JPH07235530A (en) Formation of insulating film