JPH097617A - Temperature control device for desulfurizer - Google Patents

Temperature control device for desulfurizer

Info

Publication number
JPH097617A
JPH097617A JP7155713A JP15571395A JPH097617A JP H097617 A JPH097617 A JP H097617A JP 7155713 A JP7155713 A JP 7155713A JP 15571395 A JP15571395 A JP 15571395A JP H097617 A JPH097617 A JP H097617A
Authority
JP
Japan
Prior art keywords
raw fuel
desulfurizer
temperature
supply system
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7155713A
Other languages
Japanese (ja)
Inventor
Genichi Ikeda
元一 池田
Nobuhiro Iwasa
信弘 岩佐
Hiroshi Kato
啓 加藤
Isao Nakagawa
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7155713A priority Critical patent/JPH097617A/en
Publication of JPH097617A publication Critical patent/JPH097617A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To control a temperature of a desulfurizer at a suitable temperature for a desulfurizing reaction irrespective of an operating load and lowering of heat transfer performance of a raw fuel pre-heater when a raw fuel is pre- heated by the raw fuel pre-heater and desulfurized by a desulfurizer in order to desulfurize sulfur contained in the raw fuel of hydrocarbon series such as a natural gas. CONSTITUTION: A bypass raw fuel supply system 21 diverging from a raw fuel supply system 12, having a flow rate adjusting valve 20, bypassing a raw fuel pre-heater 9 and flowing together into the raw fuel supply system 12 is provided. The flow rate adjusting valve 20 is controlled by a temperature adjustment device 23 on the basis of a deviation between a detection temperature of a temperature detector 22 provided in a desulfurizer 6 and the target value of a predetermined temperature which is suitable for a desulfurizing reaction, and a temperature of a desulfurizing catalyst of the desulfurizer 6 into which a mixture of a raw fuel heated by the raw fuel pre-heater 9 and raw fuel bypassing the raw fuel pre-heater 9 is made to flow is controlled to the above- mentioned predetermined temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、天然ガス等の炭化水素
系の原燃料を水素リッチなガスに改質する燃料改質器の
前段に設けられ、前記原燃料に含まれる硫黄分を脱硫す
る脱硫器の温度を制御する脱硫器の温度制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided in front of a fuel reformer for reforming a hydrocarbon-based raw fuel such as natural gas into a hydrogen-rich gas, and desulfurizes sulfur contained in the raw fuel. The present invention relates to a desulfurizer temperature control device for controlling the temperature of a desulfurizer.

【0002】[0002]

【従来の技術】燃料電池に供給する燃料として燃料改質
器にて天然ガス等の炭化水素系の原燃料を水素リッチな
ガスに改質した改質ガスが使用される。この場合、前記
原燃料には硫黄分が含まれているので、燃料改質器の前
段に設けられた脱硫器に原燃料を通流して含有する硫黄
分を脱硫している。この際、脱硫器の脱硫反応に適切な
温度にするために、脱硫器の前段に設けられた原燃料予
熱器で原燃料を加熱し、この加熱した原燃料を脱硫器に
供給している。
2. Description of the Related Art As a fuel to be supplied to a fuel cell, a reformed gas obtained by reforming a hydrocarbon-based raw fuel such as natural gas into a hydrogen-rich gas in a fuel reformer is used. In this case, since the raw fuel contains a sulfur content, the raw fuel is passed through a desulfurizer provided in the preceding stage of the fuel reformer to desulfurize the contained sulfur content. At this time, in order to bring the temperature to an appropriate temperature for the desulfurization reaction of the desulfurizer, the raw fuel preheater provided in the preceding stage of the desulfurizer heats the raw fuel and supplies the heated raw fuel to the desulfurizer.

【0003】図2はこの種の脱硫器,燃料改質器,原燃
料予熱器等を備えた燃料改質器周りの系統図であり、図
2を用いて従来技術について説明する。図2において、
燃料改質器1は、容器2と、この容器2内に配設され、
改質触媒が充填された環状の改質管3と、容器2の上部
に設けられたバーナ4とから構成されている。
FIG. 2 is a system diagram around a fuel reformer equipped with a desulfurizer, a fuel reformer, a raw fuel preheater, and the like of this type, and a conventional technique will be described with reference to FIG. In FIG.
The fuel reformer 1 is provided with a container 2 and the container 2.
It is composed of an annular reforming tube 3 filled with a reforming catalyst and a burner 4 provided at the upper part of the container 2.

