JPH0979259A - Magnetic levitation rotary device - Google Patents

Magnetic levitation rotary device

Info

Publication number
JPH0979259A
JPH0979259A JP7239367A JP23936795A JPH0979259A JP H0979259 A JPH0979259 A JP H0979259A JP 7239367 A JP7239367 A JP 7239367A JP 23936795 A JP23936795 A JP 23936795A JP H0979259 A JPH0979259 A JP H0979259A
Authority
JP
Japan
Prior art keywords
radial
rotating body
magnetic bearing
axial
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7239367A
Other languages
Japanese (ja)
Inventor
Hirotomo Kamiyama
拓知 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP7239367A priority Critical patent/JPH0979259A/en
Publication of JPH0979259A publication Critical patent/JPH0979259A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • F16C32/0482Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings with three electromagnets to control the two degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0489Active magnetic bearings for rotary movement with active support of five degrees of freedom, e.g. two radial magnetic bearings combined with an axial bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PROBLEM TO BE SOLVED: To drive a radial/axial magnetic bearing over a relatively long time without using an auxiliary power source means of battery or the like, when supply of power from an external power supply is stopped. SOLUTION: A magnetic bearing device comprises two sets of radial magnetic bearings 3, 4 arranged in the periphery of a rotary unit 1, one set of axial magnetic bearing 2, AC electric motor 8 and a batteryless type inverter device for driving these magnetic bearings. The inverter device, when supply of power from an external power supply is stopped, drives the radial magnetic bearings 3, 4 and the axial magnetic bearing 2 by regenerative power from the electric motor 8. Each radial magnetic bearing 3, 4 is a three-electromagnet type radial magnetic bearing comprising three electromagnets 13a, 13b, 13c, 14a, 14b, 14c. The axial magnetic bearing 2 is a compound type axial magnetic bearing comprising a permanent magnet 12a and an electromagnet 12b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえばターボ
分子ポンプなどのように、磁気軸受で非接触支持された
回転体を交流電動機で回転させる磁気浮上回転装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation rotating device, such as a turbo molecular pump, for rotating a rotating body, which is supported in a non-contact manner by magnetic bearings, by an AC electric motor.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】たと
えば、ターボ分子ポンプに使用される磁気浮上回転装置
として、回転体の周囲にそれぞれ配設され回転体をラジ
アル方向に非接触支持する2組のラジアル磁気軸受と、
回転体の周囲に配設され回転体をアキシアル方向に非接
触支持する1組のアキシアル磁気軸受と、回転体の周囲
に配設され回転体を回転させる交流電動機と、電動機、
ラジアル磁気軸受およびアキシアル磁気軸受を駆動する
インバータ装置とを備えたものが知られている。回転体
の周囲には、また、磁気軸受による支持がなくなったと
きに回転体を機械的に支持する保護軸受(タッチダウン
軸受)が設けられている。各ラジアル磁気軸受は、回転
体を互いに直交する2つのラジアル方向の両側から挟む
ように配設された合計4個の電磁石を備えている。アキ
シアル磁気軸受は、回転体に形成されたフランジ部をア
キシアル方向の両側から挟むように配設された2個の電
磁石を備えている。インバータ装置は、通常は、外部電
源より供給された電力で電動機、ラジアル磁気軸受およ
びアキシアル磁気軸受を駆動し、停電などにより外部電
源からの電力の供給が停止したときに、電動機の回生制
動を行うとともに、電動機からの回生電力でラジアル磁
気軸受およびアキシアル磁気軸受を駆動する。これによ
り、外部電源からの電力の供給が停止しても、しばらく
の間は、ラジアル磁気軸受およびアキシアル磁気軸受で
回転体が非接触支持され、回転体がある程度減速した時
点で、磁気軸受による支持がなくなって、回転体は保護
軸受で支持され、さらに減速して、やがて停止する。
2. Description of the Related Art For example, as a magnetic levitation rotating device used in a turbo molecular pump, two sets of magnetic levitation rotating devices are provided around a rotating body and support the rotating body in a radial direction in a non-contact manner. Radial magnetic bearings,
A set of axial magnetic bearings arranged around the rotating body to support the rotating body in the axial direction in a non-contact manner; an AC electric motor arranged around the rotating body to rotate the rotating body;
It is known to have a radial magnetic bearing and an inverter device for driving the axial magnetic bearing. Around the rotating body, a protective bearing (touch-down bearing) that mechanically supports the rotating body when the support by the magnetic bearing is lost is provided. Each radial magnetic bearing includes a total of four electromagnets arranged so as to sandwich the rotating body from both sides in two radial directions orthogonal to each other. The axial magnetic bearing includes two electromagnets arranged so as to sandwich the flange portion formed on the rotating body from both sides in the axial direction. The inverter device normally drives the electric motor, radial magnetic bearings and axial magnetic bearings with the electric power supplied from the external power supply, and performs regenerative braking of the electric motor when the power supply from the external power supply is stopped due to a power failure or the like. At the same time, the radial magnetic bearing and the axial magnetic bearing are driven by the regenerative electric power from the electric motor. As a result, even if the power supply from the external power supply is stopped, the radial magnetic bearing and axial magnetic bearing support the rotating body in a non-contact state for a while, and when the rotating body decelerates to a certain extent, it is supported by the magnetic bearing. Then, the rotating body is supported by the protective bearing, further decelerates, and then stops.

