JPH097895A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH097895A
JPH097895A JP18107395A JP18107395A JPH097895A JP H097895 A JPH097895 A JP H097895A JP 18107395 A JP18107395 A JP 18107395A JP 18107395 A JP18107395 A JP 18107395A JP H097895 A JPH097895 A JP H097895A
Authority
JP
Japan
Prior art keywords
acid
electrolyte
electrolytic solution
diazabicycloalkene
solute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18107395A
Other languages
Japanese (ja)
Inventor
Tomoharu Nakano
智治 中野
Kazuji Shiono
和司 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP18107395A priority Critical patent/JPH097895A/en
Publication of JPH097895A publication Critical patent/JPH097895A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To obtain electrolyte which is high in relative conductivity and thermal stability and possessed of solute that is hardly separated out at low temperatures by a method wherein a specific amount of 1,3-dimethyl-2-imidazolidinone is added to electrolyte. CONSTITUTION: Electrolyte comprises carboxylates of diazabicycloalkenes represented by a formula (where m denotes an integer of 2 to 11, n is an integer of 2 to 6, and each ring may be possessed of a lower alkyl substituting group) as solute and γ-butyrolactone as main solvent. 1 to 25% or so by weight of 1,3-dimethyl-2-imidazolidinone is added to the above electrolyte. The molar ratio of diazabicycloalkene to carboxylic acid is set to 1:0.5 to 1:1.2. By this setup, electrolyte is high in solubility even at low temperatures, relative conductivity, and thermal stability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム電解コン
デンサの駆動用電解液に関し、特には、電解質の低温に
おける析出防止および電解液の長寿命化に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an aluminum electrolytic capacitor, and more particularly to prevention of precipitation of an electrolyte at a low temperature and extension of the service life of the electrolytic solution.

【0002】[0002]

【従来の技術】従来、電解コンデンサ等の電解液とし
て、γ−ブチロラクトンを溶媒とし、ジアザビシクロア
ルケン類の塩を溶質としたもの(特公平3−79856
号)などが知られている。しかしながら、上記の塩を溶
質としたものは低温で溶質が析出するため、十分な比電
導度が得られる溶質濃度にすることができない。このよ
うな溶質の析出を防止するために、エチレングリコール
などの多価アルコールを加えた例(特開平01−103
819)がある。
2. Description of the Related Art Conventionally, as an electrolytic solution for electrolytic capacitors, etc., a solvent containing γ-butyrolactone and a solute of a salt of diazabicycloalkene (Japanese Patent Publication No. 3-79856).
No.) are known. However, in the case where the above-mentioned salt is used as a solute, the solute is precipitated at a low temperature, so that it is not possible to obtain a solute concentration that can obtain a sufficient specific electric conductivity. An example in which a polyhydric alcohol such as ethylene glycol is added to prevent the precipitation of such a solute (Japanese Patent Laid-Open No. 01-103).
819).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、エチレ
ングリコールなどの多価アルコールを加えた場合、比電
導度の経時変化が大きくなり、電解液特性を低下させる
欠点があった。そこで、本発明者らは、高い比電導度を
示すとともに熱的にも安定で、低温においても溶質が析
出しない電解液を得るために鋭意検討した結果、本発明
に到達した。
However, when a polyhydric alcohol such as ethylene glycol is added, there is a drawback that the change in specific conductivity with time becomes large and the characteristics of the electrolytic solution are deteriorated. Therefore, the present inventors have arrived at the present invention as a result of extensive studies to obtain an electrolytic solution that exhibits high specific electric conductivity, is thermally stable, and does not precipitate solute even at low temperatures.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は下記
一般式(1)で示されるジアザビシクロアルケン類のカ
ルボン酸塩を溶質とし、γ−ブチロラクトンを主溶媒と
する電解液であって、この電解液に、1,3−ジメチル
−2−イミダゾリジノンを1〜25重量%添加したこと
を特徴とする電解コンデンサ駆動用電解液である。 一般式
Means for Solving the Problems That is, the present invention provides an electrolytic solution containing a carboxylate of a diazabicycloalkene represented by the following general formula (1) as a solute and γ-butyrolactone as a main solvent: An electrolytic capacitor driving electrolytic solution is characterized in that 1 to 25% by weight of 1,3-dimethyl-2-imidazolidinone is added to this electrolytic solution. General formula

【化2】 式中、mは2から11、nは2から6であり、いずれの
環も低級アルキル置換基を有していてもよい。
Embedded image In the formula, m is 2 to 11 and n is 2 to 6, and any ring may have a lower alkyl substituent.