【0004】脱硫器6は脱硫触媒が充填されて燃料改質
器1の前段に設けられ、脱硫器6に供給される原燃料に
含まれる硫黄分を脱硫する。一酸化炭素変成器7は変成
触媒が充填されて燃料改質器1の後段に設けられ、この
改質器から供給される改質ガスに含まれる一酸化炭素を
変成する。原燃料予熱器9と脱硫原燃料予熱器10とは
一体化された熱交換器であり、燃料改質器1の改質管3
から送出される改質ガスと熱交換して原燃料予熱器9で
は脱硫器6に供給する原燃料を加熱し、一方脱硫原燃料
予熱器10では脱硫器6で脱硫した脱硫原燃料を加熱す
る。
The desulfurizer 6 is provided upstream of the fuel reformer 1 and is filled with a desulfurization catalyst, and desulfurizes sulfur contained in the raw fuel supplied to the desulfurizer 6. The carbon monoxide shift converter 7 is provided in the latter stage of the fuel reformer 1 with a shift catalyst filled therein, and shifts carbon monoxide contained in the reformed gas supplied from this reformer. The raw fuel preheater 9 and the desulfurization raw fuel preheater 10 are integrated heat exchangers, and the reforming pipe 3 of the fuel reformer 1 is used.
The raw fuel preheater 9 heats the raw fuel supplied to the desulfurizer 6 by exchanging heat with the reformed gas discharged from the desulfurizer 6, while the desulfurization raw fuel preheater 10 heats the desulfurized raw fuel desulfurized by the desulfurizer 6. .

【0005】原燃料供給系12は図示しない原燃料供給
源から原燃料予熱器9を経て脱硫器6の入口に接続して
設けられている。脱硫原燃料供給系13は脱硫器6の出
口から脱硫原燃料予熱器10を経て燃料改質器1の改質
管3の入口に接続して設けられている。改質ガス供給系
14はフィルタ15を備え、燃料改質器1の改質管3の
出口から脱硫原燃料予熱器10,原燃料予熱器9を経て
一酸化炭素変成器7の入口に接続して設けられている。
The raw fuel supply system 12 is provided by connecting from a raw fuel supply source (not shown) to the inlet of the desulfurizer 6 via the raw fuel preheater 9. The desulfurization raw fuel supply system 13 is provided so as to be connected from the outlet of the desulfurizer 6 through the desulfurization raw fuel preheater 10 to the inlet of the reforming pipe 3 of the fuel reformer 1. The reformed gas supply system 14 includes a filter 15, and is connected from the outlet of the reforming pipe 3 of the fuel reformer 1 to the inlet of the carbon monoxide shift converter 7 through the desulfurization raw fuel preheater 10 and the raw fuel preheater 9. Is provided.

【0006】改質ガス送出系16は一酸化炭素変成器7
の出口から図示しない燃料電池の燃料極に接続して設け
られている。このような構成により、原燃料供給源から
の天然ガス等の原燃料は原燃料供給系12を経て原燃料
予熱器9に流入し、後述する燃料改質器1から送出され
る改質ガスと熱交換して加熱され、この加熱された原燃
料は脱硫器6に流入する。流入した原燃料には硫黄分が
含まれているので、この硫黄分は、図示しない供給系か
ら水素が脱硫器6に添加され、いわゆる水添脱硫反応に
より脱硫器6の脱硫触媒の下に脱硫される。
The reformed gas delivery system 16 is a carbon monoxide transformer 7
Is connected to the fuel electrode (not shown) of the fuel cell. With such a configuration, the raw fuel such as natural gas from the raw fuel supply source flows into the raw fuel preheater 9 via the raw fuel supply system 12 and the reformed gas delivered from the fuel reformer 1 described later. It is heated by heat exchange, and the heated raw fuel flows into the desulfurizer 6. Since the inflowing raw fuel contains sulfur, hydrogen is added to the desulfurizer 6 from a supply system (not shown), and this sulfur is desulfurized under the desulfurization catalyst of the desulfurizer 6 by a so-called hydrodesulfurization reaction. To be done.

【0007】脱硫された脱硫原燃料は脱硫原燃料供給系
13を経て脱硫原燃料予熱器10に流入し、燃料改質器
1から送出される改質ガスと熱交換して加熱され、この
加熱された脱硫原燃料は燃料改質器1の改質管3に流入
する。改質管3に流入した脱硫原燃料はバーナ4に供給
される燃料の燃焼による燃焼熱により加熱され、改質管
3の改質触媒の下に水素リッチなガスに改質される。こ
の改質された改質ガスはフィルタ15にて改質ガス中に
混入する破砕された触媒粉を捕集した後、脱硫原燃料予
熱器10を流れ、前述のように脱硫原燃料を加熱し、さ
らに原燃料予熱器9に流入し、前述のように原燃料を加
熱する。
The desulfurized desulfurized raw fuel flows into the desulfurized raw fuel preheater 10 through the desulfurized raw fuel supply system 13 and is heated by heat exchange with the reformed gas delivered from the fuel reformer 1, and this heating is performed. The desulfurized raw fuel thus obtained flows into the reforming pipe 3 of the fuel reformer 1. The desulfurized raw fuel that has flowed into the reforming pipe 3 is heated by the combustion heat of the combustion of the fuel supplied to the burner 4, and is reformed into a hydrogen-rich gas under the reforming catalyst in the reforming pipe 3. The reformed reformed gas collects the crushed catalyst powder mixed in the reformed gas by the filter 15, and then flows through the desulfurization raw fuel preheater 10 to heat the desulfurization raw fuel as described above. Further, it flows into the raw fuel preheater 9 and heats the raw fuel as described above.