【0003】上記の従来の磁気浮上回転装置では、ラジ
アル磁気軸受およびアキシアル磁気軸受の合計10個の
電磁石を駆動する必要があるため、必要電力が大きく、
外部電源からの電力の供給が停止したときに、ラジアル
磁気軸受およびアキシアル磁気軸受を長時間駆動するこ
とが困難であり、回転体が比較的高い回転数の状態で保
護軸受で支持されることになり、保護軸受の寿命が短く
なる。これを避けるためには、バッテリ(蓄電池)など
の補助電源手段を設けて、回転体の回転数が十分に低下
するまで補助電力手段で磁気軸受を駆動する必要がある
が、そうすると補助電源手段のメンテナンスが面倒であ
るという問題が生じる。
In the above conventional magnetic levitation rotary device, it is necessary to drive a total of 10 electromagnets of the radial magnetic bearing and the axial magnetic bearing, so that the required power is large.
It is difficult to drive the radial magnetic bearing and axial magnetic bearing for a long time when the power supply from the external power supply is stopped, and the rotating body is supported by the protective bearing at a relatively high rotational speed. This shortens the life of the protective bearing. In order to avoid this, it is necessary to provide auxiliary power supply means such as a battery (storage battery) and drive the magnetic bearing with the auxiliary power supply means until the rotational speed of the rotating body is sufficiently reduced. There is a problem that maintenance is troublesome.

【0004】この発明の目的は、上記の問題を解決し、
外部電源からの電力の供給が停止したときに、バッテリ
などの補助電源手段を使用せずに、比較的長時間にわた
ってラジアル磁気軸受およびアキシアル磁気軸受を駆動
できる磁気浮上回転装置を提供することにある。
The object of the present invention is to solve the above problems,
(EN) A magnetic levitation rotating device capable of driving a radial magnetic bearing and an axial magnetic bearing for a relatively long time without using an auxiliary power supply means such as a battery when the supply of electric power from an external power supply is stopped. .

【0005】[0005]

【課題を解決するための手段および効果】この発明によ
る磁気浮上回転装置は、回転体の周囲にそれぞれ配設さ
れ前記回転体をラジアル方向に非接触支持する2組のラ
ジアル磁気軸受と、前記回転体の周囲に配設され前記回
転体をアキシアル方向に非接触支持する1組のアキシア
ル磁気軸受と、前記回転体の周囲に配設され前記回転体
を回転させる交流電動機と、通常は外部電源より供給さ
れた電力で前記交流電動機、前記ラジアル磁気軸受およ
び前記アキシアル磁気軸受を駆動し、前記外部電源から
の電力の供給が停止したときに交流電動機からの回生電
力で前記ラジアル磁気軸受および前記アキシアル磁気軸
受を駆動するバッテリレス型インバータ装置とを備えて
いる磁気浮上回転装置において、前記各ラジアル磁気軸
受が、回転体の周囲に3個の電磁石が配設された3電磁
石型ラジアル磁気軸受であり、前記アキシアル磁気軸受
が、回転体に形成されたフランジ部のアキシアル方向一
端面と対向するように配設された永久磁石と、前記フラ
ンジ部のアキシアル方向他端面と対向するように配設さ
れた電磁石とからなる複合型アキシアル磁気軸受である
ことを特徴とするものである。
A magnetic levitation rotating device according to the present invention includes two sets of radial magnetic bearings which are respectively arranged around a rotating body and support the rotating body in a non-contact manner in a radial direction, and the rotating body. A set of axial magnetic bearings arranged around the body to support the rotating body in the axial direction in a non-contact manner, an AC electric motor arranged around the rotating body to rotate the rotating body, and usually from an external power source. The AC electric motor, the radial magnetic bearing and the axial magnetic bearing are driven by the supplied electric power, and the radial magnetic bearing and the axial magnetic bearing are regenerated by the AC electric motor when the supply of the electric power from the external power source is stopped. In a magnetic levitation rotating device including a batteryless inverter device that drives a bearing, each of the radial magnetic bearings has a circumferential surface of a rotating body. A three electromagnet type radial magnetic bearing in which three electromagnets are disposed, wherein the axial magnetic bearing is disposed so as to face one end face in the axial direction of the flange portion formed on the rotating body, and A composite axial magnetic bearing comprising an electromagnet arranged so as to face the other axial end surface of the flange portion.