【0005】一般式(1)で示されるジアザビシクロア
ルケン類としては、特公昭46−37503号公報に記
載されているものがあげられる。
Examples of diazabicycloalkenes represented by the general formula (1) include those described in JP-B-46-37503.

【0006】これらのうちで好ましいものは、1,5−
ジアザビシクロ[4,3,0]ノネン−5および1,8
−ジアザビシクロ[5,4,0]ウンデセン−7であ
る。
Of these, preferred are 1,5-
Diazabicyclo [4,3,0] nonene-5 and 1,8
-Diazabicyclo [5,4,0] undecene-7.

【0007】ジアザビシクロアルケン類の塩を構成する
カルボン酸としては、ポリカルボン酸(2〜4価のポリ
カルボン酸){脂肪族ポリカルボン酸[飽和ポリカルボ
ン酸(シュウ酸、マロン酸、コハク酸、グルタル酸、ア
ジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セ
バチン酸など);不飽和ポリカルボン酸(マレイン酸、
フマール酸、イタコン酸など)];芳香族ポリカルボン
酸[フタル酸、イソフタル酸、テレフタル酸、トリメリ
ット酸、ピロメリット酸など];脂肪族オキシカルボン
酸[グリコール酸、乳酸、酒石酸など];芳香族オキシ
カルボン酸[サリチル酸、マンデル酸など];S含有ポ
リカルボン酸[チオジプロピオン酸]など}およびモノ
カルボン酸{C1〜30の脂肪族モノカルボン酸[飽和
モノカルボン酸(ギ酸、酢酸、プロピオン酸、酪酸、イ
ソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル
酸、ベラルゴン酸、ラウリル酸、ミリスチン酸、ステア
リン酸、ベヘン酸など);不飽和モノカルボン酸(アク
リル酸、メタクリル酸、オレイン酸など)];芳香族モ
ノカルボン酸[安息香酸、ケイ皮酸、ナフトエ酸など]
など}、などがあげられる。
As the carboxylic acid constituting the salt of diazabicycloalkene, polycarboxylic acid (polycarboxylic acid having a valence of 2 to 4) {aliphatic polycarboxylic acid [saturated polycarboxylic acid (oxalic acid, malonic acid, amber Acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.); unsaturated polycarboxylic acids (maleic acid,
Fumaric acid, itaconic acid, etc.)]; Aromatic polycarboxylic acid [phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, pyromellitic acid, etc.]; Aliphatic oxycarboxylic acid [glycolic acid, lactic acid, tartaric acid, etc.]; Group oxycarboxylic acids [salicylic acid, mandelic acid, etc.]; S-containing polycarboxylic acids [thiodipropionic acid, etc.] and monocarboxylic acids {C1-30 aliphatic monocarboxylic acids [saturated monocarboxylic acids (formic acid, acetic acid, propione Acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, berargonic acid, lauric acid, myristic acid, stearic acid, behenic acid, etc .; unsaturated monocarboxylic acids (acrylic acid, methacrylic acid, oleic acid) Etc.]]; Aromatic monocarboxylic acid [benzoic acid, cinnamic acid, naphthoic acid, etc.]
}, Etc.

【0008】これらのうちで好ましいものは、芳香族ポ
リカルボン酸であり、これらの中でも特に好ましいの
は、フタル酸である。
Among these, aromatic polycarboxylic acids are preferable, and among these, phthalic acid is particularly preferable.

【0009】ジアザビシクロアルケン類のカルボン酸塩
において、ジアザビシクロアルケン類とカルボン酸のモ
ル比は通常1:0.5〜1:1.2であり、好ましく
は、1:0.8〜1:1.1である。
In the carboxylic acid salt of diazabicycloalkene, the molar ratio of diazabicycloalkene to carboxylic acid is usually 1: 0.5 to 1: 1.2, preferably 1: 0.8 to It is 1: 1.1.

【0010】このような塩は、例えば、フタル酸と1,
5−ジアザビシクロ[4,3,0]ノネン−5を適当な
条件で混合、中和反応を行うことによって容易に合成さ
れる。
Such salts include, for example, phthalic acid and 1,
It is easily synthesized by mixing 5-diazabicyclo [4,3,0] nonene-5 under appropriate conditions and performing a neutralization reaction.

