JPH0980097A - Instrument for measuring tan delta without any influence of outside induced voltage - Google Patents

Instrument for measuring tan delta without any influence of outside induced voltage

Info

Publication number
JPH0980097A
JPH0980097A JP26073195A JP26073195A JPH0980097A JP H0980097 A JPH0980097 A JP H0980097A JP 26073195 A JP26073195 A JP 26073195A JP 26073195 A JP26073195 A JP 26073195A JP H0980097 A JPH0980097 A JP H0980097A
Authority
JP
Japan
Prior art keywords
circuit
signal
proportional
phase
instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26073195A
Other languages
Japanese (ja)
Inventor
Yoshio Sugino
良雄 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOKEN DENKI KK
Original Assignee
SOKEN DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOKEN DENKI KK filed Critical SOKEN DENKI KK
Priority to JP26073195A priority Critical patent/JPH0980097A/en
Publication of JPH0980097A publication Critical patent/JPH0980097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an instrument for measuring tanδ wherein tanδ of various electric devices connected to a single phase cable or a three-phase cable can be accurately measured in a hot line state or a non hot line state. SOLUTION: Accurate tanδ is found without any influence of an alternating component as a voltage signal ei proportional to leakage current I of an electric device to be measured H, direct current component output ED having multiplied a signal ev proportional to applied voltage of the device H and other direct current component output EDT obtained to multiply a signal eVT in which the signals ei and ev are 90-degree phase-shifted are made an input signal of a division circuit 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】この発明は各種電気機器のtanδ
を測定する装置に関するものである。
TECHNICAL FIELD The present invention relates to tan δ of various electric devices.
The present invention relates to a device for measuring.

【0002】[0002]

【従来の技術】一般にtanδ計として市販されている
測定器は、LCRメータに内蔵されている1000Hz
のtanδ計であってδが小さい範囲ではtanδ≒s
inδが成立することからsinδを求めているもので
あって広範囲のδを正確に測定することは不可能であ
る。本出願人は、標準コンデンサを用いたブリッジ式t
anδ測定器を提案している(特開平7−98347)
が高精度にするために回路が複雑になり高価になる。
2. Description of the Related Art Generally, a commercially available measuring instrument as a tan δ meter is 1000 Hz built in an LCR meter.
Tanδ meter of tanδ≈s in the range of small δ
Since inδ is established, sinδ is obtained, and it is impossible to accurately measure δ in a wide range. The Applicant has a bridge type t using a standard capacitor.
An an δ measuring device has been proposed (JP-A-7-98347).
However, the circuit becomes complicated and expensive for high precision.

【0003】[0003]

【解決しようとする課題】本発明は、回路構成が簡単で
小型であり、しかも被測定機器の歪み電流による周波数
及び外部からの誘導周波数等の影響を受けずに正確なt
anδを測定することができ、被測定機器が単相又は3
相電源に接続されている活線状態でも測定可能で絶縁監
視及び警報装置にも適用できるtanδ測定装置を提供
するものである。
DISCLOSURE OF THE INVENTION The present invention has a simple circuit configuration and is small in size, and moreover, is accurate t without being affected by the frequency due to the distortion current of the device under test and the induction frequency from the outside.
an δ can be measured, and the device under test is single phase or 3
The present invention provides a tan δ measuring device that can be measured even in a live line state connected to a phase power supply and can be applied to an insulation monitoring and alarm device.

【0004】[0004]

【解決するための手段】本発明装置は、被測定電気機器
への印加電圧に比例した電圧信号evと前記機器の漏れ
電流に比例した電圧信号eiを乗算する第1乗算回路
と、前記電圧信号eiと前記evを90°移相した移相電
圧信号evTを乗算する第2乗算回路と前記第1及び第2
の各乗算出力から夫々の直流分を選別する選別回路と該
選別出力を除算する演算回路を備えて構成され、夫々の
回路はICによって簡単に構成される。なお乗算回路を
同期整流回路としても同様である。
The apparatus of the present invention comprises a first multiplication circuit for multiplying a voltage signal e v proportional to a voltage applied to an electric device under test by a voltage signal e i proportional to a leakage current of the device, and A second multiplication circuit for multiplying a phase- shifted voltage signal e vT obtained by phase-shifting the voltage signal e i and the e v by 90 °, and the first and second
It is configured by including a selection circuit that selects each DC component from each of the multiplied outputs and an arithmetic circuit that divides the selected output, and each circuit is simply configured by an IC. The same applies when the multiplication circuit is a synchronous rectification circuit.