【0006】ラジアル磁気軸受とアキシアル磁気軸受の
電磁石が合計7個であるから、従来のものに比べて電磁
石の消費電力が少なくてすみ、したがって、外部電源か
らの電力の供給が停止したときに、バッテリを使用せず
に、バッテリレス型インバータ装置により、比較的長時
間にわたってラジアル磁気軸受およびアキシアル磁気軸
受を駆動することができる。このため、回転体が保護軸
受で受けられるときには、回転体の回転数は十分に小さ
くなっており、保護軸受の寿命がのびる。そして、回転
体の回転数が十分に小さくなるまで、インバータ装置か
ら供給される電力によって磁気軸受を作動させることが
できるので、バッテリなどの補助電力手段を設ける必要
がなく、そのための面倒なメンテナンスが不要である。
Since the total number of the electromagnets of the radial magnetic bearing and the axial magnetic bearing is 7, the power consumption of the electromagnet is smaller than that of the conventional one, and therefore, when the power supply from the external power supply is stopped, The batteryless inverter device can drive the radial magnetic bearing and the axial magnetic bearing for a relatively long time without using a battery. Therefore, when the rotating body is received by the protective bearing, the rotational speed of the rotating body is sufficiently small, and the life of the protective bearing is extended. Since the magnetic bearing can be operated by the electric power supplied from the inverter device until the rotational speed of the rotating body becomes sufficiently small, it is not necessary to provide an auxiliary electric power means such as a battery, and troublesome maintenance therefor is required. It is unnecessary.

【0007】[0007]

【発明の実施の形態】以下、図面を参照して、この発明
の実施形態について説明する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は軸状の回転体(1) を用いた磁気浮上
回転装置の1例を示し、図2はその電気的構成の1例を
示している。なお、以下の説明において、回転体(1) の
アキシアル方向の制御軸をZ軸、Z軸と直交する1つの
ラジアル方向の制御軸をX軸、Z軸およびX軸と直交す
る他のラジアル方向の制御軸をY軸とする。また、Z軸
方向を前後方向、X軸方向を上下方向、Y軸方向を左右
方向とする。
FIG. 1 shows an example of a magnetic levitation rotating device using a shaft-shaped rotating body (1), and FIG. 2 shows an example of its electrical configuration. In the following description, the control axis in the axial direction of the rotating body (1) is the Z axis, and one control axis in the radial direction orthogonal to the Z axis is the X axis, and the other control direction is the Z axis and the other radial direction orthogonal to the X axis. The control axis of is the Y axis. The Z-axis direction is the front-rear direction, the X-axis direction is the up-down direction, and the Y-axis direction is the left-right direction.

【0009】磁気浮上回転装置は、回転体(1) をアキシ
アル方向に非接触支持する1組のアキシアル磁気軸受
(2) 、回転体(1) をラジアル方向に非接触支持する2組
のラジアル磁気軸受(3)(4)、回転体(1) のアキシアル方
向の変位を検出する1個のアキシアル位置センサ(5) 、
回転体(1) のラジアル方向の変位を検出する2組のラジ
アル位置センサユニット(6)(7)、回転体(1) を高速回転
させる高周波交流電動機(8) 、電動機(8) および磁気軸
受(2)(3)(4) を駆動する駆動装置(9) 、ならびに回転体
(1) のアキシアル方向およびラジアル方向の可動範囲を
規制して回転体(1) を磁気軸受(2)(3)(4) で支持できな
くなったときにこれを機械的に支持する2組の保護軸受
(10)(11)を備えている。
The magnetic levitation rotating device is a set of axial magnetic bearings for supporting the rotating body (1) in the axial direction in a non-contact manner.
(2) Two sets of radial magnetic bearings (3) (4) that support the rotating body (1) in the radial direction in a non-contact manner, and one axial position sensor (which detects the displacement of the rotating body (1) in the axial direction ( Five) ,
Two sets of radial position sensor units (6) (7) for detecting the radial displacement of the rotating body (1), a high frequency AC electric motor (8) for rotating the rotating body (1) at high speed, an electric motor (8) and a magnetic bearing. (2) (3) (4) drive device (9) and rotating body
By limiting the movable range in the axial direction and the radial direction of (1), two sets of mechanically supporting the rotating body (1) when it cannot be supported by the magnetic bearings (2), (3) and (4). Protective bearing
It has (10) and (11).

