JPH0979901A - Information converting element - Google Patents

Information converting element

Info

Publication number
JPH0979901A
JPH0979901A JP7237450A JP23745095A JPH0979901A JP H0979901 A JPH0979901 A JP H0979901A JP 7237450 A JP7237450 A JP 7237450A JP 23745095 A JP23745095 A JP 23745095A JP H0979901 A JPH0979901 A JP H0979901A
Authority
JP
Japan
Prior art keywords
concentration
membrane
electrode
film
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7237450A
Other languages
Japanese (ja)
Other versions
JP3364370B2 (en
Inventor
Hiroshi Nakanishi
博 中西
Shigeru Ikeda
成 池田
Yasuko Noritomi
康子 乗富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23745095A priority Critical patent/JP3364370B2/en
Publication of JPH0979901A publication Critical patent/JPH0979901A/en
Application granted granted Critical
Publication of JP3364370B2 publication Critical patent/JP3364370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a picture pattern as it is so that a picture can be recognized in parallel with the detection of the picture pattern by detecting the concentration pattern change of a film permeating material which occurs when an image is optically or thermally inputted to a functional film. SOLUTION: A cell 1 is divided into two areas by a partition wall 2 and the opening of the wall 2 is closed with a functional film 3. One area is filled up with a high- concentration solution 4 containing a film permeating material (A) at a high concentration and the other area is filled up with a low-concentration solution 5 containing the material (A) at a low concentration. Then a small electrode 6 is fitted to the internal surface of the cell 1 on the solution 5 side so that the front end of the electrode 6 can be positioned within the extent of the diffusion layer of the film 3. When a picture pattern is inputted to the film 3 through a light transmitting window 1a , the film permeating characteristic of the material A changes. The change is transmitted to the solution 5 and the material (A) generates a concentration pattern which varies depending upon the distance from the film 3 and the time after the picture pattern is inputted. The electrode 6 and a counter electrode 7 detect the concentration pattern and send the pattern to a detecting and processing device 8 for processing. Therefore, the input picture pattern can be detected as the concentration pattern of the material A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は情報変換素子に関
し、さらに詳しくは画像の並列的な処理が可能な情報変
換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an information conversion element, and more particularly to an information conversion element capable of processing images in parallel.

【0002】[0002]

【従来の技術】電気および電子機器において、画像、文
字、記号などの認識は、人間と機械とのいわゆるマンマ
シンインターフェースにおける中心的な役割を果たして
いる。周知のように電子的な手段による認識は、近年急
激に技術進歩を遂げ、情報処理機器、通信機器、計測機
器などの分野に革新をもたらすとともに、我々の日常生
活に密着した領域にも広く進出するようになった。これ
まで、これらの認識技術のほとんどは、主としてシリコ
ンなどの半導体デバイスを組み合わせて用いるものであ
る。しかしながら、従来の半導体デバイス主体のエレク
トロニクス技術による情報処理方法は、一般に逐次的な
演算手法を利用するため、論理演算のような直列処理に
はきわめて向いているが、画像やパターン処理のような
多量の情報の同時かつ並列的な処理には一般的に適して
いない。
2. Description of the Related Art In electric and electronic devices, recognition of images, characters, symbols, etc. plays a central role in so-called man-machine interface between human and machine. As is well known, recognition by electronic means has made rapid technological progress in recent years, has brought about innovations in the fields of information processing equipment, communication equipment, measuring equipment, etc., and has also expanded into areas closely related to our daily lives. It was way. To date, most of these recognition techniques mainly use a combination of semiconductor devices such as silicon. However, the conventional information processing method based on semiconductor device-based electronic technology is generally suitable for serial processing such as logical operation because it generally uses a sequential arithmetic method, but it is very suitable for large-scale processing such as image and pattern processing. It is generally not suitable for simultaneous and parallel processing of information.

【0003】例えば、従来の外部光画像パターンの処理
方法として、CCD(電荷結合素子)イメージセンサー
が知られている。このCCDイメージセンサーでは、微
細化された受光素子および変換素子を二次元的に集積化
し、入力画像をモザイク状に分割し、各素子の受けた情
報をそれぞれ独立に電気的に逐次計測して画像を再現し
ている。このため、画像の認識には膨大な情報の処理と
変換を行わなければならないという欠点がある。
For example, a CCD (charge coupled device) image sensor is known as a conventional method for processing an external light image pattern. In this CCD image sensor, the miniaturized light receiving element and the conversion element are two-dimensionally integrated, the input image is divided into mosaics, and the information received by each element is independently and sequentially electrically measured to form an image. Is reproduced. For this reason, there is a disadvantage in recognizing an image that a large amount of information must be processed and converted.

【0004】一方、生命ないし生体現象の解明に伴な
い、生体が有する優れた機能を基にした新しい考え方に
よる材料や素子の開発に対する期待が高まってきてい
る。すなわち、生体現象を模倣して、情報処理、認識、
記憶などの面でこれまでの半導体技術とは異なる原理に
基礎をおく材料や素子を開発し、人間によりフィットし
た新しいエレクトロニクス技術を担うという考えに基づ
いている。
On the other hand, with the elucidation of life or biological phenomena, expectations for the development of materials and devices based on new ideas based on the excellent functions of living bodies are increasing. In other words, by mimicking biological phenomena, information processing, recognition,
It is based on the idea of developing materials and devices that are based on principles that are different from conventional semiconductor technology in terms of memory, etc., and bear new electronic technology that fits more people.

