JPH0977789A - Solubilization of insoluble protein - Google Patents

Solubilization of insoluble protein

Info

Publication number
JPH0977789A
JPH0977789A JP23717595A JP23717595A JPH0977789A JP H0977789 A JPH0977789 A JP H0977789A JP 23717595 A JP23717595 A JP 23717595A JP 23717595 A JP23717595 A JP 23717595A JP H0977789 A JPH0977789 A JP H0977789A
Authority
JP
Japan
Prior art keywords
protein
insoluble
insoluble protein
solubilization
amylase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23717595A
Other languages
Japanese (ja)
Inventor
Tadayuki Imanaka
忠行 今中
Masahiro Takagi
昌宏 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23717595A priority Critical patent/JPH0977789A/en
Publication of JPH0977789A publication Critical patent/JPH0977789A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To solubilize an insoluble protein manifested in a recombinant host. SOLUTION: An insoluble protein manifested in a bacterium is solubilized by treating the insoluble protein with a solution having higher pH than the pH of a culturing medium in the bacterium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、不溶性蛋白質を
可溶化する方法に関する。さらに詳しくは、本願発明
は、異種蛋白質を細菌で発現させた時に生じる不溶性の
蛋白質を活性化する方法に関する。
TECHNICAL FIELD The present invention relates to a method for solubilizing insoluble proteins. More specifically, the present invention relates to a method for activating an insoluble protein produced when a heterologous protein is expressed in bacteria.

【0002】[0002]

【従来の技術】遺伝子組換えの分野においては、目的と
する蛋白質を大量に生産させ、かつ容易に回収する手段
として、細菌の発現系が利用されている。特に、大腸菌
の発現系を用いると目的の生産物(蛋白質)が多量に蓄
積される。
2. Description of the Related Art In the field of gene recombination, a bacterial expression system is used as a means for producing a target protein in a large amount and easily recovering it. In particular, when the expression system of E. coli is used, a large amount of the desired product (protein) is accumulated.

【0003】しかし、細菌で異種蛋白質を発現させる
と、例えば、インクルージョンボディなどの顆粒状の不
溶性の蛋白質として回収されることが多い。
However, when a heterologous protein is expressed in bacteria, it is often recovered as a granular insoluble protein such as an inclusion body.

【0004】そこで、この不溶性の蛋白質を可溶化する
方法が望まれている。可溶化により、蛋白質、特に酵
素、ホルモンなどは活性化される。可溶化の一つの方法
として、例えば、不溶性の蛋白質が耐熱性酵素である場
合、加熱処理を加えることにより、その酵素を可溶化
し、同時に活性化する方法が知られている。
Therefore, a method for solubilizing this insoluble protein is desired. The solubilization activates proteins, especially enzymes and hormones. As one method of solubilization, for example, when the insoluble protein is a thermostable enzyme, a method of solubilizing the enzyme by heat treatment and simultaneously activating the enzyme is known.

【0005】しかし、耐熱性酵素以外の場合は、この方
法が使用できない。そこで、新たな活性化方法が望まれ
ていた。
However, this method cannot be used for other than thermostable enzymes. Therefore, a new activation method has been desired.

【0006】[0006]

【発明が解決しようとする課題】本願発明は、不溶性蛋
白質を可溶化する方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for solubilizing insoluble proteins.

【0007】[0007]

【課題を解決するための手段】本願発明は、異種蛋白質
を細菌で発現させた時に生じる不溶性蛋白質を可溶化す
る方法であって、高いpHの溶液で処理することを包含
する、方法である。
The present invention is a method for solubilizing an insoluble protein produced when a heterologous protein is expressed in bacteria, the method including treatment with a solution having a high pH.

【0008】好適な実施態様においては、前記細菌は、
大腸菌である。
In a preferred embodiment, the bacterium is
E. coli.

【0009】好適な実施態様においては、上記方法は、
加熱処理することを含む。
In a preferred embodiment, the method comprises:
Including heat treatment.

【0010】好適な実施態様においては、上記蛋白質は
耐熱性酵素である。
[0010] In a preferred embodiment, the protein is a thermostable enzyme.

【0011】好適な実施態様においては、上記耐熱性酵
素は耐熱性アミラーゼである。
[0011] In a preferred embodiment, the thermostable enzyme is a thermostable amylase.

【0012】[0012]

【発明の実施の形態】本願発明の方法は、異種蛋白質を
細菌で発現させた時に生じる不溶性蛋白質であれば、い
ずれの蛋白質にも適用され得る。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention can be applied to any protein as long as it is an insoluble protein produced when a heterologous protein is expressed in bacteria.