【0010】アキシアル磁気軸受(2) は、回転体(1) の
前部に一体に形成されたフランジ部(1a)のZ軸方向の一
端面(前端面)と対向するように配設された永久磁石(1
2a)と、同他端面(後端面)と対向するように配設され
たアキシアル電磁石(12b) とからなる複合型アキシアル
磁気軸受である。永久磁石(12a) とアキシアル電磁石(1
2b) は、フランジ部(1a)をそれぞれアキシアル方向逆向
きに吸引して回転体(1) をアキシアル方向所定位置に非
接触支持する。
The axial magnetic bearing (2) is arranged so as to face one end face (front end face) in the Z-axis direction of the flange portion (1a) integrally formed on the front portion of the rotating body (1). Permanent magnet (1
The composite axial magnetic bearing comprises 2a) and an axial electromagnet (12b) arranged so as to face the other end surface (rear end surface). Permanent magnet (12a) and axial electromagnet (1
2b) sucks the flange portions (1a) in opposite axial directions to support the rotating body (1) in a non-contact manner at a predetermined position in the axial direction.

【0011】アキシアル位置センサ(5) は、回転体(1)
の前端面に対抗するように配設され、回転体(1) の前端
面との距離(空隙)に比例する距離信号を出力する。
The axial position sensor (5) is a rotating body (1).
Is arranged so as to oppose the front end face of the rotating body (1) and outputs a distance signal proportional to the distance (gap) from the front end face of the rotating body (1).

【0012】2組のラジアル磁気軸受(3)(4)は、アキシ
アル磁気軸受(1) の後側において前後方向に所定の間隔
をおいて配設されており、これらの間に電動機(8) が配
設されている。前側の第1のラジアル磁気軸受(3) は、
回転体(1) の周囲に等間隔をおいて配設された3個のラ
ジアル電磁石(13a)(13b)(13c) よりなる3電磁石型ラジ
アル磁気軸受である。これらのラジアル電磁石は符号(1
3)で総称し、区別する必要があるときは、それぞれ、第
1ラジアル電磁石(13a) 、第2ラジアル電磁石(13b) お
よび第3ラジアル電磁石(13c) と呼ぶことにする。第1
ラジアル電磁石(13a) は回転体(1) の下方に対向状に配
設され、第2および第3ラジアル電磁石(13b)(13c)は回
転体(1) の斜め上方に対向状に配設されている。X−Y
平面と平行な横断面上において、第1ラジアル電磁石(1
3a) はX軸上に配設され、第2ラジアル電磁石(13b) と
第3ラジアル電磁石(13c) はX軸から反対方向に同角度
隔たるようにX軸に対して対称に配設されている。ラジ
アル電磁石(13)は、後述する磁気軸受制御装置(18)より
供給される励磁電流により磁気吸引力を発生して、回転
体(1) をラジアル方向所定位置に非接触支持する。同様
に、後側の第2のラジアル磁気軸受(4) も、回転体(1)
の周囲に等間隔をおいて配設された第1ラジアル電磁石
(14a) 、第2ラジアル電磁石(14b) および第3ラジアル
電磁石(14c)よりなる3電磁石型ラジアル磁気軸受であ
る。これらのラジアル電磁石(14a)(14b)(14c) も、符号
(14)で総称する。
The two sets of radial magnetic bearings (3) and (4) are arranged on the rear side of the axial magnetic bearing (1) at predetermined intervals in the front-rear direction, and the electric motor (8) is arranged between them. Is provided. The first radial magnetic bearing (3) on the front side is
A three-electromagnetic radial magnetic bearing consisting of three radial electromagnets (13a) (13b) (13c) arranged at equal intervals around the rotating body (1). These radial electromagnets have the sign (1
When they are collectively referred to in 3) and need to be distinguished, they will be referred to as a first radial electromagnet (13a), a second radial electromagnet (13b) and a third radial electromagnet (13c), respectively. First
The radial electromagnets (13a) are disposed below the rotating body (1) so as to face each other, and the second and third radial electromagnets (13b) (13c) are disposed so as to face diagonally above the rotating body (1). ing. XY
On a cross section parallel to the plane, the first radial electromagnet (1
3a) is arranged on the X-axis, and the second radial electromagnet (13b) and the third radial electromagnet (13c) are arranged symmetrically with respect to the X-axis so as to be separated from the X-axis by the same angle in the opposite direction. There is. The radial electromagnet (13) generates a magnetic attraction force by an exciting current supplied from a magnetic bearing control device (18) described later, and supports the rotating body (1) in a predetermined radial direction in a non-contact manner. Similarly, the second radial magnetic bearing (4) on the rear side also has the rotating body (1).
First radial electromagnets arranged at equal intervals around the circumference
(14a) is a three-electromagnet type radial magnetic bearing including a second radial electromagnet (14b) and a third radial electromagnet (14c). These radial electromagnets (14a) (14b) (14c) also have a code
Collectively referred to in (14).