【0005】生体系に特有な多くの現象のうち最も基本
的な情報変換・処理の形態は、細胞内または細胞間にお
ける物質の反応や拡散などによる動的かつ並列的な処理
に基づくものである。例えば、視覚系は外から入る情報
の7〜8割を処理しており、生体系における情報処理の
中で最も重要な役割を担っていると考えられている。こ
の視覚系における情報変換では、まず網膜に二次元的に
配列された視細胞層で光信号を化学反応を利用して物質
に変換した後、その後の種々の反応を経由しつつ機能化
されたいくつかの神経細胞層を経る間に信号を並列的に
処理・統合し、最終的に電気神経パルスとして脳に送っ
ていることが解明されてきている。
Among the many phenomena peculiar to biological systems, the most basic form of information conversion / processing is based on dynamic and parallel processing by reaction or diffusion of substances in or between cells. . For example, the visual system processes 70 to 80% of information coming from the outside, and is considered to play the most important role in information processing in the biological system. In the information conversion in this visual system, first, light signals were converted into substances using a chemical reaction in the photoreceptor cell layer that was two-dimensionally arranged in the retina, and then functionalized through various subsequent reactions. It has been elucidated that signals are processed and integrated in parallel while passing through several nerve cell layers, and finally sent to the brain as electric nerve pulses.

【0006】従来、このような生体における情報処理を
模倣した方法としては、以下のようなものが知られてい
る。例えば、光化学反応物質を含む膜を挟んで溶液を配
置し、それぞれ膜の両側の溶液に浸漬された1対の電極
を設け、これらの電極を電気的発振回路の一部に組み込
み、膜への光入力に伴う膜の容量や電気伝導度などの電
気物性変化によって発振パターンが変化することを利用
した光センサーが提案されている(H.Nakanis
hi and H.Yamaguchi:Bioele
ctrochem.Bioenerg.,32巻,27
ページ(1993年))。しかしながら、この光センサ
ーは、外部からの画像情報を並列的に変換・処理するこ
とは想定していない。
Conventionally, the following methods have been known as methods that imitate such information processing in a living body. For example, a solution is placed with a film containing a photochemical reaction substance sandwiched therebetween, and a pair of electrodes immersed in the solution on both sides of the film are provided, and these electrodes are incorporated into a part of an electric oscillation circuit to An optical sensor that utilizes the fact that the oscillation pattern changes due to changes in the electrical properties of the film, such as the capacitance and electrical conductivity of the film, is proposed (H. Nakanis).
hi and H. Yamaguchi: Bioele
ctrochem. Bioenerg. , 32 volumes, 27
Page (1993)). However, this optical sensor does not assume parallel conversion and processing of image information from the outside.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述した問題
点を解決するためになされたものであり、外部からの画
像情報を物質の動的な濃度変化に変換することにより、
並列的な処理を可能にした新規な情報変換素子を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and by converting image information from the outside into a dynamic concentration change of a substance,
It is an object of the present invention to provide a novel information conversion element that enables parallel processing.

【0008】[0008]

【課題を解決するための手段】本発明の情報変換素子
は、光または熱により物理的または化学的変化を起こす
物質を含む機能性膜と、機能性膜の両側に接触して配置
された媒体と、機能性膜を挟む両側の媒体中でそれぞれ
低濃度および高濃度となるように媒体中に含有された膜
透過性物質と、膜透過性物質が低濃度に設定された媒体
中における機能性膜からの膜透過性物質の拡散層の範囲
内に配置され、機能性膜への光または熱による像入力に
伴う膜透過性物質の濃度パターン変化を検出する電極と
を具備したことを特徴とするものである。
The information conversion element of the present invention comprises a functional film containing a substance that undergoes a physical or chemical change by light or heat, and a medium arranged in contact with both sides of the functional film. And the membrane-permeable substance contained in the medium so that the concentration is low and high in the medium on both sides of the functional membrane, and the functionality in the medium in which the membrane-permeable substance is set to a low concentration. An electrode which is arranged within the range of the diffusion layer of the membrane-permeable substance from the membrane, and which detects the concentration pattern change of the membrane-permeable substance due to image input by light or heat to the functional film. To do.

【0009】[0009]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明において、機能性膜中に含有される物質
(または物質の集合体)としては、光ないし熱により原
子・分子構造や電子構造の物理的または化学的な変化を
起こすものであれば特に限定されない。例えば、有機物
質として、スピロピラン類のようなヘテロ環の開裂反応
を起こす物質、アゾベンゼン類やスチルベン類などのよ
うなシス−トランス異性化を起こす物質、ノルボナジエ
ンとクアドキシレンとの間のような歪み変形を起こす物
質、または電子供与体および電子受容体として働く2種
の分子間の電子移動反応を起こす物質などが挙げられ
る。また、タンパク質分子として、高度好塩菌から抽出
されるバクテリオロドプシンおよびその類似物、種々の
動物の網膜中の視細胞に含まれる視物質ロドプシンなど
が挙げられる。また、これらの化学変化を伴う変化以外
に、光または熱により結晶−アモルファス転移、脂質の
多形現象などの相転移などにより膜の集合構造の変化を
起こすようなものでもかまわない。ただし、これらの材
料のうち、応答感度の点から一般に反応ないし変化の収
率が高い物質を用いることが好ましい。また、機能性膜
に光または熱の吸収領域が異なる複数種の物質を含有さ
せることにより多波長の入力に応答する処理を行うこと
も可能である。例えば、赤、緑、青の吸収領域に応答す
る3種の物質を用いることによりカラー画像を検知でき
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail below. In the present invention, the substance (or aggregate of substances) contained in the functional film is not particularly limited as long as it causes a physical or chemical change in atomic / molecular structure or electronic structure by light or heat. Not done. For example, as an organic substance, a substance that causes a heterocyclic cleavage reaction such as spiropyrans, a substance that causes cis-trans isomerization such as azobenzenes and stilbenes, and strain deformation such as between norvonadiene and quadxylene. And a substance that causes an electron transfer reaction between two kinds of molecules that act as an electron donor and an electron acceptor. Examples of protein molecules include bacteriorhodopsin and its analogues extracted from highly halophilic bacteria, and visual pigment rhodopsin contained in photoreceptor cells in retinas of various animals. In addition to these changes accompanied by chemical changes, changes in the aggregate structure of the membrane may be caused by light or heat, such as a crystal-amorphous transition and a phase transition such as a polymorphism of lipids. However, among these materials, it is preferable to use a substance that generally has a high yield of reaction or change from the viewpoint of response sensitivity. Further, it is also possible to perform a treatment responding to an input of multiple wavelengths by incorporating a plurality of kinds of substances having different light or heat absorption regions in the functional film. For example, a color image can be detected by using three kinds of substances that respond to red, green, and blue absorption regions.