【0013】本願発明では、細菌とは、いわゆる原核生
物をいい、グラム陽性、およびグラム陰性の両方の菌を
も含む概念である。
In the present invention, the bacterium means a so-called prokaryote, and is a concept including both gram-positive and gram-negative bacteria.

【0014】細菌を宿主として、異種蛋白質を発現、生
産させる方法は、当業者には周知である。例えば、細菌
宿主で複製可能なベクターに目的の異種蛋白質をコード
する遺伝子を発現可能に連結したプラスミドを使用すれ
ばよい。
The method for expressing and producing a heterologous protein using bacteria as a host is well known to those skilled in the art. For example, a plasmid in which a gene encoding a heterologous protein of interest is operably linked to a vector replicable in a bacterial host may be used.

【0015】細菌宿主で複製可能なベクター、そのベク
ターに目的遺伝子を結合してプラスミドを得る方法、こ
のプラスミドを用いる細菌の形質転換、および形質転換
株の選択の方法は、当業者に周知である。得られた形質
転換体の培養方法も、当業者に周知である。
Those skilled in the art are well aware of a vector capable of replicating in a bacterial host, a method of ligating a gene of interest to the vector to obtain a plasmid, transformation of bacteria using this plasmid, and selection of a transformant strain. . The method for culturing the obtained transformant is also well known to those skilled in the art.

【0016】細菌内で発現された異種蛋白質は、一般的
にいわゆるインクルージョンボディを形成し、不溶性と
なる。本願明細書では、顕微鏡による観察で、顆粒状の
物質が観察されたときに、不溶性蛋白質が生成されたと
いう。
Heterologous proteins expressed in bacteria generally form so-called inclusion bodies and become insoluble. In the present specification, it is said that an insoluble protein is produced when a granular substance is observed by observation with a microscope.

【0017】不溶性蛋白質は、当業者に周知の方法、例
えば、大腸菌の場合は、浸透圧処理、超音波処理等の細
胞の破砕処理により、培地中で、あるいは培地とほぼ同
等のpHの緩衝液中で細胞壁の破砕処理を行い、遠心分
離することによって、回収され得る。
The insoluble protein can be obtained by a method well known to those skilled in the art, for example, in the case of Escherichia coli, by a cell disruption treatment such as osmotic pressure treatment or ultrasonic treatment, in the medium or in a buffer solution having a pH substantially equal to that of the medium. It can be recovered by disrupting the cell wall in and centrifuging.

【0018】本願発明は、高いpHの溶液で処理するこ
とを包含する。高いpHは、通常6以上のpHをいう。
最適なpHは、分泌される蛋白質により異なるが、好ま
しくは、目的とする蛋白質の等電点よりも、2から6、
好ましくは、3から4高いpHが、使用され得る。pH
処理の時間は、通常1分から20分、好ましくは3分か
ら10分程度であるが、処理温度により、変化し得る。
The present invention includes treating with a high pH solution. High pH usually refers to a pH of 6 or higher.
The optimum pH varies depending on the secreted protein, but preferably 2 to 6, more than the isoelectric point of the target protein,
Preferably, a pH of 3 to 4 higher can be used. pH
The treatment time is usually about 1 minute to 20 minutes, preferably about 3 minutes to 10 minutes, but it may vary depending on the treatment temperature.

【0019】好適な実施態様においては、上記方法は、
加熱処理することを含む。この方法は、用いる蛋白質が
耐熱性を有する場合に、特に有効である。耐熱性を有さ
ない場合は、加熱処理時間を短くして、熱による失活を
防止する。ここで、耐熱性とは、本願明細書では、65
℃で10分加熱処理したときに50%の残存活性を有す
る場合をいう。加熱処理により、pH処理時間が短縮さ
れ得る。
In a preferred embodiment, the method comprises
Including heat treatment. This method is particularly effective when the protein used has heat resistance. When it does not have heat resistance, the heat treatment time is shortened to prevent heat-induced deactivation. Here, heat resistance means 65 in the present specification.
It refers to the case where it has a residual activity of 50% when heat-treated at 10 ° C. for 10 minutes. The heat treatment can shorten the pH treatment time.

【0020】可溶化の程度は、その蛋白質が有する活性
を測定して決定され得る。即ち、pH処理した溶液中に
含まれる蛋白質の活性、例えば酵素活性を測定して、決
定され得る。比活性を測定すると、可溶化の程度が判定
され得る。
The degree of solubilization can be determined by measuring the activity of the protein. That is, it can be determined by measuring the activity of the protein contained in the pH-treated solution, for example, the enzyme activity. By measuring the specific activity, the extent of solubilization can be determined.