【0013】前側の第1のラジアル位置センサユニット
(6) は、第1のラジアル磁気軸受(3) の近傍に配設され
ており、X軸方向の両側から回転体(1) を挟むように配
設された1対のラジアル位置センサ(15a)(15b)、Y軸方
向の両側から回転体(1) を挟むように配設された1対の
ラジアル位置センサ(15c)(15d)を備えている。これらの
ラジアル位置センサは符号(15)で総称し、区別する必要
があるときは、X軸方向の一方のセンサ(15a) を第1X
軸センサ、他方のセンサ(15b) を第2X軸センサ、Y軸
方向の一方のセンサ(15c) を第1Y軸センサ、他方のセ
ンサ(15d) を第2Y軸センサと呼ぶことにする。同様
に、後側の第2のラジアル位置センサユニット(7) も、
第2のラジアル磁気軸受(4) の近傍に配設されており、
第1X軸センサ(16a) 、第2X軸センサ(16b) 、第1Y
軸センサ(16c) および第2Y軸センサ(16d) を備えてい
る。これらのラジアル位置センサ(16a)(16b)(16c)(16d)
も、符号(16)で総称する。各ラジアル位置センサ(15)(1
6)は、回転体(1) の外周面との距離に比例する距離信号
を出力する。
Front side first radial position sensor unit
(6) is arranged in the vicinity of the first radial magnetic bearing (3), and a pair of radial position sensors (15a) are arranged so as to sandwich the rotating body (1) from both sides in the X-axis direction. ) (15b), and a pair of radial position sensors (15c) (15d) arranged so as to sandwich the rotating body (1) from both sides in the Y-axis direction. These radial position sensors are collectively referred to by the reference numeral (15). When it is necessary to distinguish them, one sensor (15a) in the X-axis direction is referred to as the first X
The axis sensor, the other sensor (15b) will be called the second X-axis sensor, the one sensor (15c) in the Y-axis direction will be called the first Y-axis sensor, and the other sensor (15d) will be called the second Y-axis sensor. Similarly, the second radial position sensor unit (7) on the rear side also
It is located near the second radial magnetic bearing (4),
First X-axis sensor (16a), second X-axis sensor (16b), first Y-axis
An axis sensor (16c) and a second Y-axis sensor (16d) are provided. These radial position sensors (16a) (16b) (16c) (16d)
Are also collectively referred to by reference numeral (16). Each radial position sensor (15) (1
6) outputs a distance signal proportional to the distance from the outer peripheral surface of the rotating body (1).

【0014】前側の第1の保護軸受(10)は、たとえば、
2個のアンギュラ玉軸受が組合わされたものであり、ア
キシアル荷重とラジアル荷重の両方を受けられるように
なっている。軸受(10)の外輪は図示しない磁気軸受装置
のケーシングに固定され、内輪が回転体(1) の外周面に
形成された円周みぞ(17)の部分にアキシアル方向および
ラジアル方向に適当な間隙をあけて臨ませられている。
後側の第2の保護軸受(11)は、たとえば、深みぞ玉軸受
よりなり、ラジアル荷重を受けられるようになってい
る。軸受(11)の外輪は上記のケーシングに固定され、内
輪は回転体(1) の外周面に適当な間隙をあけて対向する
ように配設されている。そして、第1の軸受(10)の内輪
と回転体(1) との間のアキシアル方向の間隙の大きさに
より、回転体(1) のアキシアル方向の可動範囲が規制さ
れ、各軸受(10)(11)の内輪と回転体(1) との間のラジア
ル方向の間隙の大きさにより、回転体(1) のラジアル方
向の可動範囲が規制される。
The first protective bearing (10) on the front side is, for example,
It is a combination of two angular contact ball bearings and is designed to be able to receive both axial and radial loads. The outer ring of the bearing (10) is fixed to the casing of the magnetic bearing device (not shown), and the inner ring is formed in the circumferential groove (17) formed on the outer peripheral surface of the rotating body (1) with an appropriate gap in the axial and radial directions. Is opened.
The second protective bearing (11) on the rear side is, for example, a deep groove ball bearing, and can receive a radial load. The outer ring of the bearing (11) is fixed to the casing, and the inner ring is arranged so as to face the outer peripheral surface of the rotating body (1) with an appropriate gap. The axial movable range of the rotating body (1) is restricted by the size of the axial gap between the inner ring of the first bearing (10) and the rotating body (1), and each bearing (10) The radial movable range of the rotating body (1) is restricted by the size of the radial gap between the inner ring of (11) and the rotating body (1).