【0005】[0005]

【実施例】図1は本発明の基本を説明する回路図であ
る。乗算器1には試験電圧V(0.3V,200Hz)
による被測定機器Hからの漏れ電流Iに比例した信号e
iとVに比例したeVが夫々バッファアンプを通して入力
され、出力Qには K・V・I{cos(2ωt−θ)+cosθ} (K:比例定数,θ:VとIとの位相角,以下同じ)が
得られる。この出力Qを夫々選別回路2,3に加えると
第1項の交流分の実効分EA∝V・I/√2と第2項の
直流分ED∝V・I・cosθを得ることができ,co
sθ=cos(90°−δ)≒sinδ≒tanδであ
るからこれらを除算回路4で演算ED/EAすることによ
って√2tanδ(δ=90°−θ)としてtanδを
求めることができる。しかしながらこの場合において漏
れ電流Iに被測定機器からの歪み電流による周波数や外
部誘導周波数等試験電圧Vに存在しない周波数成分があ
ると乗算器出力の直流成分は影響がないが、交流成分は
振巾変調による影響を受けるのでtanδに誤差を生ず
る。図2はこの欠点を改善した本発明回路図である。第
1乗算器11への入力信号は図1の場合と同様である。
第2乗算器12にはeiとevを移相回路13を通して9
0°移相したevTが入力される。而して選別回路2の出
力信号EDは図1と同様であるが選別回路2aの出力E
DTはK・V・I・sinθとなる。従って除算回路14
においては下記の演算によってK・V・I・cosθ/
K・V・I・sinθ=tan(90°−θ)=tan
δとして正確なtanδを得ることができる。図3は本
発明測定器Aを単相回路に適用した場合であって、零相
変流器ZCTの2次巻線に流れる漏れ電流Iから信号e
iを得て例えばモータHの絶縁を監視する回路である。
図4は3相回路に適用した場合であって、ZCT1の2
次コイルに試験電圧として電源電圧の整数倍例えば10
0Hzの交流電圧を注入しZCT2によって漏れ電流I
を得ている。
1 is a circuit diagram illustrating the basics of the present invention. Test voltage V (0.3V, 200Hz) is applied to the multiplier 1.
Signal e proportional to leakage current I from device under test H due to
e V proportional to i and V are respectively inputted through the buffer amplifier, and K · V · I {cos (2ωt−θ) + cos θ} (K: proportional constant, θ: phase angle between V and I, The same shall apply hereinafter). When this output Q is applied to the selection circuits 2 and 3, respectively, the effective component E A ∝V · I / √2 of the AC component of the first term and the DC component E D ∝V · I · cos θ of the second item can be obtained. Can, co
S.theta = cos can be determined (90 ° -δ) ≒ sinδ ≒ because a tan [delta √2Tanderuta by computing E D / E A them in divider 4 (δ = 90 ° -θ) as a tan [delta. However, in this case, if the leakage current I has a frequency component that does not exist in the test voltage V, such as a frequency due to a distortion current from the device under test or an external induction frequency, the DC component of the multiplier output has no effect, but the AC component has a range. Since it is affected by the modulation, an error occurs in tan δ. FIG. 2 is a circuit diagram of the present invention in which this drawback is improved. The input signal to the first multiplier 11 is the same as in the case of FIG.
The second multiplier 12 passes e i and e v through the phase shift circuit 13
The 0 ° phase shifted e vT is input. The output signal E D of the selection circuit 2 is similar to that of FIG.
DT becomes K, V, I, sin θ. Therefore, the division circuit 14
In the case of K · V · I · cos θ /
K · V · I · sin θ = tan (90 ° −θ) = tan
An accurate tan δ can be obtained as δ. FIG. 3 shows the case where the measuring instrument A of the present invention is applied to a single-phase circuit, and the signal e is obtained from the leakage current I flowing in the secondary winding of the zero-phase current transformer ZCT.
A circuit that obtains i and monitors the insulation of the motor H, for example.
Figure 4 is a case of applying to a 3-phase circuit, the second ZCT 1
A test voltage for the next coil is an integral multiple of the power supply voltage, for example, 10
A leakage current I is injected by ZCT 2 by injecting an AC voltage of 0 Hz.
Is getting

【0006】[0006]

【効果】本発明装置は回路構成が簡単であるに拘らず正
確なtanδを測定できる他、乗算器11,12及び直
流選別回路2,2aその他の回路要素を全て又は殆どを
ICで構成することができるので経済的に製作でき、調
整も簡単であって小型で機械的に丈夫であるから持運び
も容易である。また外部誘導等による影響も受けないの
で設置場所の制約がない利点がある。更に、活線状態で
も正確なtanδを計測できるので機器の絶縁監視シス
テムに有効である。
The device of the present invention is capable of accurately measuring tan δ regardless of the simple circuit configuration, and the multipliers 11 and 12, the DC selection circuits 2 and 2a, and all other circuit elements are configured by IC. It can be manufactured economically, is easy to adjust, is small and mechanically strong, and is easy to carry. Moreover, there is an advantage that there is no restriction on the installation location because it is not affected by external guidance. Further, since it is possible to accurately measure tan δ even in a live state, it is effective for an insulation monitoring system of equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する回路図。FIG. 1 is a circuit diagram illustrating the present invention.