【0008】上記のように脱硫原燃料,原燃料を加熱し
た改質ガスは一酸化炭素変成器7に流入し、この変成器
7にて改質ガスに含まれる一酸化炭素を変成触媒の下に
変成し、一酸化炭素濃度を低減して改質ガス送出系16
を経て図示しない燃料電池に供給される。上記の系統に
おいて、燃料電池に供給する改質ガスを生成する際、燃
料電池の負荷に対応する原燃料流量により原燃料予熱器
9での熱交換量が決まるため、運転される負荷により脱
硫器6と一酸化炭素変成器7との温度が決定される。こ
の結果、定格負荷運転においては、脱硫器6と一酸化炭
素変成器7とはそれぞれ所定の脱硫反応,変成反応温度
に到達するが、低負荷運転時,負荷変動時においては、
十分な反応温度を確保できてない状態で運転されてい
る。
The desulfurized raw fuel and the reformed gas obtained by heating the raw fuel as described above flow into the carbon monoxide shift converter 7, where the carbon monoxide contained in the reformed gas is fed under the shift catalyst. To reduce the concentration of carbon monoxide and reformed gas delivery system 16
And is supplied to a fuel cell (not shown). In the above system, when the reformed gas to be supplied to the fuel cell is generated, the heat exchange amount in the raw fuel preheater 9 is determined by the flow rate of the raw fuel corresponding to the load of the fuel cell. The temperatures of 6 and carbon monoxide transformer 7 are determined. As a result, in the rated load operation, the desulfurizer 6 and the carbon monoxide shift converter 7 reach the predetermined desulfurization reaction and shift reaction temperature, respectively, but during the low load operation and the load change,
It is operated in a state where a sufficient reaction temperature cannot be secured.

【0009】[0009]

【発明が解決しようとする課題】上記のように燃料電池
に供給する水素リッチな改質ガスを生成する燃料改質器
の前段に設けられる脱硫器の脱硫反応時の温度は、運転
負荷、すなわち、この運転負荷に対応する原燃料流量及
び原燃料を加熱する原燃料予熱器の伝熱性能により決め
られるが、特に運転負荷の低い状態では200〜250
℃の温度範囲となり、水添脱硫反応を行なうには十分な
脱硫器の運転温度が確保できていたとは言えない。この
結果、脱硫器6の運転温度が低くなる低負荷運転が長時
間継続される場合には、脱硫器6内の単位触媒量当りの
硫黄付着量が著しく減少するため、脱硫器としての寿命
が低下するという問題がある。
As described above, the temperature during the desulfurization reaction of the desulfurizer provided before the fuel reformer that produces the hydrogen-rich reformed gas to be supplied to the fuel cell depends on the operating load, that is, It is determined by the raw fuel flow rate corresponding to the operating load and the heat transfer performance of the raw fuel preheater that heats the raw fuel.
It cannot be said that the operating temperature of the desulfurizer was sufficient to carry out the hydrodesulfurization reaction because the temperature range was ℃. As a result, when the low-load operation in which the operating temperature of the desulfurizer 6 becomes low is continued for a long time, the sulfur deposition amount per unit amount of catalyst in the desulfurizer 6 is significantly reduced, so that the life of the desulfurizer is shortened. There is a problem of decrease.

【0010】また、燃料改質器1で生成された改質ガス
を改質管3から送出するとき、改質ガス供給系14に設
けたフィルタ15により、改質反応時に発生する改質触
媒の割れ等により破砕した小粒径触媒、又は触媒粉が捕
集されるようにしているが、このフィルタで捕集が十分
に行なわれないような細かい触媒粉はフィルタ15を通
過し、燃料改質器1の後段に設けられた原燃料予熱器9
や脱硫原燃料予熱器10の内部に堆積、又は閉塞を起こ
し、伝熱性能が低下してくる。この原燃料予熱器9の伝
熱性能の低下は、原燃料予熱器9での熱交換量を減らす
ため、脱硫器6の原燃料入口温度が低下し、脱硫器6の
脱硫反応時の温度を低下させ、脱硫性能が低減するとい
う問題がある。
Further, when the reformed gas generated in the fuel reformer 1 is delivered from the reforming pipe 3, the filter 15 provided in the reformed gas supply system 14 serves to remove the reforming catalyst generated during the reforming reaction. The small particle size catalyst crushed due to cracks or the like or the catalyst powder is collected, but fine catalyst powder which is not sufficiently collected by this filter passes through the filter 15 and the fuel reforming is performed. Raw fuel preheater 9 provided after the reactor 1
Or the inside of the desulfurization raw fuel preheater 10 is accumulated or clogged, and the heat transfer performance is deteriorated. This decrease in the heat transfer performance of the raw fuel preheater 9 reduces the amount of heat exchange in the raw fuel preheater 9, so the raw fuel inlet temperature of the desulfurizer 6 decreases, and the temperature of the desulfurizer 6 during the desulfurization reaction is reduced. However, there is a problem that the desulfurization performance is reduced.