【0015】駆動装置(9) は、磁気軸受(2)(3)(4) を駆
動する磁気軸受制御装置(18)と、電動機(8) および磁気
軸受制御装置(18)を駆動するバッテリレス型インバータ
装置(19) とを備えており、インバータ装置(19) が商
用電源などの外部電源(20)に接続されている。
The drive device (9) includes a magnetic bearing control device (18) for driving the magnetic bearings (2), (3) and (4) and a batteryless drive for driving the electric motor (8) and the magnetic bearing control device (18). Type inverter device (19), and the inverter device (19) is connected to an external power supply (20) such as a commercial power supply.

【0016】磁気軸受制御装置(18)は、アキシアル位置
センサ(5) の距離信号から回転体(1) のアキシアル方向
の位置すなわち変位を求める。また、第1のユニット
(6) の1対のX軸センサ(15a)(15b)の距離信号の差を演
算することにより、第1のラジアル磁気軸受(3) の近傍
における回転体(1) のX軸方向の位置すなわち変位を求
め、同ユニット(6) の1対のY軸センサ(15c)(15d)の距
離信号の差を演算することにより、同位置における回転
体(1) のY軸方向の位置すなわち変位を求める。同様
に、第2のユニット(7) の1対のX軸センサ(16a)(16b)
の距離信号の差および1対のY軸センサ(16c)(16d)の距
離信号の差より、第2のラジアル磁気軸受(4) の近傍に
おける回転体(1) のX軸方向およびY軸方向の位置すな
わち変位を求める。そして、このようにして求めた回転
体(1) のZ軸方向の変位に基づいて公知の方法によりア
キシアル磁気軸受(2) の電磁石(12b) に流れる励磁電流
の大きさを制御するとともに、2組のラジアル磁気軸受
(3)(4)の近傍における回転体(1) のX軸方向およびY軸
方向の変位に基づいてラジアル磁気軸受(3)(4)の各電磁
石(12)(13)(14)に流れる励磁電流の大きさを制御し、こ
れにより、回転体(1) を所定位置に保持する。なお、磁
気軸受制御装置(18)における3電磁石型ラジアル磁気軸
受(2)(3)の制御は、たとえば特開平6−249238号
公報などに記載されている方法で行われる。
The magnetic bearing control device (18) obtains the axial position, that is, the displacement of the rotating body (1) from the distance signal of the axial position sensor (5). Also, the first unit
The position of the rotating body (1) in the X-axis direction in the vicinity of the first radial magnetic bearing (3) is calculated by calculating the difference between the distance signals of the pair of X-axis sensors (15a) and (15b) in (6). That is, the displacement is calculated and the difference between the distance signals of the pair of Y-axis sensors (15c) and (15d) of the unit (6) is calculated to obtain the position of the rotating body (1) in the Y-axis direction, that is, the displacement. Ask for. Similarly, a pair of X-axis sensors (16a) (16b) of the second unit (7)
From the difference in the distance signals between the pair of Y-axis sensors (16c) and the pair of Y-axis sensors (16d), the X-axis direction and the Y-axis direction of the rotating body (1) near the second radial magnetic bearing (4). The position or displacement of is calculated. Then, the magnitude of the exciting current flowing through the electromagnet (12b) of the axial magnetic bearing (2) is controlled by a well-known method based on the displacement of the rotating body (1) in the Z-axis direction obtained as described above. Set of radial magnetic bearings
(3) Flow to each electromagnet (12) (13) (14) of radial magnetic bearing (3) (4) based on displacement of rotating body (1) in the X-axis direction and Y-axis direction near (4) The magnitude of the exciting current is controlled to hold the rotating body (1) at a predetermined position. The control of the three electromagnet type radial magnetic bearings (2) and (3) in the magnetic bearing control device (18) is performed by a method described in, for example, Japanese Patent Laid-Open No. 6-249238.

【0017】インバータ装置(9) は、通常は、外部電源
(20)より供給される電力で、電動機(8) を駆動するとと
もに、磁気軸受制御装置(18)を介して磁気軸受(2)(3)
(4) を駆動し、これにより、回転体(1) は、前述のよう
に磁気軸受(2)(3)(4) で所定位置に保持された状態で、
高速回転する。
The inverter device (9) is usually an external power source.
The electric power supplied from (20) drives the electric motor (8) and the magnetic bearings (2) (3) via the magnetic bearing control device (18).
By driving (4), the rotating body (1) is held in place by the magnetic bearings (2), (3) and (4) as described above,
Rotate at high speed.