【0011】本発明の電解液に使用できる溶媒はγ−ブ
チロラクトンであるが、初期の比電導度を高めたり、電
極、セパレーターとのなじみを良くする目的で、γ−ブ
チロラクトンに副溶媒を混合することができる。混合で
きる副溶媒としては、たとえばアルコール類〔1価アル
コール類(プロピルアルコール、ブチルアルコール、ア
ミルアルコールなど)および多価アルコール類(エチレ
ングリコール、プロピレングリコール、グリセリンな
ど)〕;エーテル類〔エチレングリコールモノエチルエ
ーテル、エチレングリコールモノブチルエーテル、エチ
レングリコールジメチルエーテルおよびジエチレングリ
コールジメチルエーテルなど〕;アミド類〔N−メチル
ホルムアミド、N,N−ジメチルホルムアミド、N,N
−ジエチルホルムアミドおよびN,N−ジエチルアセト
アミドなど〕;スルホキシド類〔ジメチルスルホキシド
など〕;オキサゾリジン類〔3−メチルオキサゾリジン
−2−オンおよび3−エチルオキサゾリジン−2−オン
など〕およびこれらの2種以上の混合物があげられる。
The solvent which can be used in the electrolytic solution of the present invention is γ-butyrolactone, and a γ-butyrolactone is mixed with a sub-solvent for the purpose of increasing the initial specific conductivity and improving compatibility with the electrodes and the separator. be able to. Examples of the auxiliary solvent that can be mixed include alcohols [monohydric alcohols (propyl alcohol, butyl alcohol, amyl alcohol, etc.) and polyhydric alcohols (ethylene glycol, propylene glycol, glycerin, etc.)], ethers [ethylene glycol monoethyl Ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and the like]; amides [N-methylformamide, N, N-dimethylformamide, N, N
-Diethylformamide and N, N-diethylacetamide and the like]; sulfoxides [dimethylsulfoxide and the like]; oxazolidines [3-methyloxazolidin-2-one and 3-ethyloxazolidin-2-one and the like] and two or more thereof. A mixture can be given.

【0012】γ−ブチロラクトンに混合する副溶媒の量
は全溶媒の重量に基づいて通常50重量%未満であり、
好ましくは20重量%未満である。
The amount of auxiliary solvent mixed with γ-butyrolactone is usually less than 50% by weight, based on the weight of the total solvent,
It is preferably less than 20% by weight.

【0013】本発明の電解液におけるジアザビシクロア
ルケン類のカルボン酸塩の含有量は、電解液の重量に基
づいて通常5〜40重量%、好ましくは10〜30重量
%である。この範囲外ではいずれも比電導度が著しく低
下する。
The content of the carboxylic acid salt of diazabicycloalkene in the electrolytic solution of the present invention is usually 5 to 40% by weight, preferably 10 to 30% by weight, based on the weight of the electrolytic solution. Outside of this range, the specific conductivity remarkably decreases in all cases.

【0014】電解液に添加する1,3−ジメチル−2−
イミダゾリジノンの量は、電解液の重量に基づいて通常
1〜25重量%であり、好ましくは5〜20重量%であ
る。1,3−ジメチル−2−イミダゾリジノンの添加量
が1重量%未満では溶質の析出防止に効果がなく、また
25重量%を越えると比電導度が低下する。
1,3-dimethyl-2-added to the electrolytic solution
The amount of imidazolidinone is usually 1 to 25% by weight, preferably 5 to 20% by weight, based on the weight of the electrolytic solution. If the amount of 1,3-dimethyl-2-imidazolidinone added is less than 1% by weight, there is no effect in preventing solute precipitation, and if it exceeds 25% by weight, the specific electric conductivity decreases.

【0015】本発明の電解液は必要により、水を含有す
ることもできる。その含有量は電解液の重量に基づいて
通常10%未満である。水の含有量が10%以上ではガ
ス発生が大きくなり、電解コンデンサの特性を著しく劣
化させる。
The electrolytic solution of the present invention may contain water, if desired. Its content is usually less than 10% based on the weight of the electrolyte. When the water content is 10% or more, gas generation becomes large and the characteristics of the electrolytic capacitor are significantly deteriorated.

【0016】本発明の電解液は必要により、種々の添加
剤を混合してもよい。添加剤としては、例えば、リン酸
誘導体、ホウ酸誘導体およびニトロ化合物をあげること
ができる。
If desired, the electrolytic solution of the present invention may be mixed with various additives. Examples of additives include phosphoric acid derivatives, boric acid derivatives, and nitro compounds.