【0011】本発明の目的は、運転負荷に関係なく、ま
た原燃料予熱器の伝熱性能の変化があっても安定した脱
硫性能を確保することのできるように脱硫器の温度を制
御する脱硫器の温度制御装置を提供することである。
An object of the present invention is to control the temperature of the desulfurizer so that a stable desulfurization performance can be secured regardless of the operating load and even if the heat transfer performance of the raw fuel preheater changes. A temperature control device for a container is provided.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明によれば原燃料供給系を経て供給される天
然ガス等の炭化水素系の原燃料を、原燃料供給系に設け
られる原燃料予熱器にて燃料改質器の改質触媒が充填さ
れた改質管から送出される改質ガスにより加熱し、この
加熱された原燃料に含まれる硫黄分を脱硫する脱硫触媒
が充填された脱硫器の脱硫反応時の脱硫触媒の温度を制
御する脱硫器の温度制御装置において、原燃料供給系か
ら分岐し、原燃料予熱器をバイパスして脱硫器に接続
し、流量調節弁を備えるバイパス原燃料供給系と、脱硫
器の脱硫触媒の温度を検出する温度検出器と、この温度
検出器での検出温度と脱硫器での脱硫反応に適切な所定
温度の目標値の偏差からバイパス原燃料供給系の流量調
節弁を制御する制御手段とを設けるものとする。
In order to solve the above problems, according to the present invention, a hydrocarbon-based raw fuel such as natural gas supplied through a raw fuel supply system is provided in the raw fuel supply system. A desulfurization catalyst that heats the reformed gas delivered from the reforming pipe filled with the reforming catalyst of the fuel reformer in the raw fuel preheater to desulfurize the sulfur content contained in the heated raw fuel In the temperature controller of the desulfurizer that controls the temperature of the desulfurization catalyst during the desulfurization reaction of the filled desulfurizer, branch from the raw fuel supply system, bypass the raw fuel preheater, connect to the desulfurizer, and control the flow rate control valve. A bypass raw fuel supply system equipped with, a temperature detector that detects the temperature of the desulfurization catalyst of the desulfurizer, and a deviation of the target value of the temperature detected by this temperature detector and the predetermined temperature suitable for the desulfurization reaction in the desulfurizer. Control that controls the flow control valve of the bypass raw fuel supply system It is assumed that the provision of the stage.

【0013】[0013]

【作用】脱硫器で脱硫される天然ガス等の炭化水素系の
原燃料は、原燃料供給系を経て原燃料予熱器にて燃料改
質器の改質触媒が充填された改質管から送出される改質
ガスにより加熱された原燃料と、バイパス原燃料供給系
を経て原燃料予熱器をバイパスする原燃料とが混合され
て脱硫器に流入する。この際、脱硫器に流入する原燃料
の温度は原燃料予熱器で加熱されて昇温した原燃料と、
原燃料予熱器をバイパスした原燃料とが混合されて生じ
た温度となる。
[Function] The hydrocarbon-based raw fuel such as natural gas desulfurized by the desulfurizer is sent from the reforming pipe filled with the reforming catalyst of the fuel reformer in the raw fuel preheater through the raw fuel supply system. The raw fuel heated by the reformed gas is mixed with the raw fuel that bypasses the raw fuel preheater via the bypass raw fuel supply system and flows into the desulfurizer. At this time, the temperature of the raw fuel flowing into the desulfurizer is equal to the temperature of the raw fuel heated by the raw fuel preheater and raised.
The temperature is generated by mixing with the raw fuel that bypassed the raw fuel preheater.

【0014】したがって、脱硫器の脱硫触媒の温度を検
出する温度検出器での検出温度と脱硫器の脱硫反応に適
切な所定温度の目標値との偏差から制御手段により流量
調節弁を制御して原燃料予熱器をバイパスしてバイパス
原燃料供給系を流れる原燃料流量を制御することによ
り、原燃料予熱器で加熱されて昇温した原燃料と、流量
制御された原燃料予熱器で加熱されない原燃料とが混合
し、脱硫器の脱硫触媒の温度は運転負荷に関係なく、脱
硫反応に適切な所定温度に制御される。
Therefore, the flow control valve is controlled by the control means from the deviation between the temperature detected by the temperature detector for detecting the temperature of the desulfurization catalyst of the desulfurizer and the target value of the predetermined temperature suitable for the desulfurization reaction of the desulfurizer. By controlling the flow rate of raw fuel flowing through the bypass raw fuel supply system by bypassing the raw fuel preheater, the raw fuel heated by the raw fuel preheater and heated is not heated by the flow controlled raw fuel preheater. The raw fuel is mixed, and the temperature of the desulfurization catalyst of the desulfurizer is controlled to a predetermined temperature suitable for the desulfurization reaction regardless of the operating load.