【0021】[0021]

【実施例】以下、耐熱性のKOD1酸性アミラーゼを用
いる場合を例に挙げて説明するが、本願発明が、このよ
うな例示に限定されることがないことはいうまでもな
い。 (KOD1酸性アミラーゼ発現プラスミドの作製)E.co
liHMS174(DE3)pLysS(pEDS-3)を以下のようにして作製
した。
EXAMPLES Hereinafter, the case of using a thermostable KOD1 acid amylase will be described as an example, but it goes without saying that the present invention is not limited to such an example. (Preparation of KOD1 acid amylase expression plasmid) E.co
liHMS174 (DE3) pLysS (pEDS-3) was prepared as follows.

【0022】Pyrococcus KOD1株由来の染色体DNAを
定法にて精製し、EcoRIで切断した。このEcoRI断片を市
販のpUC18のEcoRI部位に接続した。得られたプラスミド
でE.coliHS174を形質転換し、アミラーゼ生産株を選択
した。得られたプラスミドをpNMT-16と名付けた。図1
にその制限酵素地図を示す。
Chromosomal DNA derived from the Pyrococcus KOD1 strain was purified by a conventional method and cut with EcoRI. This EcoRI fragment was ligated into the EcoRI site of commercially available pUC18. E. coli HS174 was transformed with the obtained plasmid, and an amylase-producing strain was selected. The resulting plasmid was named pNMT-16. FIG.
The restriction enzyme map is shown in.

【0023】pNMT-16のEcoRI断片(7.5kb)を切り出し、
塩基配列を決定した。コード領域(約1.3kb)を決定して
PCRで増幅させ、pET8CベクターのNcoI-BamHIサイトにク
ローニングし、プラスミドpEDS-3を作製した。図2にそ
の作製を示す。
The EcoRI fragment of pNMT-16 (7.5 kb) was cut out,
The base sequence was determined. Determine the coding region (about 1.3kb)
It was amplified by PCR and cloned into the NcoI-BamHI site of pET8C vector to prepare plasmid pEDS-3. The fabrication is shown in FIG.

【0024】(不溶性蛋白質の回収)上記で得られたプ
ラスミドpEDS-3を、定法に従ってE.coliHMS174に形質転
換した。アンピシリン50μg/mlで選択した形質転
換株を、LB培地、2.5Lで、37℃で培養し、O.D.
660=0.4になった時点で、IPTGを最終濃度1mMとな
るように添加した。さらに4時間培養した。培養液を顕
微鏡観察すると、E.coli細胞に顆粒状のものがみられ
た。培養液を遠心分離(8,000rpm、10分)し、集菌し
た。集めたE.coliを50mM酢酸ナトリウム緩衝液(pH5.
5)に懸濁した。懸濁液を0℃で、20秒超音波処理と
1分のインターバルを7回繰り返し、菌体を破砕した。
破砕液を遠心分離(12,000rpm、20分)し、不溶性のア
ミラーゼ画分を得た。図3に、上清である可溶画分、お
よび沈澱である不溶画分をそれぞれ、CBB(クーマシ
ーブリリアントブルー)染色および活性染色した時の結
果を示す。なお、活性染色は、Leeら、Appl.Environ.Mi
crobiol. 60巻、p3746ー3773の方法に従って行った。
(Recovery of insoluble protein) The plasmid pEDS-3 obtained above was transformed into E. coli HMS174 according to a standard method. The transformant selected with 50 μg / ml of ampicillin was cultured in 2.5 L of LB medium at 37 ° C. and OD
When 660 = 0.4, IPTG was added to a final concentration of 1 mM. It was further cultured for 4 hours. When the culture solution was observed under a microscope, E. coli cells were found to be granular. The culture solution was centrifuged (8,000 rpm, 10 minutes) to collect the cells. The collected E. coli was treated with 50 mM sodium acetate buffer (pH 5.
5) Suspended. The suspension was sonicated at 0 ° C. for 20 seconds and the interval of 1 minute was repeated 7 times to disrupt the cells.
The disrupted liquid was centrifuged (12,000 rpm, 20 minutes) to obtain an insoluble amylase fraction. FIG. 3 shows the results when the soluble fraction as a supernatant and the insoluble fraction as a precipitate were stained with CBB (Coomassie Brilliant Blue) and with active staining, respectively. The activity staining was performed by Lee et al., Appl.Environ.Mi.
crobiol. 60, p3746-3773.