【図2】本発明測定装置の回路図。FIG. 2 is a circuit diagram of the measuring device of the present invention.

【図3】本発明装置を単相回路に適用した場合の結線
図。
FIG. 3 is a connection diagram when the device of the present invention is applied to a single-phase circuit.

【図4】本発明装置を3相回路に適用した場合の結線
図。
FIG. 4 is a connection diagram when the device of the present invention is applied to a three-phase circuit.

【符号の説明】[Explanation of symbols]

H 被測定機器 I 漏れ電流 11 乗算回路 2,2a 直流分選別回路 14 除算回路 H device under test I leakage current 11 multiplication circuit 2, 2a DC component selection circuit 14 division circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被測定電気機器への印加電圧に比例した
電圧信号evと前記機器の漏れ電流に比例した電圧信号
iを乗算する第1乗算回路と、前記電圧信号eiと前記
vを90°移相した移相電圧信号evTを乗算する第2
乗算回路と前記第1及び第2の各乗算出力から夫々の直
流分を選別する選別回路と該選別出力を除算する演算回
路を備えたtanδ測定装置。
1. A first multiplication circuit for multiplying a voltage signal e v proportional to a voltage applied to an electric device under test by a voltage signal e i proportional to a leakage current of the device, the voltage signal e i and the e signal. Second multiplication of the phase- shifted voltage signal e vT obtained by phase-shifting v by 90 °
A tan δ measuring device comprising a multiplication circuit, a selection circuit for selecting a direct current component from each of the first and second multiplication outputs, and an arithmetic circuit for dividing the selection output.
【請求項2】 第1及び第2乗算回路が夫々同期整流回
路である請求項1記載の装置。
2. The apparatus according to claim 1, wherein each of the first and second multiplication circuits is a synchronous rectification circuit.
JP26073195A 1995-09-13 1995-09-13 Instrument for measuring tan delta without any influence of outside induced voltage Pending JPH0980097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26073195A JPH0980097A (en) 1995-09-13 1995-09-13 Instrument for measuring tan delta without any influence of outside induced voltage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26073195A JPH0980097A (en) 1995-09-13 1995-09-13 Instrument for measuring tan delta without any influence of outside induced voltage

Publications (1)

Publication Number Publication Date
JPH0980097A true JPH0980097A (en) 1997-03-28

Family

ID=17351975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26073195A Pending JPH0980097A (en) 1995-09-13 1995-09-13 Instrument for measuring tan delta without any influence of outside induced voltage

Country Status (1)

Country Link
JP (1) JPH0980097A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012464A (en) * 2010-09-30 2011-04-13 彭建学 Micro capacitance measurement method and special device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012464A (en) * 2010-09-30 2011-04-13 彭建学 Micro capacitance measurement method and special device

Similar Documents

Publication Publication Date Title
US3699441A (en) Polyphase signal monitoring system
WO2005040837A1 (en) Magnetic bridge electric power sensor
US4749941A (en) Circuit arrangement for a meter for measuring two electrical quantities
US4160950A (en) Current measuring apparatus
JPH0980097A (en) Instrument for measuring tan delta without any influence of outside induced voltage
US4999564A (en) Power system stabilizer system having improved integrity checking scheme
JP2008535421A (en) Device for supplying power to a measurement sensor and transmitting a synchronous clock signal thereto
WO2020021598A1 (en) Measurement device and method
JP2850096B2 (en) Inverter control method with constant measurement setting function
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
US2970262A (en) Phase detection
CA1085449A (en) Filter excitation circuitry
JP2000329803A (en) Instrument and method for measuring three-phase alternating current
SU1026100A2 (en) Hall emf meter
JPH0862261A (en) Error correction device for electronic wattmeter
JP2010172187A (en) Inverter testing device and method
KR0128218Y1 (en) A flux detection circuit of an induction motor
JP2612724B2 (en) Insulation resistance measurement method
JPH01116455A (en) Measurement of insulation resistance compensated for ground resistance effect
JP2617325B2 (en) Insulation resistance measurement method
RU2265228C1 (en) Device for measuring current of buses packet
SU1422170A1 (en) Apparatus for measuring three-phase voltage loss on corona discharge
JP2896572B2 (en) Simple insulation resistance measurement method
SU789770A1 (en) Current sensor
JPS61239170A (en) Insulation resistance measuring instrument for hot-line cable way