【0015】例えば、運転負荷が低い場合には、脱硫器
の温度は前記所定温度に対して低くなるため、流量調節
弁の開度を制御手段により絞ることにより、原燃料予熱
器を流れる原燃料の流量を増加させて熱交換量を多く
し、脱硫器入口の原燃料の温度を上昇させて、脱硫器の
温度を所定の脱硫反応時の温度(250〜350℃内の
所定温度)に制御する。
For example, when the operating load is low, the temperature of the desulfurizer becomes lower than the predetermined temperature. Therefore, the raw fuel flowing through the raw fuel preheater is controlled by narrowing the opening of the flow rate control valve by the control means. To increase the amount of heat exchange, increase the temperature of the raw fuel at the desulfurizer inlet, and control the desulfurizer temperature to a predetermined desulfurization reaction temperature (predetermined temperature within 250 to 350 ° C). To do.

【0016】また、燃料改質器の改質管内の改質触媒が
破砕して触媒粉が改質ガスとともに飛散して原燃料予熱
器内に付着して伝熱性能が運転時間の経過とともに低下
した場合でも、前述と同様に流量調節弁を制御すること
により、脱硫器の脱硫触媒の温度は脱硫反応に適切な所
定温度に制御される。
Further, the reforming catalyst in the reforming pipe of the fuel reformer is crushed, the catalyst powder is scattered with the reformed gas and adheres to the raw fuel preheater, and the heat transfer performance is deteriorated with the lapse of operating time. Even in this case, the temperature of the desulfurization catalyst of the desulfurizer is controlled to a predetermined temperature suitable for the desulfurization reaction by controlling the flow rate control valve as described above.

【0017】[0017]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例による脱硫器の温度制
御装置を備えた燃料改質器周りの系統図である。なお、
図1において図2の従来例と同一部品には同じ符号を付
し、その説明を省略する。図1において図2の従来例と
異なるのは下記の通りである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram around a fuel reformer equipped with a temperature control device for a desulfurizer according to an embodiment of the present invention. In addition,
In FIG. 1, the same parts as those in the conventional example of FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. 1 is different from the conventional example of FIG. 2 as follows.

【0018】原燃料供給系12から分岐し、原燃料予熱
器9をバイパスして脱硫器6の入口側の原燃料供給系1
2に接続し、流量調節弁20を備えるバイパス原燃料供
給系21と、脱硫器6の脱硫触媒の温度を検出する温度
検出器22と、温度検出器22での検出温度と脱硫器6
の脱硫反応に適切な所定温度の目標値との偏差から流量
調節弁20を制御する温度調節器23とを設けている。
The raw fuel supply system 1 is branched from the raw fuel supply system 12, bypasses the raw fuel preheater 9, and is located at the inlet side of the desulfurizer 6
2, a bypass raw fuel supply system 21 having a flow control valve 20, a temperature detector 22 for detecting the temperature of the desulfurization catalyst of the desulfurizer 6, a temperature detected by the temperature detector 22 and the desulfurizer 6
The temperature controller 23 for controlling the flow rate control valve 20 is provided based on the deviation from the target value of the predetermined temperature suitable for the desulfurization reaction.