【0010】本発明において用いられる機能性膜の形態
は、膜透過性物質の膜透過を阻害しないものであれば特
に限定されず、固体膜でも液体膜でもよい。具体的に
は、例えば脂質二分子膜、脂質含浸膜、無機・有機高分
子膜など様々なものを用いることができる。機能性膜の
平面的な形状も特に限定されず、例えば円形でも多角形
でもよい。さらに、機能性膜を固定・保持する基板とし
ては、単孔または多孔を有する金属基板、半導体基板、
絶縁体基板もしくはこれらの表面をコーティングなどに
より処理したもの、またはセルロース系、フッ素樹脂
系、塩化ビニル系、アクリルニトリル系、ポリカーボネ
ート系、炭素繊維系などの有機系もしくは無機系の多孔
質フィルターなどを用いることができる。
The form of the functional membrane used in the present invention is not particularly limited as long as it does not inhibit the membrane permeation of the membrane permeable substance, and may be a solid membrane or a liquid membrane. Specifically, various materials such as a lipid bilayer membrane, a lipid-impregnated membrane, and an inorganic / organic polymer membrane can be used. The planar shape of the functional film is not particularly limited, and may be circular or polygonal, for example. Further, as a substrate for fixing and holding the functional film, a metal substrate having a single hole or a porous, a semiconductor substrate,
Insulator substrate or those whose surface is treated by coating etc., or organic or inorganic porous filter such as cellulose type, fluororesin type, vinyl chloride type, acrylonitrile type, polycarbonate type, carbon fiber type etc. Can be used.

【0011】本発明において、情報伝達するために用い
られる膜透過性物質は、光または熱による膜の構造変化
に伴って透過性が変化するものであればなんでもよい。
膜透過性物質としては、例えば、水素イオン、酸素イオ
ン、金属イオン、金属錯体イオン、金属酸化物イオン、
ハロゲンイオンなど種々の無機イオンが挙げられる。こ
のほか、種々の中性原子、有機分子または有機分子イオ
ンなどを用いることもできる。
In the present invention, the membrane-permeable substance used for transmitting information may be any substance as long as its permeability changes with the structural change of the membrane due to light or heat.
As the membrane-permeable substance, for example, hydrogen ion, oxygen ion, metal ion, metal complex ion, metal oxide ion,
Various inorganic ions such as halogen ions can be used. In addition, various neutral atoms, organic molecules or organic molecular ions can be used.

【0012】本発明において、膜透過性物質を保持する
媒体は特に限定されず、膜透過性物質の種類に応じて種
々のものを用いることができる。例えば、液体媒体とし
ては水のほか、有機溶媒を用いることもできる。有機溶
媒としてはヘキサンやトルエンなどの炭化水素類、ジオ
キサンなどのエーテル類、アルコール類、アセトニトリ
ルなどが挙げられる。ゲル媒体としてはゼラチン、ポリ
アクリルアミドなどを用いることができる。固体媒体と
しては、ポリエチレンオキシドやポリプロピレンオキシ
ドなどのイオン伝導性高分子、ジルコニアやβ−アルミ
ナなどの酸化物イオン導電体、フッ化カルシウムやヨウ
化銀などのハロゲン化物イオン導電体、シリコンやゲル
マニウムなどの種々の半導体などを用いることができ
る。ただし、素子の制御性および応答速度などの点を考
慮すると液体媒体またはゲル媒体を用いることが好まし
い。
In the present invention, the medium holding the membrane permeable substance is not particularly limited, and various media can be used depending on the type of the membrane permeable substance. For example, an organic solvent can be used as the liquid medium in addition to water. Examples of the organic solvent include hydrocarbons such as hexane and toluene, ethers such as dioxane, alcohols, acetonitrile and the like. As the gel medium, gelatin, polyacrylamide or the like can be used. As the solid medium, ion conductive polymers such as polyethylene oxide and polypropylene oxide, oxide ion conductors such as zirconia and β-alumina, halide ion conductors such as calcium fluoride and silver iodide, silicon and germanium, etc. Various semiconductors and the like can be used. However, it is preferable to use a liquid medium or a gel medium in consideration of the controllability and response speed of the device.

【0013】本発明においては、機能性膜の両側に接触
して媒体が配置されており、機能性膜を挟む両側の媒体
中でそれぞれ低濃度および高濃度となるように媒体中で
の膜透過性物質の濃度差が設定されている。したがっ
て、膜透過性物質は濃度差を駆動力として、高濃度側か
ら低濃度側へと機能性膜を透過する。さらに、膜透過性
物質の移動速度を増大させて検出速度を向上するため
に、媒体を介して膜透過性物質に、電場、磁場または圧
力のうち少なくとも1種以上を外部より印加してもよ
い。
In the present invention, the medium is placed in contact with both sides of the functional membrane, and the membrane permeation through the medium is made to be low and high in the medium on both sides of the functional membrane. The concentration difference of the volatile substance is set. Therefore, the membrane-permeable substance permeates the functional membrane from the high-concentration side to the low-concentration side by using the difference in concentration as a driving force. Furthermore, in order to increase the moving speed of the membrane permeable substance and improve the detection speed, at least one kind of electric field, magnetic field or pressure may be externally applied to the membrane permeable substance through the medium. .

【0014】なお、媒体および媒体を2つの領域に隔て
る機能性膜は、所定のセル内に収容される。このため、
機能性膜に光または熱による画像パターンを入射するに
は、膜透過性物質の濃度が高濃度に設定された媒体側の
セル壁面を光または熱透過性の材料で形成することが好
ましい。
The medium and the functional film separating the medium into two regions are housed in a predetermined cell. For this reason,
In order to make an image pattern of light or heat incident on the functional film, it is preferable that the medium-side cell wall surface in which the concentration of the film-permeable substance is set to a high concentration is formed of a light- or heat-permeable material.