【0018】停電などにより外部電源(20)からの電力の
供給が停止したときは、インバータ装置(19)は、公知の
方法で電動機(8) の回生制動を行うとともに、電動機
(8) からの回生電力で、磁気軸受制御装置(18)を介して
磁気軸受(2)(3)(4) を駆動する。これにより、外部電源
(20)からの電力の供給が停止しても、しばらくの間は、
磁気軸受(2)(3)(4) で回転体(1) が非接触支持され、回
転体(1) がある程度減速した時点で、磁気軸受(2)(3)
(4) による支持がなくなって、回転体(1) は保護軸受(1
0)(11)で支持され、さらに減速して、やがて停止する。
このとき、磁気軸受(2)(3)(4) の電磁石(12b)(13)(14)
の数が合計7個であるから、従来の10個のものに比べ
て電磁石(12b)(13)(14) の消費電力が少なくてすみ、し
たがって、バッテリレス型インバータ装置(19)により、
比較的長時間にわたって磁気軸受(2)(3)(4) を駆動する
ことができる。
When the power supply from the external power source (20) is stopped due to a power failure or the like, the inverter device (19) regeneratively brakes the electric motor (8) by a known method and
The magnetic bearings (2), (3) and (4) are driven by the regenerative power from (8) via the magnetic bearing control device (18). This allows the external power supply
Even if the power supply from (20) is stopped, for a while,
When the rotating body (1) is supported in a non-contact manner by the magnetic bearings (2) (3) (4) and the rotating body (1) is decelerated to some extent, the magnetic bearings (2) (3)
Rotor (1) is no longer supported by (4) and protective bearing (1
It is supported by 0) and (11), further decelerates, and eventually stops.
At this time, the electromagnets (12b) (13) (14) of the magnetic bearings (2) (3) (4)
Since the total number is 7, the power consumption of the electromagnets (12b), (13), (14) is smaller than that of the conventional 10, and therefore the batteryless inverter device (19)
It is possible to drive the magnetic bearings (2) (3) (4) for a relatively long time.

【0019】磁気浮上回転装置の各部の構成は、上記実
施例のものに限らず、適宜変更可能である。上記実施例
では、アキシアル方向の制御軸(Z軸)が水平に配置さ
れているが、この発明は、たとえばアキシアル方向の制
御軸が垂直に配置されたものなど、他の型式の磁気浮上
装置にも適用できる。
The structure of each part of the magnetic levitation rotating device is not limited to that of the above-mentioned embodiment, but can be changed appropriately. In the above embodiment, the control axis in the axial direction (Z axis) is arranged horizontally. However, the present invention is applicable to other types of magnetic levitation devices such as the one in which the control axis in the axial direction is arranged vertically. Can also be applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施形態を示す磁気浮上回転装置の
部分切欠き斜視図である。
FIG. 1 is a partially cutaway perspective view of a magnetic levitation rotation device showing an embodiment of the present invention.

【図2】図1の磁気浮上回転装置の電気的構成の1例を
示すフローチャートである。
FIG. 2 is a flowchart showing an example of an electrical configuration of the magnetic levitation rotation device of FIG.

【符号の説明】[Explanation of symbols]