【0019】なお、本実施例では、燃料電池と燃料改質
器とを主要構成部とする燃料電池発電装置において、流
量調節弁20の弁開度の中間開度にて定格運転に必要な
原燃料の予熱温度が確保できるようにしている。また、
負荷の0〜100%までの間で脱硫器6の脱硫触媒の温
度を前記所定温度に制御できるようにしている。このよ
うな構成により、燃料電池発電装置の運転時、原燃料供
給源からの原燃料は原燃料供給系12を経て原燃料予熱
器9に流入し、燃料改質器1の改質管3から送出される
改質ガスにより加熱されて脱硫器6に流入する。一方、
原燃料供給源からバイパス原燃料供給系21を経る原燃
料は原燃料予熱器9をバイパスして前記原燃料予熱器9
で加熱された原燃料と混合して脱硫器6に流入して脱硫
される。この際、脱硫器6の脱硫触媒の温度を検出する
温度検出器22の検出温度の信号と、脱硫器6の脱硫反
応に適切な所定温度の目標値の信号とが温度調節器23
に入力され、温度調節器23により温度検出器22での
検出温度と前記所定温度の目標値との偏差から流量調節
弁20は制御され、この制御により原燃料予熱器9で昇
温された原燃料と原燃料予熱器9をバイパスした原燃料
とが混合した原燃料は、脱硫器6の脱硫反応に適切な所
定温度に制御された脱硫触媒の下に脱硫が良好に行なわ
れる。
In this embodiment, in the fuel cell power generator having the fuel cell and the fuel reformer as main components, the fuel cell power generator at the intermediate opening of the valve opening of the flow control valve 20 is required for the rated operation. The fuel preheat temperature is ensured. Also,
The temperature of the desulfurization catalyst of the desulfurizer 6 can be controlled to the predetermined temperature within the range of 0 to 100% of the load. With such a configuration, during the operation of the fuel cell power generator, the raw fuel from the raw fuel supply source flows into the raw fuel preheater 9 through the raw fuel supply system 12 and is discharged from the reforming pipe 3 of the fuel reformer 1. It is heated by the reformed gas delivered and flows into the desulfurizer 6. on the other hand,
The raw fuel that has passed through the bypass raw fuel supply system 21 from the raw fuel supply source bypasses the raw fuel preheater 9 and the raw fuel preheater 9
It is mixed with the raw fuel heated in (1) and flows into the desulfurizer 6 to be desulfurized. At this time, the signal of the temperature detected by the temperature detector 22 that detects the temperature of the desulfurization catalyst of the desulfurizer 6 and the signal of the target value of the predetermined temperature suitable for the desulfurization reaction of the desulfurizer 6 are the temperature controller 23.
The flow rate control valve 20 is controlled by the temperature controller 23 based on the deviation between the temperature detected by the temperature detector 22 and the target value of the predetermined temperature. The raw fuel in which the fuel and the raw fuel bypassing the raw fuel preheater 9 are mixed is satisfactorily desulfurized under a desulfurization catalyst controlled to a predetermined temperature suitable for the desulfurization reaction of the desulfurizer 6.

【0020】したがって、流量調節弁20の制御によ
り、運転負荷の変動、及び長時間の運転に伴う伝熱管の
汚れによる原燃料予熱器9の伝熱性能が低下しても、脱
硫器6における脱硫反応は良好に行なわれる。以下に具
体的な例について説明する。燃料電池発電装置で100
%の電力を取つているとき、30%の電力を得るように
負荷を低減した場合、バイパス原燃料供給系21の流量
調節弁20を前述のように制御することにより脱硫器6
は脱硫反応に適切な所定温度に制御された。
Therefore, even if the heat transfer performance of the raw fuel preheater 9 is lowered by the control of the flow rate control valve 20 due to the fluctuation of the operating load and the fouling of the heat transfer tube due to long-term operation, the desulfurization in the desulfurizer 6 The reaction works well. A specific example will be described below. 100 with fuel cell power generator
%, When the load is reduced to obtain 30% of electric power, the desulfurizer 6 is controlled by controlling the flow rate control valve 20 of the bypass raw fuel supply system 21 as described above.
Was controlled at a predetermined temperature suitable for the desulfurization reaction.

【0021】ここで、脱硫器6に流入する原燃料流量と
一酸化炭素変成器7に流入する改質ガス流量との比は約
1:5程度であるため、脱硫器6の温度を250℃から
290℃まで温度上昇させる場合、流量調節弁20の開
度を絞ることにより、一酸化炭素変成器7の入口ガス温
度低下は約8℃程度下ることになる。一酸化炭素変成器
7での温度降下分による一酸化炭素の変成反応に対する
問題点は、反応ゾーンが触媒層の軸方向においてずれる
ことであるが、一酸化炭素変成器7の中央部に設置した
熱電対により温度を検出して変成触媒層の温度制御を行
なっているため、バイパス原燃料供給系に流れてバイパ
スする原燃料流量の変化による一酸化炭素変成器7の温
度分布の変化は小さく、安定した改質ガスの組成を得る
ことができる。
Here, since the ratio of the flow rate of the raw fuel flowing into the desulfurizer 6 to the flow rate of the reformed gas flowing into the carbon monoxide shift converter 7 is about 1: 5, the temperature of the desulfurizer 6 is 250 ° C. In the case of increasing the temperature from 1 to 290 ° C., the temperature of the inlet gas of the carbon monoxide shift converter 7 is lowered by about 8 ° C. by narrowing the opening of the flow rate control valve 20. A problem with the carbon monoxide shift conversion reaction due to the temperature drop in the carbon monoxide shift converter 7 is that the reaction zone shifts in the axial direction of the catalyst layer, but it was installed at the center of the carbon monoxide shift converter 7. Since the temperature of the shift catalyst layer is controlled by detecting the temperature with the thermocouple, the change in the temperature distribution of the carbon monoxide shifter 7 due to the change in the flow rate of the raw fuel flowing into the bypass raw fuel supply system and bypassing is small, A stable reformed gas composition can be obtained.