【0015】本発明において、膜透過性物質の濃度パタ
ーン変化を検出する電極は特に限定されないが、目的と
する物質のみを感度よく検出するためには物質選択的な
検出が可能な電極が好ましく、例えばイオン選択性電極
が用いられる。イオン選択性電極は、表面に特定のイオ
ンに応答するイオン選択性膜を有し、測定対象となるイ
オンの濃度差に伴う膜電位変動を検出するものである。
より具体的には、微細化した飽和カロメル電極または銀
・塩化銀電極などの参照電極の表面にイオン選択性膜を
直接または内部基準液を介して固定化したもの;微細加
工された電界効果トランジスタ(FET)のゲート絶縁
膜上にイオン選択性膜を設けた微小イオン選択性FET
電極などが挙げられる。イオン選択性電極では、適当な
イオン選択性膜を用いることにより、水素イオン、ナト
リウムイオンやカリウムイオンなどのアルカリ金属イオ
ン、カルシウムやバリウムなどのアルカリ土類金属イオ
ン、塩素イオンやヨウ素イオンなどのハロゲンイオン、
またはアンモニウムイオンなど種々のイオンを検出する
ことができる。なお、イオン選択性電極による電位測定
は、別に設けた参照極に対して行なわれる。
In the present invention, the electrode for detecting the change in the concentration pattern of the membrane-permeable substance is not particularly limited, but an electrode capable of substance-selective detection is preferable in order to detect only the target substance with high sensitivity, For example, an ion selective electrode is used. The ion-selective electrode has an ion-selective membrane that responds to specific ions on the surface, and detects membrane potential fluctuations due to the concentration difference of the ions to be measured.
More specifically, an ion-selective membrane is immobilized directly or through an internal standard solution on the surface of a miniaturized saturated calomel electrode or a reference electrode such as a silver / silver chloride electrode; Microfabricated field effect transistor (FET) micro ion selective FET provided with ion selective film on gate insulating film
Electrodes and the like. For ion-selective electrodes, hydrogen ions, alkali metal ions such as sodium and potassium ions, alkaline earth metal ions such as calcium and barium, and halogen ions such as chlorine and iodine ions can be used by using an appropriate ion-selective membrane. ion,
Alternatively, various ions such as ammonium ions can be detected. The measurement of potential by the ion-selective electrode is performed on a reference electrode provided separately.

【0016】また例えば、目的とする原子、分子または
それらのイオンなどの膜透過性物質の酸化還元に伴う電
流を検出する電極を用いることもできる。このような電
極を構成する物質としては、化学的な安定性および表面
における反応活性の点から、通常、白金、金、カーボン
などが用いられる。なお、膜透過性物質の種類に応じて
は、非金属または有機導電体を用いても差し支えない。
また、この電極に対して対極と必要に応じて参照極が設
けられる。このように、膜透過性物質の酸化還元に伴う
電流を検出する方法では、電極の電位を操作することに
より、媒体中の任意の酸化還元電位の異なる物質を高感
度に検出でき、しかも電極として構造が単純で微細化加
工の極めて容易なものを用いることができる。
Further, for example, an electrode for detecting an electric current associated with redox of a membrane-permeable substance such as a target atom or molecule or ions thereof can be used. As a substance forming such an electrode, platinum, gold, carbon or the like is usually used from the viewpoint of chemical stability and reaction activity on the surface. A non-metal or organic conductor may be used depending on the type of the membrane-permeable substance.
Further, a counter electrode and a reference electrode as needed are provided for this electrode. As described above, in the method of detecting the current associated with the redox of the membrane-permeable substance, the substances having different redox potentials in the medium can be detected with high sensitivity by manipulating the potential of the electrode, and moreover, as the electrode. It is possible to use a material having a simple structure and extremely easy microfabrication processing.

【0017】本発明において、膜透過性物質の濃度パタ
ーン変化を検出する電極は、膜透過性物質の濃度が低濃
度に設定された媒体中における機能性膜からの膜透過性
物質の拡散層の範囲内に配置される。拡散層とは拡散に
よる物質移動のために媒体中で濃度勾配が生じている層
のことであり、通常、機能性膜の表面から500μm程
度の領域をいう。電極の大きさは、膜透過性物質の二次
元的な濃度パターンの変化を検出するために、少なくと
も機能性膜の直径または最長の対角線の長さより小さい
ことが好ましい。電極の数は単数でも複数でもよい。ま
た、必要に応じて設けられる対極または/および参照極
は、検出用の電極と同じく膜透過性物質の濃度が低濃度
に設定された媒体中に設けられるが、機能性膜からの膜
透過性物質の拡散の妨げにならない位置に配置すること
が望ましい。さらに、電極により検出された電気信号
は、別途に設けた検出処理装置で信号処理される。
In the present invention, the electrode for detecting the change in the concentration pattern of the membrane permeable substance is the diffusion layer of the membrane permeable substance from the functional membrane in the medium in which the concentration of the membrane permeable substance is set to a low concentration. It is located within the range. The diffusion layer is a layer in which a concentration gradient occurs in the medium due to mass transfer due to diffusion, and usually refers to a region of about 500 μm from the surface of the functional film. The size of the electrode is preferably at least smaller than the diameter of the functional membrane or the length of the longest diagonal in order to detect the change in the two-dimensional concentration pattern of the membrane-permeable substance. The number of electrodes may be single or plural. The counter electrode and / or the reference electrode, which are provided as necessary, are provided in the medium in which the concentration of the membrane permeable substance is set to a low concentration, like the detection electrode. It is desirable to place it in a position that does not interfere with the diffusion of the substance. Further, the electric signal detected by the electrode is signal-processed by a separately provided detection processing device.