【0025】(不溶性画分の可溶化)得られた不溶性ア
ミラーゼ懸濁液の培養液25mlに相当する蛋白量を、50mM
酢酸ナトリウム緩衝液(pH5.5)、および50mM Tris-
Hcl緩衝液(pH 7.0および8.5)1mlに懸濁し、37℃
で処理した。同時に加熱処理(60℃および85℃)した。
反応時間0、10、30および60分毎にサンプリング
し、遠心分離(14,000rpm、10分)して上清をとり、ア
ミラーゼ活性と可溶化された蛋白量を測定し、比活性を
求めた。結果を表1に示す。
(Solubilization of insoluble fraction) The protein amount corresponding to 25 ml of the culture solution of the obtained insoluble amylase suspension was adjusted to 50 mM.
Sodium acetate buffer (pH 5.5), and 50 mM Tris-
Suspend in 1 ml of Hcl buffer (pH 7.0 and 8.5) at 37 ℃
Processed in. At the same time, heat treatment (60 ° C and 85 ° C) was performed.
The reaction time was sampled every 0, 10, 30 and 60 minutes, and centrifugation (14,000 rpm, 10 minutes) was performed to collect the supernatant, and the amylase activity and the amount of solubilized protein were measured to determine the specific activity. The results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】培地のpHに近いpH5.5では、37℃では
可溶化はほとんど起こらなかったが、pH7あるいはpH
8.5の処理で、可溶化し、活性も回復していることが
わかる。加熱による効果も認められるが、pHによる効
果の方が大きい。
At pH 5.5, which is close to the pH of the medium, almost no solubilization occurred at 37 ° C, but at pH 7 or pH
It can be seen that the treatment of 8.5 solubilizes and restores the activity. Although the effect of heating is also recognized, the effect of pH is greater.

【0028】図4に、処理後の上清画分のSDS-PAGEを示
した。pHの上昇、温度の上昇により、可溶化された蛋
白質が多くなることがわかる。
FIG. 4 shows SDS-PAGE of the supernatant fraction after the treatment. It can be seen that the amount of solubilized protein increases as the pH and temperature rise.

【0029】(可溶化蛋白質の回収)50mM Tris-Hcl(p
H7.0)に懸濁し、熱処理(85℃、10分)を行って可溶化
したアミラーゼをPhenyl Superrose を用いる疎水クロ
マトグラフィーにかけたところ、アミラーゼは担体に吸
着した。カラムを50mM Tris-Hcl(pH7.0)で洗浄した
後、1mM Tris-Hcl(pH7.0)で、アミラーゼを溶出させ
た。この溶出したアミラーゼは、SDS-PAGEで単一のバン
ドを示した。(図5、レーン5)
(Recovery of solubilized protein) 50 mM Tris-Hcl (p
When the amylase was suspended in H7.0) and heat-treated (85 ° C, 10 minutes) to be solubilized, the amylase was subjected to hydrophobic chromatography using Phenyl Superrose, and the amylase was adsorbed on the carrier. After washing the column with 50 mM Tris-Hcl (pH 7.0), amylase was eluted with 1 mM Tris-Hcl (pH 7.0). The eluted amylase showed a single band on SDS-PAGE. (Figure 5, lane 5)

【0030】[0030]

【発明の効果】細菌内で発現された不溶性蛋白質は、培
地よりも高いpHで処理することにより、簡単に可溶化
する。従って、本願発明の方法により、組換え法で得ら
れる不溶性蛋白質が容易に可溶化し、活性を有する形で
回収され得る。
INDUSTRIAL APPLICABILITY The insoluble protein expressed in bacteria is easily solubilized by treating it at a pH higher than that of the medium. Therefore, according to the method of the present invention, the insoluble protein obtained by the recombinant method can be easily solubilized and recovered in an active form.

【図面の簡単な説明】[Brief description of drawings]

【図1】プラスミドpNMT-16を示す図である。FIG. 1 shows the plasmid pNMT-16.

【図2】プラスミドpEDS-3の作製を示す図である。FIG. 2 is a diagram showing the construction of plasmid pEDS-3.

【図3】細胞破砕後の上清と沈殿物との蛋白質の分布を
示す電気泳動像の写真である。
FIG. 3 is a photograph of an electrophoretic image showing the distribution of proteins in the supernatant and the precipitate after cell disruption.

【図4】不溶性画分を、種々のpHおよび温度で処理し
たときの可溶化の程度を示す電気泳動像の写真である。
FIG. 4 is a photograph of an electrophoretic image showing the degree of solubilization when the insoluble fraction was treated at various pH and temperatures.