【0022】また、負荷を30%から100%に上昇さ
せた場合には、流量調節弁20の開度は前記逆方向に動
作し、脱硫器の脱硫触媒の過度な温度上昇を抑えること
ができ、脱硫反応に適切な所定温度に制御することが確
認された。また、燃料電池発電装置の100%負荷にて
運転中、燃料改質器1の改質管3内の触媒粉のうちフィ
ルタ15で捕集されなかった触媒粉が原燃料予熱器9内
に堆積、又は閉塞等して伝熱管が汚れて長時間の運転に
より伝熱性能が低下する場合でも、バイパス原燃料供給
系21の流量調節弁20を前述のように制御して脱硫器
6の脱硫触媒の温度を脱硫反応に適切な所定温度に制御
できた。したがって、原燃料予熱器9の伝熱性能が低下
しても脱硫器6では良好な脱硫を行なうことができる。
Further, when the load is increased from 30% to 100%, the opening of the flow rate control valve 20 operates in the opposite direction to prevent an excessive temperature rise of the desulfurization catalyst of the desulfurizer. It was confirmed that the temperature was controlled to a predetermined temperature suitable for the desulfurization reaction. Further, during operation of the fuel cell power generator at 100% load, of the catalyst powder in the reforming pipe 3 of the fuel reformer 1, the catalyst powder not collected by the filter 15 is accumulated in the raw fuel preheater 9. Even when the heat transfer tube is contaminated due to blockage or the like and heat transfer performance is deteriorated due to long-term operation, the desulfurization catalyst of the desulfurizer 6 is controlled by controlling the flow rate control valve 20 of the bypass raw fuel supply system 21 as described above. The temperature of was able to be controlled to a predetermined temperature suitable for the desulfurization reaction. Therefore, even if the heat transfer performance of the raw fuel preheater 9 deteriorates, the desulfurizer 6 can perform good desulfurization.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
によれば前述の構成により、流量調節弁の制御によりバ
イパス原燃料供給系を流れる原燃料流量を制御して、原
燃料予熱器で昇温されて送出される原燃料と混合して脱
硫器に流入させ、脱硫器の脱硫触媒の温度を脱硫反応に
適切な温度に制御するので、燃料電池発電装置の運転負
荷に関係なく、また原燃料予熱器の伝熱性能の変化があ
っても、脱硫器での脱硫は良好に行なわれる。
As is apparent from the above description, according to the present invention, with the above-described configuration, the flow rate of the raw fuel flowing through the bypass raw fuel supply system is controlled by controlling the flow rate control valve, and the raw fuel preheater is used. The temperature of the desulfurization catalyst in the desulfurizer is controlled to a temperature suitable for the desulfurization reaction by mixing with the raw fuel that has been heated and sent out, and then flowing into the desulfurizer, regardless of the operating load of the fuel cell power generator. Even if there is a change in the heat transfer performance of the raw fuel preheater, desulfurization is performed well in the desulfurizer.

【0024】[0024]

【図面な簡単な説明】[Brief description of the drawings]

【0025】[0025]

【図1】本発明の実施例による温度制御装置を設けた脱
硫器を備える燃料改質器周りの系統図
FIG. 1 is a system diagram around a fuel reformer including a desulfurizer provided with a temperature control device according to an embodiment of the present invention.

【0026】[0026]

【図2】従来の脱硫器を備える燃料改質器周りの系統図FIG. 2 is a system diagram around a fuel reformer equipped with a conventional desulfurizer.

【0027】[0027]

【符号の説明】[Explanation of symbols]