【0018】次に、本発明の情報変換素子の動作原理を
説明する。まず、機能性膜に光または熱による画像パタ
ーンが入力されると、その部分に存在する物質に物理的
または化学的な構造変化が生じる。この結果、媒体中に
含有され機能性膜の内部を高濃度側から低濃度側へ向か
って拡散する膜透過性物質の膜透過特性が変化する。こ
のような膜透過性物質の膜透過特性の変化により、機能
性膜の画像パターンが入力された部分では膜透過性物質
の拡散状態が3次元的に変化する。この変化は膜透過性
物質濃度が低濃度側の媒体へ伝達され、機能性膜の近傍
においては、膜からの距離および画像パターン入力後の
時間に依存して膜透過性物質の濃度パターンが発生す
る。この濃度パターンの変化は、巨視的には時間の経過
とともに機能性膜からの膜透過性物質の拡散距離が増大
するにつれて均一化されて一定値に近づく。しかし、こ
の一定値になるまでの時間内では機能性膜近傍の領域す
なわち拡散層内において、機能性膜に入力された画像パ
ターンの情報を空間的かつ時間的に反映した膜透過性物
質の濃度パターンが形成される。そして、この拡散層内
に膜透過性物質の濃度を検出可能な電極が配置されてい
るので、機能性膜に入力された画像パターンを膜透過性
物質の濃度パターンとして検出できる。以上のような原
理により、画像情報を別の情報に変換して検出できる素
子を実現できる。この場合、装置内にあらかじめ画像パ
ターンの学習記憶回路を設け、画像パターンと検出信号
とを対応させることにより、より高度な画像パターンの
検出が可能になる。
Next, the operating principle of the information conversion element of the present invention will be described. First, when an image pattern due to light or heat is input to the functional film, a physical or chemical structural change occurs in the substance existing in that part. As a result, the membrane permeability of the membrane permeable substance contained in the medium and diffusing inside the functional membrane from the high concentration side to the low concentration side changes. Due to such a change in the membrane permeability of the membrane permeable substance, the diffusion state of the membrane permeable substance changes three-dimensionally in the portion where the image pattern of the functional membrane is input. This change is transmitted to the medium where the concentration of the membrane-permeable substance is low, and in the vicinity of the functional membrane, the concentration pattern of the membrane-permeable substance is generated depending on the distance from the membrane and the time after the image pattern is input. To do. Macroscopically, the change in the concentration pattern becomes uniform and approaches a constant value as the diffusion distance of the membrane-permeable substance from the functional film increases with the passage of time. However, within the time until this constant value is reached, in the area near the functional film, that is, in the diffusion layer, the concentration of the membrane-permeable substance that spatially and temporally reflects the information of the image pattern input to the functional film. A pattern is formed. Then, since the electrode capable of detecting the concentration of the membrane permeable substance is arranged in the diffusion layer, the image pattern input to the functional film can be detected as the concentration pattern of the membrane permeable substance. Based on the above principle, it is possible to realize an element capable of converting image information into another information and detecting it. In this case, a higher-level image pattern can be detected by previously providing an image pattern learning storage circuit in the apparatus and associating the image pattern with the detection signal.

【0019】なお、電極を1個だけ用いた場合は、例え
ば電極に対して点対称な膜透過性物質の濃度パターンす
なわち入力される画像パターンを認識することが困難に
なる。したがって、任意の二次元の入力画像パターンを
検出するためには、電極を3個以上非直線的な配置で設
けることが望ましい。
When only one electrode is used, it becomes difficult to recognize, for example, the concentration pattern of the membrane-permeable substance that is point-symmetric with respect to the electrode, that is, the image pattern to be input. Therefore, in order to detect an arbitrary two-dimensional input image pattern, it is desirable to provide three or more electrodes in a non-linear arrangement.

【0020】[0020]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の情報変換素子の一例を示す断面図
である。図1において、セル1の中央部には開孔部を有
する隔壁2が取付けられ、この隔壁2の開口部に機能性
膜3が設けられている。この隔壁2および機能性膜3に
よりセル1内は2つの領域に区画されている。セル1内
の区画された領域のうち一方には膜透過性物質を高濃度
に含有する高濃度側溶液4が、他方には膜透過性物質を
低濃度に含有する低濃度側溶液5がそれぞれ収容されて
いる。なお、高濃度側溶液4を保持するセル1の壁面に
は、外部からの画像パターン情報を機能性膜3に入射で
きるように光透過窓1aが設けられている。低濃度側溶
液5を保持するセル1の壁面には膜透過性物質の濃度を
検出するための微小電極6が取付けられ、この微小電極
6の先端は機能性膜3の近傍すなわち拡散層の範囲内に
配置されている。また、低濃度側溶液5中の機能性膜3
から離れた位置に微小電極6の対極7が設けられてい
る。微小電極6および対極7から得られる信号は検出処
理装置8で検出されて信号処理がなされる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing an example of the information conversion element of the present invention. In FIG. 1, a partition 2 having an opening is attached to the center of a cell 1, and a functional film 3 is provided in the opening of this partition 2. The partition 2 and the functional film 3 divide the inside of the cell 1 into two regions. One of the partitioned areas in the cell 1 has a high-concentration solution 4 containing a membrane-permeable substance at a high concentration, and the other has a low-concentration solution 5 containing a membrane-permeable substance at a low concentration. It is housed. A light transmission window 1a is provided on the wall surface of the cell 1 holding the high concentration side solution 4 so that image pattern information from the outside can be incident on the functional film 3. A microelectrode 6 for detecting the concentration of the membrane-permeable substance is attached to the wall surface of the cell 1 holding the low-concentration solution 5, and the tip of the microelectrode 6 is in the vicinity of the functional film 3, that is, in the range of the diffusion layer. It is located inside. Also, the functional film 3 in the low-concentration solution 5
The counter electrode 7 of the microelectrode 6 is provided at a position away from. The signal obtained from the microelectrode 6 and the counter electrode 7 is detected by the detection processing device 8 and signal processing is performed.

【0021】図2に微小電極6の一例として、膜透過性
物質の酸化還元による電流変化を検出する微小酸化還元
電極の先端部を拡大して示す。図2に示されるように、
電極61の周囲は絶縁体62でシールドされ、検知を行
う末端面だけが露出している。なお、膜透過性物質がイ
オンであり、これをイオン選択性電極を使用して検出す
る場合には、図2の電極先端にイオン選択性膜を設けた
ものを用いる。
As an example of the microelectrode 6, FIG. 2 shows an enlarged tip of the microoxidation / reduction electrode for detecting a change in current due to redox of the membrane-permeable substance. As shown in FIG.
The periphery of the electrode 61 is shielded by an insulator 62, and only the end face for detection is exposed. When the membrane-permeable substance is an ion and this is detected using an ion-selective electrode, the ion-selective membrane provided at the electrode tip of FIG. 2 is used.