【図5】各画分中のアミラーゼのSDS-ポリアクリルアミ
ド電気泳動像の写真である。
FIG. 5 is a photograph of an SDS-polyacrylamide electrophoresis image of amylase in each fraction.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】異種蛋白質を細菌で発現させた時に生じる
不溶性蛋白質を可溶化する方法であって、高いpHの溶
液で処理することを包含する、方法。
1. A method for solubilizing an insoluble protein produced when a heterologous protein is expressed in bacteria, which comprises treating with a solution having a high pH.
【請求項2】細菌が大腸菌である、請求項1に記載の方
法。
2. The method according to claim 1, wherein the bacterium is Escherichia coli.
【請求項3】さらに、加熱処理することを包含する、請
求項1に記載の方法。
3. The method according to claim 1, further comprising heat treatment.
【請求項4】前記不溶性蛋白質が耐熱性酵素である、請
求項1ないし3いずれかの項に記載の方法。
4. The method according to claim 1, wherein the insoluble protein is a thermostable enzyme.
【請求項5】前記耐熱性酵素が耐熱性アミラーゼであ
る、請求項4に記載の方法。
5. The method according to claim 4, wherein the thermostable enzyme is a thermostable amylase.
JP23717595A 1995-09-14 1995-09-14 Solubilization of insoluble protein Withdrawn JPH0977789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23717595A JPH0977789A (en) 1995-09-14 1995-09-14 Solubilization of insoluble protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23717595A JPH0977789A (en) 1995-09-14 1995-09-14 Solubilization of insoluble protein

Publications (1)

Publication Number Publication Date
JPH0977789A true JPH0977789A (en) 1997-03-25

Family

ID=17011494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23717595A Withdrawn JPH0977789A (en) 1995-09-14 1995-09-14 Solubilization of insoluble protein

Country Status (1)

Country Link
JP (1) JPH0977789A (en)

Similar Documents

Publication Publication Date Title
Hartleib et al. High-yield expression, purification, and characterization of the recombinant diisopropylfluorophosphatase from Loligo vulgaris
Hardie et al. In vitro activation of Escherichia coli prohaemolysin to the mature membrane‐targeted toxin requires HlyC and a low molecular‐weight cytosolic polypeptide
Wilson et al. Biochemical and physical properties of the Methanococcus jannaschii 20S proteasome and PAN, a homolog of the ATPase (Rpt) subunits of the eucaryal 26S proteasome
JPH05227951A (en) L-phenylaranyl-trna synthetase variant, preparation thereof and use for incorporation in vivo in peptide or protein of nonprotein inducible amino acid
HU205386B (en) Process for expressing cloned lysostaphin gene and for producing dna fragment containing the gene, expression vector and transformed host cell
Noreau et al. Isolation and properties of the protease from the wild-type and mutant strains of Pseudomonas fragi
Lee et al. Involvement of NH2-terminal pro-sequence in the production of active aqualysin I (a thermophilic serine protease) in Escherichia coli
JP2727391B2 (en) High expression vector, microorganism carrying the high expression vector, and method for producing useful substance using the microorganism
Geiger et al. Genetic engineering of EcoRI mutants with altered amino acid residues in the DNA binding site: physicochemical investigations give evidence for an altered monomer/dimer equilibrium for the Gln144Lys145 and Gln144Lys145Lys200 mutants
EP0739983A2 (en) Gene encoding lacto-n-biosidase
Dabrowski et al. Cloning, expression, and purification of the His6-tagged thermostable b-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme
US6897041B1 (en) Expression of recombinant mature lysostaphin
JPH0977789A (en) Solubilization of insoluble protein
Doly et al. Isolation, Subunit Structure and Properties of the ATP‐Dependent Deoxyribonuclease of Bacillus subtilis: State of the Protein in a Mutant Devoid of Activity
JP2019511926A (en) Beta-lactamase mutant
Roy et al. Use of a coupled transcriptional system for consistent overexpression and purification of UDG–ugi complex and Ugi fromEscherichia coli
CN111247246A (en) β -lactamase variants
RU2127758C1 (en) Method of recombinant streptokinase preparing
JP3512237B2 (en) Thermostable methionine aminopeptidase and its gene
JP4815568B2 (en) Thermophilic prolyl endopeptidase
Wojtowicz et al. Expression of yeast deubiquitination enzyme UBP1 analogues in E. coli
JP3012919B2 (en) Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same
RU2143492C1 (en) Recombinant plasmid encoding fused protein as precursor of human insulin (variants), strain of bacterium escherichia coli - producer of fused protein as precursor of human insulin (variants), method of human insulin preparing
US20020119506A1 (en) Genes encoding UMP kinase, methods for purifying UMP kinase and methods of characterizing UMP kinase
CN112689674B (en) Dextran affinity tag and application thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203