(1) 回転体 (1a) フランジ部 (2) アキシアル磁気軸受 (3)(4) ラジアル磁気軸受 (8) 交流電動機 (12a) 永久磁石 (12b) アキシアル電磁石 (13a)(13b)(13c) ラジアル電磁石 (14a)(14b)(14c) ラジアル電磁石 (19) バッテリレス型インバータ装置 (20) 外部電源 (1) Rotating body (1a) Flange section (2) Axial magnetic bearing (3) (4) Radial magnetic bearing (8) AC motor (12a) Permanent magnet (12b) Axial electromagnet (13a) (13b) (13c) Radial Electromagnet (14a) (14b) (14c) Radial electromagnet (19) Battery-less inverter device (20) External power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】回転体の周囲にそれぞれ配設され前記回転
体をラジアル方向に非接触支持する2組のラジアル磁気
軸受と、前記回転体の周囲に配設され前記回転体をアキ
シアル方向に非接触支持する1組のアキシアル磁気軸受
と、前記回転体の周囲に配設され前記回転体を回転させ
る交流電動機と、通常は外部電源より供給された電力で
前記交流電動機、前記ラジアル磁気軸受および前記アキ
シアル磁気軸受を駆動し、前記外部電源からの電力の供
給が停止したときに交流電動機からの回生電力で前記ラ
ジアル磁気軸受および前記アキシアル磁気軸受を駆動す
るバッテリレス型インバータ装置とを備えている磁気浮
上回転装置において、 前記各ラジアル磁気軸受が、回転体の周囲に3個の電磁
石が配設された3電磁石型ラジアル磁気軸受であり、前
記アキシアル磁気軸受が、回転体に形成されたフランジ
部のアキシアル方向一端面と対向するように配設された
永久磁石と、前記フランジ部のアキシアル方向他端面と
対向するように配設された電磁石とからなる複合型アキ
シアル磁気軸受であることを特徴とする磁気浮上回転装
置。
1. Two sets of radial magnetic bearings, which are respectively arranged around a rotating body and support the rotating body in a radial direction in a non-contact manner, and a pair of radial magnetic bearings arranged around the rotating body so that the rotating body is not axially moved. A set of axial magnetic bearings that are in contact with each other, an AC motor that is arranged around the rotating body and rotates the rotating body, and the AC motor, the radial magnetic bearing, and the A magnetic drive device that drives an axial magnetic bearing and includes a batteryless inverter device that drives the radial magnetic bearing and the axial magnetic bearing with regenerative power from an AC electric motor when supply of electric power from the external power supply is stopped. In the levitation rotation device, each of the radial magnetic bearings is a three-electromagnet type radial magnetic bearing in which three electromagnets are arranged around a rotating body. The axial magnetic bearing is arranged so as to face the one end face in the axial direction of the flange portion formed on the rotor and the other end face in the axial direction of the flange portion. A magnetic levitation rotation device, which is a composite axial magnetic bearing including an electromagnet.
JP7239367A 1995-09-19 1995-09-19 Magnetic levitation rotary device Pending JPH0979259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7239367A JPH0979259A (en) 1995-09-19 1995-09-19 Magnetic levitation rotary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7239367A JPH0979259A (en) 1995-09-19 1995-09-19 Magnetic levitation rotary device

Publications (1)

Publication Number Publication Date
JPH0979259A true JPH0979259A (en) 1997-03-25

Family

ID=17043717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7239367A Pending JPH0979259A (en) 1995-09-19 1995-09-19 Magnetic levitation rotary device

Country Status (1)

Country Link
JP (1) JPH0979259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502084B1 (en) * 2002-12-03 2005-07-18 삼성환경주식회사 A single stage turbo type air blower using magnetic buoyancy
WO2018151883A1 (en) * 2017-02-15 2018-08-23 Dresser-Rand Company Active radial magnetic bearing assembly with internal sensors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502084B1 (en) * 2002-12-03 2005-07-18 삼성환경주식회사 A single stage turbo type air blower using magnetic buoyancy
WO2018151883A1 (en) * 2017-02-15 2018-08-23 Dresser-Rand Company Active radial magnetic bearing assembly with internal sensors
US11421734B2 (en) 2017-02-15 2022-08-23 Johnson Controls Tyco IP Holdings LLP Active radial magnetic bearing assembly with internal sensors

Similar Documents

Publication Publication Date Title
KR100352022B1 (en) Motor of magnetic lifting type
JP3790883B2 (en) Magnetic bearing device
JP5886008B2 (en) Electric vehicle motor control device
JP2002013532A (en) Magnetic bearing control system
JP4513458B2 (en) Magnetic bearing device and flywheel energy storage device including the same
JPH0979259A (en) Magnetic levitation rotary device
TWI696535B (en) Short-circuit device and robot system with it
JP5785004B2 (en) Motor drive device
JP4081828B2 (en) Concentric multi-axis motor
JPS60190697A (en) Control system of magnetic bearing in turbo molecular pump
JPH0968222A (en) Magnetic bearing device
JP3350109B2 (en) Magnetic levitation motor
JP3738337B2 (en) Magnetic bearing device
JP3845756B2 (en) Magnetic bearing device
JP2000257586A (en) Turbo molecular pump
JPH06141512A (en) Magnetic levitation motor
JP3470216B2 (en) Flywheel type power storage device
JPH07208470A (en) Synchronized dynamo-electric machine with magnetic bearing and controlling device therefor and method thereof
JP3793856B2 (en) Magnetic bearing device
JPH056419Y2 (en)
JPH0648326Y2 (en) Displacement / rotation speed detection device
JPH04219494A (en) Structure of magnetic bearing for high speed rotary vacuum pump
JPH07131961A (en) Motor and controller thereof
JP2015181345A (en) Motor drive device
JPH10299772A (en) Bearing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913