【0022】イオン選択性電極を用いる場合、図1の対
極7としてはいわゆる参照極を使用する。また、膜透過
性物質の酸化還元反応による電流変化を検出する場合に
は、対極および参照極の双方を配置してもよい。
When an ion selective electrode is used, a so-called reference electrode is used as the counter electrode 7 in FIG. Further, when detecting a current change due to a redox reaction of a membrane-permeable substance, both the counter electrode and the reference electrode may be arranged.

【0023】図3には、複数の微小電極6を用いた以外
は図1と同様の構成を有する情報変換素子の断面図を示
す。 実施例1 図1に示す構成を有する情報変換素子を以下のようにし
て作製した。
FIG. 3 shows a sectional view of an information conversion element having the same structure as that of FIG. 1 except that a plurality of microelectrodes 6 are used. Example 1 An information conversion element having the configuration shown in FIG. 1 was produced as follows.

【0024】まず、孔径600μmの開孔部を有し、表
面をフッ素樹脂でコートした厚さ10μmのニッケル基
板を用意した。このニッケル基板の開孔部に、アゾベン
ゼン基を有する脂質分子である4’−オクチルアゾベン
ゼン−4−オキシブチリック酸を含むモノオレインの二
分子膜を形成して機能性膜とした。
First, a nickel substrate having a hole diameter of 600 μm and a surface coated with a fluororesin having a thickness of 10 μm was prepared. A bilayer membrane of monoolein containing 4′-octylazobenzene-4-oxybutyric acid, which is a lipid molecule having an azobenzene group, was formed in the opening of this nickel substrate to form a functional membrane.

【0025】このようにして機能性膜3が形成されたニ
ッケル基板を、図1に示す情報変換素子の隔壁2として
用いた。媒体として水、膜透過性物質として塩化カリウ
ムを用い、高濃度側溶液4の濃度を10mmol、低濃
度側溶液5の濃度を0.01mmolに設定した。微小
電極6として、銀電極上にバリノマイシン含有の高分子
膜を固定化したカリウムイオン選択性微小電極(電極
径:50μm)を用い、その先端が機能性膜3から15
0μmの位置に配置されるように固定した。
The nickel substrate having the functional film 3 thus formed was used as the partition wall 2 of the information conversion element shown in FIG. Water was used as the medium, potassium chloride was used as the membrane permeable substance, and the concentration of the high concentration side solution 4 was set to 10 mmol and the concentration of the low concentration side solution 5 was set to 0.01 mmol. As the microelectrode 6, a potassium ion-selective microelectrode (electrode diameter: 50 μm) in which a valinomycin-containing polymer film is immobilized on a silver electrode is used, and the tip of the microelectrode is provided with the functional films 3 to 15
It was fixed so as to be arranged at a position of 0 μm.

【0026】この情報変換素子を用い、図4に示すよう
に照射する全面積の積分強度が一定であるが、形が異な
る3種の画像パターンをなす波長355nmの光を機能
性膜3にそれぞれ1秒ずつ照射し、カリウムイオン濃度
の経時変化を検出した。その結果、図4(a)〜(c)
に示すように、入射する画像の形に応じて異なる経時変
化を示すカリウムイオンの濃度パターンが得られた。
Using this information conversion element, as shown in FIG. 4, although the integrated intensity of the entire area to be irradiated is constant, light having a wavelength of 355 nm forming three types of image patterns having different shapes is supplied to the functional film 3. Irradiation was performed for 1 second each, and a change in potassium ion concentration with time was detected. As a result, FIGS. 4 (a) to 4 (c)
As shown in Fig. 3, the concentration pattern of potassium ions showing a time-dependent change depending on the shape of the incident image was obtained.

【0027】比較のために、微小電極6を機能性膜3か
ら10mmの位置に移動して同様の測定を行ったが、入
射された画像パターンによる応答の違いは何ら観測され
なかった。
For comparison, the microelectrode 6 was moved to a position 10 mm from the functional film 3 and the same measurement was performed, but no difference in response due to the incident image pattern was observed.

【0028】実施例2 高濃度側溶液4および低濃度側溶液5にそれぞれ銀/塩
化銀電極を浸漬し、機能性膜3の膜厚方向に沿って20
0mVの電場を印加した以外は、実施例1と同様にして
カリウムイオン濃度の経時変化を検出した。
Example 2 A silver / silver chloride electrode was dipped in each of the high-concentration solution 4 and the low-concentration solution 5, and 20 along the film thickness direction of the functional film 3.
The time course of the potassium ion concentration was detected in the same manner as in Example 1 except that an electric field of 0 mV was applied.

【0029】その結果、いずれの画像パターンに対して
も、カリウムイオン濃度の検出速度は実施例1の場合と
比較して5倍になった。 実施例3 機能性膜として1,2−ジパルミトイル−sn−グリセ
ロ−3−フォスファチジルコリンからなる脂質二分子膜
を用いた以外は、実施例1と同様な情報変換素子を作製
した。
As a result, the detection rate of the potassium ion concentration was 5 times higher than that in the case of Example 1 for all the image patterns. Example 3 An information conversion element similar to that of Example 1 was prepared, except that a lipid bilayer membrane composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine was used as the functional membrane.

【0030】この情報変換素子を用い、図4に示すよう
な3種の画像パターンをなす波長2.5μm以上の赤外
線を機能性膜3にそれぞれ照射し、カリウムイオン濃度
の経時変化を検出した。その結果、入射する画像の形に
応じて異なる経時変化を示すカリウムイオンの濃度パタ
ーンが得られた。
Using this information conversion element, the functional film 3 was irradiated with infrared rays having a wavelength of 2.5 μm or more, which form three types of image patterns as shown in FIG. 4, and the change with time of the potassium ion concentration was detected. As a result, the potassium ion concentration pattern showing the time-dependent change depending on the shape of the incident image was obtained.