【0017】ジアザビシクロアルケン類のカルボン酸塩
は白色粉末であるが、溶媒等を加えたものは無色〜黄色
の液体であり、ジアザビシクロアルケン類のカルボン酸
塩の含有量が、電解液の重量に基づいて5〜40重量%
の範囲で結晶が析出しないものが好ましい。
The carboxylic acid salt of diazabicycloalkene is a white powder, but the one to which a solvent is added is a colorless to yellow liquid, and the content of the carboxylic acid salt of diazabicycloalkene is the electrolytic solution. 5-40% by weight, based on the weight of
It is preferable that the crystals do not precipitate within the range.

【0018】本発明の電解液をアルミニウム電解コンデ
ンサに用いる方法としては、米国特許第4,432,6
12号明細書記載の方法が例示できる。
A method of using the electrolytic solution of the present invention in an aluminum electrolytic capacitor is described in US Pat. No. 4,432,6.
The method described in No. 12 can be exemplified.

【0019】[0019]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明はこれに限定されるものではない。以
下に示す各略号は次の化合物を表す。 PA・DBN:フタル酸モノ−1,5−ジアザビシクロ
[4,3,0]ノネン−5塩 GBL:γ−ブチロラクトン DMI:1,3−ジメチル−2−イミダゾリジノン EG:エチレングリコール
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. The abbreviations shown below represent the following compounds. PA / DBN: phthalic acid mono-1,5-diazabicyclo [4,3,0] nonene-5 salt GBL: γ-butyrolactone DMI: 1,3-dimethyl-2-imidazolidinone EG: ethylene glycol

【0020】実施例1;GBL93部およびDMI7部
の混合溶媒に、PA・DBNを飽和濃度に達するまで溶
解した。 従来例1;GBL81部およびEG19部の混合溶媒
に、PA・DBNを飽和濃度に達するまで溶解した。 従来例2;GBL100部の溶媒に、PA・DBNを飽
和濃度に達するまで溶解した。 図1に、実施例1および従来例1、2の各温度に対する
飽和濃度の相関を示した。
Example 1 PA / DBN was dissolved in a mixed solvent of 93 parts of GBL and 7 parts of DMI until a saturated concentration was reached. Conventional Example 1 PA / DBN was dissolved in a mixed solvent of 81 parts of GBL and 19 parts of EG until a saturated concentration was reached. Conventional Example 2 PA.DBN was dissolved in 100 parts of GBL until reaching a saturated concentration. FIG. 1 shows the correlation of the saturation concentration with respect to each temperature in Example 1 and Conventional Examples 1 and 2.

【0021】[0021]

【図1】[Figure 1]

【0022】図1から明らかなように本発明の実施例1
の電解液は、従来例1、2の電解液と比較して、−25
〜25℃の温度において飽和濃度が高く、−20℃にお
いても20wt%以上の飽和濃度を有する。
As is apparent from FIG. 1, the first embodiment of the present invention
The electrolytic solution of No. 2 is -25 compared with the electrolytic solutions of Conventional Examples 1 and 2.
It has a high saturation concentration at a temperature of -25 ° C and a saturation concentration of 20 wt% or more even at -20 ° C.

【0023】次に、表1に示す本発明の実施例2および
従来例3、4の電解液組成の初期と耐熱後(150℃、
10時間)の比電導度(30℃、mS/cm)を測定し
た。
Next, the initial and post-heat treatment of the electrolytic solution compositions of Example 2 of the present invention and Conventional Examples 3 and 4 shown in Table 1 (at 150 ° C.,
The specific electric conductivity (30 ° C., mS / cm) for 10 hours was measured.

【0024】[0024]

【表1】 [Table 1]

【0025】表1から明らかなように本発明の実施例2
の電解液は、従来例3、4の電解液と比較して、比電導
度が高く、比電導度変化も少ない。
As is clear from Table 1, Example 2 of the present invention
The electrolytic solution of No. 3 has a higher specific electric conductivity and a smaller change in the specific electric conductivity than the electrolytic solutions of Conventional Examples 3 and 4.

【0026】[0026]

【発明の効果】以上のように本発明の電解液は、低温に
おいても飽和濃度が高いとともに高い比電導度を有し、
かつ熱的にも安定なものである。本発明の電解液を電解
コンデンサに使用すると低損失でかつ高温でも電気特性
が安定した長寿命、高信頼の電解コンデンサを得ること
ができ、その工業価値の大なるものである。
As described above, the electrolytic solution of the present invention has a high saturation concentration and a high specific electric conductivity even at a low temperature,
It is also thermally stable. When the electrolytic solution of the present invention is used for an electrolytic capacitor, it is possible to obtain a long-life and highly reliable electrolytic capacitor with low loss and stable electrical characteristics even at high temperatures, which is of great industrial value.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月6日[Submission date] November 6, 1995