1 燃料改質器 3 改質管 6 脱硫器 9 原燃料予熱器 12 原燃料供給系 20 流量調節弁 21 バイパス原燃料供給系 22 温度検出器 23 温度調節器 1 Fuel Reformer 3 Reforming Pipe 6 Desulfurizer 9 Raw Fuel Preheater 12 Raw Fuel Supply System 20 Flow Control Valve 21 Bypass Raw Fuel Supply System 22 Temperature Detector 23 Temperature Controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 元一 神奈川県逗子市久木2丁目6番B9号 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910番55号 (72)発明者 加藤 啓 愛知県名古屋市天白区天白町植田字焼山16 −3 (72)発明者 中川 功夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Motoichi Ikeda 2-6 B9, Hisagi, Zushi City, Kanagawa Prefecture (72) Nobuhiro Iwasa 91055, Katsuragi Town, Kishiwada City, Osaka Prefecture (72) Kei Kato 16-3 Yakeyama, Ueda, Tenpaku-cho, Tenpaku-ku, Nagoya-shi, Aichi (72) Inventor Isao Nakagawa 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原燃料供給系を経て供給される天然ガス等
の炭化水素系の原燃料を、原燃料供給系に設けられる原
燃料予熱器にて燃料改質器の改質触媒が充填された改質
管から送出される改質ガスにより加熱し、この加熱され
た原燃料に含まれる硫黄分を脱硫する脱硫触媒が充填さ
れた脱硫器の脱硫反応時の脱硫触媒の温度を制御する脱
硫器の温度制御装置において、原燃料供給系から分岐
し、原燃料予熱器をバイパスして脱硫器に接続し、流量
調節弁を備えるバイパス原燃料供給系と、脱硫器の脱硫
触媒の温度を検出する温度検出器と、この温度検出器で
の検出温度と脱硫器での脱硫反応に適切な所定温度の目
標値との偏差からバイパス原燃料供給系の流量調節弁を
制御する制御手段とを設けたことを特徴とする脱硫器の
温度制御装置。
1. A reforming catalyst of a fuel reformer is filled with a hydrocarbon-based raw fuel such as natural gas supplied through a raw fuel supply system by a raw fuel preheater provided in the raw fuel supply system. Desulfurization that controls the temperature of the desulfurization catalyst during the desulfurization reaction of the desulfurizer, which is heated by the reformed gas sent from the reforming pipe and desulfurizes the sulfur contained in the heated raw fuel. In the temperature control device of the reactor, the temperature of the desulfurization catalyst, which is branched from the raw fuel supply system, bypasses the raw fuel preheater and is connected to the desulfurizer, and has a flow control valve and the desulfurization catalyst of the desulfurizer And a control means for controlling the flow rate control valve of the bypass raw fuel supply system from the deviation between the temperature detected by the temperature detector and the target value of the predetermined temperature suitable for the desulfurization reaction in the desulfurizer. A temperature control device for a desulfurizer.
JP7155713A 1995-06-22 1995-06-22 Temperature control device for desulfurizer Pending JPH097617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7155713A JPH097617A (en) 1995-06-22 1995-06-22 Temperature control device for desulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7155713A JPH097617A (en) 1995-06-22 1995-06-22 Temperature control device for desulfurizer

Publications (1)

Publication Number Publication Date
JPH097617A true JPH097617A (en) 1997-01-10

Family

ID=15611876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7155713A Pending JPH097617A (en) 1995-06-22 1995-06-22 Temperature control device for desulfurizer

Country Status (1)

Country Link
JP (1) JPH097617A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU745685B2 (en) * 2000-08-16 2002-03-28 Mitsubishi Heavy Industries Engineering, Ltd. Method of manufacturing synthesis gas
JP2004051864A (en) * 2002-07-23 2004-02-19 Idemitsu Kosan Co Ltd Desulfurization method and hydrogen production apparatus
JP2005289709A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Hydrogen producing apparatus and its driving method
US10461341B2 (en) 2013-12-19 2019-10-29 Panasonic Corporation Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU745685B2 (en) * 2000-08-16 2002-03-28 Mitsubishi Heavy Industries Engineering, Ltd. Method of manufacturing synthesis gas
JP2004051864A (en) * 2002-07-23 2004-02-19 Idemitsu Kosan Co Ltd Desulfurization method and hydrogen production apparatus
JP4641138B2 (en) * 2002-07-23 2011-03-02 出光興産株式会社 Hydrogen production method
JP2005289709A (en) * 2004-03-31 2005-10-20 Osaka Gas Co Ltd Hydrogen producing apparatus and its driving method
US10461341B2 (en) 2013-12-19 2019-10-29 Panasonic Corporation Fuel cell system

Similar Documents

Publication Publication Date Title
US7157170B2 (en) Electric power generating apparatus and related method
CN100551816C (en) The method and apparatus of fuel reforming
EP2215681B1 (en) Solid electrolyte fuel cell system
US7037616B2 (en) Fuel cell system having drain for condensed water stored in reforming reactor
JPH03164401A (en) Fuel disposal device for fuel battery
JPH097617A (en) Temperature control device for desulfurizer
EP1258935A2 (en) Raw fuel vaporizing apparatus, method of vaporizing raw fuel, and fuel cell system equipped with raw fuel vaporizing apparatus
JP2001093550A (en) Solid polymer fuel cell generator and method for operating
US7374591B2 (en) Method for starting a gas generating system
JPH07192742A (en) Catalyst layer temperature control system of fuel reformer for fuel cell
EP1369946A1 (en) Warm-up device for catalytic reactor
US7745060B2 (en) Fuel cell system and method of operating the fuel cell system
JPH11195424A (en) Fuel cell power generation plant and its control device
JPH0927337A (en) Fuel cell power generating system
JP3602698B2 (en) Fuel cell power generator and fuel switching method thereof
US7717970B2 (en) Fuel reforming device
JPH11339829A (en) Phosphoric acid fuel cell power generating device
JPH0992316A (en) Method of raising temperature of fuel cell power generating device
JP2015022863A (en) Fuel cell system
JP3264066B2 (en) Fuel cell fuel reformer
JP2860215B2 (en) Fuel cell generator
JPH08315845A (en) Phosphoric acid type fuel cell power generation device
JP2700047B2 (en) Device for maintaining catalyst integrity of fuel reformer for fuel cells
JP2005067952A (en) Modification system, and warming-up method in modification system
JP2526723B2 (en) Fuel cell reformer