【0031】実施例4 機能性膜3としてスピロピラン基を有する脂質分子であ
る1’、3’−ジヒドロ−3’、3’−ジメチル−6−
ニトロー1’−オクタデシル−8−ドコサノイルオキシ
メチルスピロ[2H−1−ベンゾピラン−2、2’−
[2H]インドール]を含むトリオレインをアセチルセ
ルロース製の多孔質フィルター(ポアサイズ:0.3μ
m)に含浸したものを用いた。媒体として水、膜透過性
物質としてp−ベンゾキノンを用い、高濃度側溶液4の
濃度を10mmol、低濃度側溶液5の濃度を0.01
mmolに設定した。微小電極6として、ベンゾキノン
の酸化還元に伴う電流を検出する白金電極(電極径:1
0μm)を用い、その先端が機能性膜3から100μm
の位置に配置されるように固定した。このようにして、
実施例1と同様な情報変換素子を作製した。
Example 4 1 ', 3'-dihydro-3', 3'-dimethyl-6- which is a lipid molecule having a spiropyran group as the functional membrane 3
Nitro-1'-octadecyl-8-docosanoyloxymethylspiro [2H-1-benzopyran-2,2'-
Triolein containing [2H] indole was added to a porous filter made of acetyl cellulose (pore size: 0.3μ).
What was impregnated in m) was used. Using water as a medium and p-benzoquinone as a membrane-permeable substance, the concentration of the high concentration side solution 4 was 10 mmol, and the concentration of the low concentration side solution 5 was 0.01.
It was set to mmol. As the microelectrode 6, a platinum electrode (electrode diameter: 1
0 μm), the tip of which is 100 μm from the functional film 3
It was fixed so that it would be placed in the position. In this way,
An information conversion element similar to that in Example 1 was produced.

【0032】この情報変換素子を用い、図4に示すよう
な3種の画像パターンをなす波長355nmの光を機能
性膜3にそれぞれ1秒ずつ照射し、p−ベンゾキノン濃
度の経時変化を検出した。その結果、図4(a)〜
(c)と同様に、入射する画像の形に応じて異なる経時
変化を示すp−ベンゾキノンの濃度パターンが得られ
た。
Using this information conversion element, the functional film 3 was irradiated with light having a wavelength of 355 nm, which forms three types of image patterns as shown in FIG. 4, for 1 second, respectively, and the change with time in the p-benzoquinone concentration was detected. . As a result, FIG.
Similar to (c), a p-benzoquinone concentration pattern showing a change with time depending on the shape of the incident image was obtained.

【0033】実施例5 機能性膜として3,4−(1,4,7,10,13−ペ
ンタオキサトリデカン−1,13−ジイル)ベンジル−
p−(フェニルアゾ)ベンゾアートを含むポリ塩化ビニ
ル高分子膜(厚さ:0.10mm)を用いた。媒体とし
て固体電解質であるポリエチレンオキシド、膜透過性物
質として過塩素酸リチウムを用いた。微小電極6とし
て、銀電極上にドデシルメチル−14−クラウン−4を
含有する高分子膜を固定したイオン選択性電極(電極
径:50μm)を用いた。このようにして、実施例1と
同様な情報変換素子を作製した。
Example 5 As a functional film, 3,4- (1,4,7,10,13-pentaoxatridecane-1,13-diyl) benzyl-
A polyvinyl chloride polymer film (thickness: 0.10 mm) containing p- (phenylazo) benzoate was used. Polyethylene oxide, which is a solid electrolyte, was used as the medium, and lithium perchlorate was used as the membrane-permeable substance. As the microelectrode 6, an ion selective electrode (electrode diameter: 50 μm) in which a polymer film containing dodecylmethyl-14-crown-4 was fixed on a silver electrode was used. In this way, an information conversion element similar to that of Example 1 was manufactured.

【0034】この情報変換素子を用い、図4に示すよう
な3種の画像パターンをなす波長355nmの光を機能
性膜3にそれぞれ1秒ずつ照射し、リチウムイオン濃度
の経時変化を検出した。その結果、図4(a)〜(c)
と同様に、入射する画像の形に応じて異なる経時変化を
示すリチウムイオンの濃度パターンが得られた。
Using this information conversion element, the functional film 3 was irradiated with light having a wavelength of 355 nm, which forms three types of image patterns as shown in FIG. 4, for 1 second, respectively, and changes in the lithium ion concentration with time were detected. As a result, FIGS. 4 (a) to 4 (c)
Similarly, a lithium ion concentration pattern showing a time-dependent change depending on the shape of the incident image was obtained.

【0035】[0035]

【発明の効果】以上詳述したように本発明の情報変換素
子によれば、1個〜数個程度の極めてわずかな数の電極
で画像パターンをそのまま検出することができ、並列的
な画像の認識が可能になる。
As described in detail above, according to the information conversion element of the present invention, the image pattern can be detected as it is with only a very small number of electrodes, that is, one to a few electrodes. It becomes possible to recognize.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る情報変換素子の一例を示す断面
図。
FIG. 1 is a sectional view showing an example of an information conversion element according to the present invention.

【図2】本発明に係る情報変換素子に用いられる電極の
先端部を拡大して示す断面図。
FIG. 2 is an enlarged cross-sectional view showing a tip portion of an electrode used in the information conversion element according to the present invention.

【図3】本発明に係る情報変換素子の他の例を示す断面
図。
FIG. 3 is a sectional view showing another example of the information conversion element according to the present invention.

【図4】本発明に係る情報変換素子に用いて検出され
た、画像パターンに応じた膜透過性物質の濃度パターン
の経時変化を示す特性図。
FIG. 4 is a characteristic diagram showing changes over time in a concentration pattern of a membrane-permeable substance corresponding to an image pattern, which is detected by using the information conversion element according to the present invention.