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】追加[Correction method] Added

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、実施例1、従来例1及び従来例2に
ついての温度と飽和濃度の関係を示したものである。
FIG. 1 shows the relationship between temperature and saturation concentration in Example 1, Conventional Example 1 and Conventional Example 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)で示されるジアザビシ
クロアルケン類のカルボン酸塩を溶質とし、γ−ブチロ
ラクトンを主溶媒とする電解液であって、この電解液
に、1,3−ジメチル−2−イミダゾリジノンを1〜2
5重量%添加したことを特徴とする電解コンデンサ駆動
用電解液。 一般式 【化1】 式中、mは2から11、nは2から6であり、いずれの
環も低級アルキル置換基を有していてもよい。
1. An electrolytic solution containing a dicarboxylic acid salt of a diazabicycloalkene represented by the following general formula (1) as a solute and γ-butyrolactone as a main solvent. 1-2 dimethyl-2-imidazolidinone
An electrolytic solution for driving an electrolytic capacitor, characterized in that 5% by weight is added. General formula In the formula, m is 2 to 11 and n is 2 to 6, and any ring may have a lower alkyl substituent.
【請求項2】 ジアザビシクロアルケン類のカルボン酸
塩が芳香族ポリカルボン酸の塩である特許請求の範囲第
1項記載の電解液。
2. The electrolytic solution according to claim 1, wherein the carboxylic acid salt of diazabicycloalkene is a salt of an aromatic polycarboxylic acid.
【請求項3】ジアザビシクロアルケン類とカルボン酸の
モル比が1:0.5〜1:1.2である特許請求の範囲
第1項記載の電解液。
3. The electrolytic solution according to claim 1, wherein the molar ratio of the diazabicycloalkene and the carboxylic acid is 1: 0.5 to 1: 1.2.
JP18107395A 1995-06-22 1995-06-22 Electrolyte for driving electrolytic capacitor Pending JPH097895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18107395A JPH097895A (en) 1995-06-22 1995-06-22 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18107395A JPH097895A (en) 1995-06-22 1995-06-22 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH097895A true JPH097895A (en) 1997-01-10

Family

ID=16094338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18107395A Pending JPH097895A (en) 1995-06-22 1995-06-22 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH097895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249694A (en) * 2010-05-31 2011-12-08 Sanyo Chem Ind Ltd Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
US11978857B2 (en) 2021-09-30 2024-05-07 Lg Energy Solution, Ltd. Non-aqueous electrolyte including additive for non-aqueous electrolyte, and lithium secondary battery including the non-aqueous electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011249694A (en) * 2010-05-31 2011-12-08 Sanyo Chem Ind Ltd Electrolytic solution for aluminum electrolytic capacitor, and aluminum electrolytic capacitor using the same
US11978857B2 (en) 2021-09-30 2024-05-07 Lg Energy Solution, Ltd. Non-aqueous electrolyte including additive for non-aqueous electrolyte, and lithium secondary battery including the non-aqueous electrolyte

Similar Documents

Publication Publication Date Title
WO2015114931A1 (en) Electrolyte solution for driving electrolytic capacitor
JPH097895A (en) Electrolyte for driving electrolytic capacitor
JP3373889B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH06302475A (en) Electrolyte for electrolytic capacitor
JP2002270472A (en) Electrolytic capacitor and electrolytic solution therefor
JP2007059824A (en) Electrolytic liquid for driving electrolytic capacitor
JP3315812B2 (en) Electrolyte for driving electrolytic capacitors
JP4541230B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4555164B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4641458B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4529258B2 (en) Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor
JP2010004084A (en) High-purity 1,6-decanedicarboxylic acid, its production process and its use
JP2005064170A (en) Driving electrolyte of electrolytic capacitor
JP4555158B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor
JP2004128275A (en) Electrolytic solution for driving electrolytic capacitor and the electrolytic capacitor
JPH0770444B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH0997749A (en) Electrolyte for electrolytic capacitor drive use
JPH0661099A (en) Driving electrolyte for electrolytic capacitor
JP2000348981A (en) Electrolyte solution for driving aluminum electrolytic capacitor
JP4612248B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2005033148A (en) Driving electrolyte of electrolytic capacitor
JP4150249B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006339202A (en) Driving electrolyte of electrolytic capacitor
JP4325193B2 (en) Electrolytic solution for electrolytic capacitors
JP4555152B2 (en) Electrolytic solution for driving electrolytic capacitors