【符号の説明】[Explanation of symbols]

1…セル、2…隔壁、3…機能性膜、4…高濃度側溶
液、5…低濃度側溶液、6…微小電極、7…対極、8…
検出処理装置、61…電極、62…絶縁体。
1 ... Cell, 2 ... Partition wall, 3 ... Functional film, 4 ... High concentration side solution, 5 ... Low concentration side solution, 6 ... Micro electrode, 7 ... Counter electrode, 8 ...
Detection processing device, 61 ... Electrode, 62 ... Insulator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光または熱により物理的または化学的変
化を起こす物質を含む機能性膜と、機能性膜の両側に接
触して配置された媒体と、機能性膜を挟む両側の媒体中
でそれぞれ低濃度および高濃度となるように媒体中に含
有された膜透過性物質と、膜透過性物質が低濃度に設定
された媒体中における機能性膜からの膜透過性物質の拡
散層の範囲内に配置され、機能性膜への光または熱によ
る像入力に伴う膜透過性物質の濃度パターン変化を検出
する電極とを具備したことを特徴とする情報変換素子。
1. A functional film containing a substance which undergoes a physical or chemical change by light or heat, a medium arranged in contact with both sides of the functional film, and a medium on both sides sandwiching the functional film. Range of the membrane permeable substance contained in the medium so as to have a low concentration and a high concentration, respectively, and the diffusion layer of the membrane permeable substance from the functional film in the medium in which the membrane permeable substance is set to a low concentration. An information conversion element, which is disposed inside the electrode, and which includes an electrode for detecting a change in concentration pattern of the film-permeable substance due to image input by light or heat to the functional film.
【請求項2】 上記媒体が液体であり、上記膜透過性物
質が原子、分子またはそれらのイオンであることを特徴
とする請求項1記載の情報変換素子。
2. The information conversion element according to claim 1, wherein the medium is a liquid, and the membrane-permeable substance is an atom, a molecule, or an ion thereof.
【請求項3】 上記電極が、上記機能性膜の膜径以下の
大きさの検出面積を有する微小酸化還元電極または微小
イオン選択性電極であることを特徴とする請求項1記載
の情報変換素子。
3. The information conversion element according to claim 1, wherein the electrode is a fine redox electrode or a fine ion selective electrode having a detection area having a size equal to or smaller than the film diameter of the functional film. .
JP23745095A 1995-09-14 1995-09-14 Information conversion element Expired - Fee Related JP3364370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23745095A JP3364370B2 (en) 1995-09-14 1995-09-14 Information conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23745095A JP3364370B2 (en) 1995-09-14 1995-09-14 Information conversion element

Publications (2)

Publication Number Publication Date
JPH0979901A true JPH0979901A (en) 1997-03-28
JP3364370B2 JP3364370B2 (en) 2003-01-08

Family

ID=17015531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23745095A Expired - Fee Related JP3364370B2 (en) 1995-09-14 1995-09-14 Information conversion element

Country Status (1)

Country Link
JP (1) JP3364370B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164784A (en) * 2006-12-27 2008-07-17 Ricoh Co Ltd Photo-chromic composition, image display medium, image forming device, and image deleting device
JP2009221384A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Photochromic composition, image display medium and image-forming device as well as image-erasing device
JP2009221385A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Photochromic composition, image display medium, image formation device, and image erasure device
JP2010059288A (en) * 2008-09-02 2010-03-18 Ricoh Co Ltd Photochromic composition, image display medium and image forming device
JP2010059289A (en) * 2008-09-02 2010-03-18 Ricoh Co Ltd Photochromic composition, image display medium, and image forming device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164784A (en) * 2006-12-27 2008-07-17 Ricoh Co Ltd Photo-chromic composition, image display medium, image forming device, and image deleting device
JP2009221384A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Photochromic composition, image display medium and image-forming device as well as image-erasing device
JP2009221385A (en) * 2008-03-17 2009-10-01 Ricoh Co Ltd Photochromic composition, image display medium, image formation device, and image erasure device
JP2010059288A (en) * 2008-09-02 2010-03-18 Ricoh Co Ltd Photochromic composition, image display medium and image forming device
JP2010059289A (en) * 2008-09-02 2010-03-18 Ricoh Co Ltd Photochromic composition, image display medium, and image forming device

Also Published As

Publication number Publication date
JP3364370B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
Forster Microelectrodes: new dimensions in electrochemistry
CA1059645A (en) Selective chemical sensitive fet transducers
Campbell et al. Steady state current for ion transfer reactions at a micro liquid/liquid interface
Ottova-Leitmannova et al. Bilayer lipid membranes: An experimental system for biomolecular electronic devices development
EP0299778A2 (en) Microelectrochemical sensor and sensor array
JPS62116252A (en) Method and device for electrochemical analysis
Tien et al. Supported bilayer lipid membranes as ion and molecular probes
Arrigan Bioanalytical detection based on electrochemistry at interfaces between immiscible liquids
JP2002502500A (en) Electrodes for measurement of analytes in small sample volumes
JPH10507515A (en) Gas concentration measurement method and micromachining detection device for implementing the method
Geng et al. Chemical phenomena in solid-state voltammetry in polymer solvents
JP3364370B2 (en) Information conversion element
Jetmore et al. Detection of acetylcholine at nanoscale NPOE/water liquid/liquid interface electrodes
JP3108499B2 (en) Microelectrode cell for electrochemical detection and method for producing the same
Sawada et al. Ion image sensors and their application for visualization of neural activity
US4867860A (en) Method of manufacturing ion-selective electrodes for analyzing selected ions in solution
Thompson et al. The bilayer lipid membrane as a basis for a selective sensor for ammonia
EP0215446A2 (en) Device and method for measuring ion activity
JP3592456B2 (en) Optical information conversion device
EP0230573B1 (en) Selectively ion-permeable dry electrodes for analyzing selected ions in aqueous solution
JP3310995B2 (en) Bipolar cell for voltammogram recording and voltammogram recording method using this bipolar cell
JPH10246666A (en) Information conversion element
JP2980950B2 (en) Bio element
Mayer Aminoxyl Catalyzed Electrochemical Ethanol Detection: Development of a New Breathalyzer Using Molecular Catalysis
Tien et al. BLM-based biosensors and devices: applications and future prospects

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees