JPH0976044A - Method for reclamation of molding sand and its device - Google Patents

Method for reclamation of molding sand and its device

Info

Publication number
JPH0976044A
JPH0976044A JP23514795A JP23514795A JPH0976044A JP H0976044 A JPH0976044 A JP H0976044A JP 23514795 A JP23514795 A JP 23514795A JP 23514795 A JP23514795 A JP 23514795A JP H0976044 A JPH0976044 A JP H0976044A
Authority
JP
Japan
Prior art keywords
sand
vacuum
amount
kneading
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23514795A
Other languages
Japanese (ja)
Other versions
JP3705627B2 (en
Inventor
Risaburo Kimura
利三郎 木村
Takashi Suginaka
隆司 杉中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP23514795A priority Critical patent/JP3705627B2/en
Publication of JPH0976044A publication Critical patent/JPH0976044A/en
Application granted granted Critical
Publication of JP3705627B2 publication Critical patent/JP3705627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the strength of the reclaimed molding sand, and to suppress the amount of a binder by adjusting the degree of vacuum in a tank to increase the evaporation of water based on the temperature of the casting sand before kneading in vacuum relative to the target strength of the reclaimed sand. SOLUTION: The target strength of the reclaimed sand and the characteristics map are inputted to an operation controller 30 in advance. The operation controller 30 controls the amount of the secondary water to be fed by a water feeding device 10, the degree of vacuum in a vacuum mixer 1, and the amount of the caking agent to be added based on the temperature of the casting sand in the vacuum mixer 1 before the kneading in vacuum detected by an FK sensor 5. The degree of vacuum in a vacuum kneading tank is further increased to increase the evaporation amount of water. The amount of the finder may be reduced by the amount corresponding to the increase in the strength of the reclaimed casting sand, the strength of the reclaimed casting sand is kept to or above the prescribed value or above, the amount of the binder to be added is suppressed to reduce the molding cost, and at the same time, defective castings are reduced and the dimensional precision of the castings is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空混練槽を用い
て回収鋳物砂を再生する鋳物砂の再生方法およびその装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for reclaiming foundry sand and an apparatus for reclaiming recovered foundry sand using a vacuum kneading tank.

【0002】[0002]

【従来の技術】周知のように、鋳造用の生型を造型する
生型造型ラインでは、鋳物砂を混練して型の造型を行な
い、この型を用いて鋳込みが行なわれた後、使用済みの
型をばらして鋳物砂を回収し、この回収された鋳物砂
(以下、単に「回収砂」と呼ぶ)を用いて、あるいは必
要に応じて新砂を加えて再度混練を行ない、次サイクル
の造型が行なわれる。鋳物砂はこのような一連の循環サ
イクルを通じて、何度も再生して使用される。
2. Description of the Related Art As is well known, in a green molding line for molding a green mold for casting, a molding sand is kneaded to mold a mold, and after casting is performed using this mold, it is used. The mold is separated to collect the foundry sand, and the recovered foundry sand (hereinafter simply referred to as "recovered sand") is used, or new sand is added if necessary, and kneading is performed again, and the molding of the next cycle is performed. Is performed. Foundry sand is regenerated and used many times through such a series of circulation cycles.

【0003】上記回収砂を再生して使用する場合、鋳込
みを終えた型をばらして得られた回収砂は、回収時点で
はかなりの高温に保たれており、これをそのまま混練す
ると、得られた再生砂の温度は過度に高いものとなる。
When the recovered sand is reclaimed and used, the recovered sand obtained by separating the mold after casting is kept at a considerably high temperature at the time of recovery, and is obtained by kneading it as it is. The temperature of the reclaimed sand will be too high.

【0004】そこで、従来は、回収砂の温度に比例した
水分を添加して所定温度(一般に40℃程度以下)に冷
却するとともに、回収砂の性状を安定化させている(実
開平3−9245号)。
Therefore, conventionally, water is added in proportion to the temperature of the recovered sand to cool it to a predetermined temperature (generally about 40 ° C. or lower), and the properties of the recovered sand are stabilized (Actual Kaihei 3-92545). issue).

【0005】ところで、近年では、生型造型ラインに用
いられる混練槽として、槽内を所定の真空度(74HP
a程度)に維持した状態で混練を行ない得る真空混練槽
が一部で導入されて使用に供されつつある。
By the way, in recent years, as a kneading tank used in a green molding line, the inside of the tank has a predetermined vacuum degree (74 HP).
A vacuum kneading tank, which can perform kneading while maintaining about a), is partially introduced and is being used.

【0006】この真空混練槽を用いることにより、40
℃を超える高温(例えば40〜70℃程度)の回収砂を
混練槽内で急速に40℃以下の設定温度にまで冷却する
ことが可能になる。
By using this vacuum kneading tank, 40
It becomes possible to rapidly cool the recovered sand having a high temperature (eg, about 40 to 70 ° C.) exceeding 0 ° C. to a set temperature of 40 ° C. or less in the kneading tank.

【0007】すなわち、鋳物砂を混練して生型を造型す
る場合、通常、高温の回収砂を(必要に応じて新砂を加
えて)混練槽内に投入し、これに砂粒の粘結剤としての
ベントナイトおよび所定量の水を添加して槽内で混練が
行なわれるが、真空混練槽を用いた場合には、槽内を減
圧して水の沸騰点を低下させることにより、添加した水
の一部(以下にのべる冷却水)を蒸発させ、このとき槽
内周囲の砂から気化潜熱を奪うことによって槽内の砂を
一気に設定温度まで冷却することができる。
[0007] That is, when kneading molding sand to form a green mold, usually, high-temperature recovered sand (adding new sand if necessary) is put into a kneading tank, and this is used as a binder for sand grains. The bentonite and the predetermined amount of water are added and kneading is carried out in the tank.However, when a vacuum kneading tank is used, the pressure in the tank is reduced to lower the boiling point of the water, thereby adding the added water. By evaporating a part (cooling water mentioned below) and depriving the latent heat of vaporization from the sand around the inside of the tank at this time, the sand in the tank can be cooled all at once to the set temperature.

【0008】なお、この真空混練槽を用いる場合、槽内
への水の添加量は、基本的に、混練後の鋳物砂の含水量
を所定値に保つための混練用(保湿水)と、混練時に高
温の回収砂を冷却するための冷却用(冷却水)との総和
として決定される。このうち、混練時に槽内で蒸発する
のは、冷却水に相当する分である。
When this vacuum kneading tank is used, the amount of water added to the tank is basically the same as that for kneading (moisturizing water) for keeping the water content of the foundry sand after kneading at a predetermined value. It is determined as the sum of cooling water (cooling water) for cooling the high temperature recovered sand during kneading. Of these, the amount that evaporates in the tank during kneading corresponds to the cooling water.

【0009】[0009]

【発明が解決しようとする課題】上記のような真空混練
を行なう場合、混練槽内への水の添加量は、混練後の砂
(再生砂)の品質を確保し、目標の砂強度、すなわち、
再生砂で造型した生型の抗圧力が得られるように制御さ
れる。一般に砂の素性が一定であれば砂の含水量と抗圧
力との間には一定の相関関係があることが知られてお
り、従来では、回収砂の含水量を測定した上で、この相
関関係に基づいて、混練後の再生砂の含水量が一定にな
るように添加水量を制御するようにしている。
When performing the above-described vacuum kneading, the amount of water added to the kneading tank is such that the quality of the sand (reclaimed sand) after kneading is ensured and the target sand strength, that is, ,
It is controlled so as to obtain the coercive force of the green mold made of recycled sand. It is generally known that there is a certain correlation between the water content of sand and the coercive pressure if the sand content is constant. Conventionally, after measuring the water content of the recovered sand, this correlation Based on the relationship, the amount of added water is controlled so that the water content of the reclaimed sand after kneading is constant.

【0010】ところで、混練後の鋳物砂(再生砂)に含
まれる水分は、砂粒表面に単に付着した付着水と、ベン
トナイトの結晶層に浸透した吸着水とに分けることがで
きる。このうち、ベントナイト結晶層に浸透した吸着水
は蒸発しにくく、鋳物砂の保水性を向上させる。また、
この吸着水は、ベントナイトを活性化して砂強度、すな
わち、生型の抗圧力の立上がりを早くし、かつ、生型の
強度そのものを高める作用をするものと考えられる。
By the way, the water contained in the foundry sand (reclaimed sand) after kneading can be divided into adhering water simply adhering to the surface of the sand grains and adsorbing water permeating into the bentonite crystal layer. Of these, the adsorbed water that has penetrated into the bentonite crystal layer is less likely to evaporate and improves the water retention of the foundry sand. Also,
It is considered that this adsorbed water activates bentonite, accelerates the sand strength, that is, the rise of the coercive pressure of the green mold, and increases the strength of the green mold itself.

【0011】図7は、回収砂の温度をパラメータとし
て、混練後の再生砂の含水量と生型の抗圧力との関係を
調べた結果を示すグラフであり、直線Aが回収砂の温度
65℃の場合を、また直線Bが回収砂の温度25℃の場
合をそれぞれ表している。なお、この直線Aと、直線B
とでは、ベントナイトの添加量や混練時の真空度等、他
の試験条件は全て同一に設定されている。図7のグラフ
から明らかなように、真空混練した場合には、再生砂の
含水量が同じでも、回収砂の温度が高くなる程生型の抗
圧力が高くなっている。これは、回収砂の温度が高くな
る程添加すべき冷却水量が多くなるので、真空混練槽で
の水蒸気発生量が増加し、ベントナイト結晶層に浸透す
る吸着水量が多くなり、ベントナイトの活性化が進むた
めであると考えられる。
FIG. 7 is a graph showing the results of examining the relationship between the water content of the reclaimed sand after kneading and the coercive pressure of the green mold, using the temperature of the recovered sand as a parameter. The case where the temperature of the recovered sand is 25 ° C. and the line B shows the case where the temperature is 25 ° C. In addition, this straight line A and straight line B
In and, all other test conditions such as the amount of bentonite added and the degree of vacuum at the time of kneading are set to be the same. As is clear from the graph of FIG. 7, when vacuum kneading is performed, even if the water content of the reclaimed sand is the same, the higher the temperature of the recovered sand, the higher the raw type coercive pressure. This is because the amount of cooling water to be added increases as the temperature of the recovered sand increases, so that the amount of water vapor generated in the vacuum kneading tank increases, the amount of adsorbed water that permeates the bentonite crystal layer increases, and the bentonite is activated. It is thought to be to proceed.

【0012】換言すれば、真空混練中の水蒸気発生量が
多い程、再生砂の強度が増大すると言うことができ、こ
のことに着目すれば、再生砂の強度が所定以上の値に保
たれる限り、粘結剤としてのベントナイトの配合率を減
少させることも可能なはずである。そして、真空混練中
の水蒸気発生量は、真空混練槽内の真空度を高める程増
大すること明らかである。
In other words, it can be said that the strength of the reclaimed sand increases as the amount of water vapor generated during the vacuum kneading increases, and if attention is paid to this fact, the strength of the reclaimed sand is maintained at a predetermined value or more. As far as possible, it should be possible to reduce the blending ratio of bentonite as a binder. It is apparent that the amount of water vapor generated during vacuum kneading increases as the degree of vacuum in the vacuum kneading tank increases.

【0013】そこで、本発明は、真空混練槽内の真空度
と再生砂の強度との相関関係に着目することにより、よ
り安定した品質の再生砂を得るとともに、再生砂の強度
を所定以上の値に維持しつつ粘結剤の使用量を抑制し
て、生型造型コストの低減を図ることを目的とする。
Therefore, in the present invention, by paying attention to the correlation between the degree of vacuum in the vacuum kneading tank and the strength of the reclaimed sand, the reclaimed sand having a more stable quality can be obtained, and the strength of the reclaimed sand can be set to a predetermined value or more. The purpose is to suppress the amount of binder used while maintaining the value, and to reduce the cost of green molding.

【0014】[0014]

【課題を解決するための手段】本願の請求項1に係わる
発明は、真空混練槽内に回収砂を投入し、水および粘結
剤を添加して混練することにより上記回収砂を再生する
鋳物砂の再生方法において、再生砂の砂強度の目標値を
予め設定し、該目標値に対し、少なくとも真空混練前の
槽内の鋳物砂の温度に基づいて、槽内の真空度を調整す
ることを特徴とするものである。
The invention according to claim 1 of the present application is a casting for reclaiming the recovered sand by introducing the recovered sand into a vacuum kneading tank, adding water and a binder and kneading. In the method of reclaiming sand, a target value of sand strength of reclaimed sand is set in advance, and the degree of vacuum in the tank is adjusted based on at least the temperature of the foundry sand in the tank before vacuum kneading with respect to the target value. It is characterized by.

【0015】なお、混練時に新砂を加えない場合には、
上記「真空混練前の槽内の鋳物砂」は「回収砂」を指す
ことになる(以下同様)。
If new sand is not added during kneading,
The above "casting sand in the tank before vacuum kneading" means "recovered sand" (the same applies hereinafter).

【0016】また、本願の請求項2に係わる発明は、請
求項1に係わる発明において、少なくとも真空混練前の
槽内の鋳物砂の温度に基づいて、水の添加量を調整する
ことを特徴とするものである。
The invention according to claim 2 of the present application is the invention according to claim 1, characterized in that the amount of water added is adjusted based on at least the temperature of the foundry sand in the tank before vacuum kneading. To do.

【0017】さらに、本願の請求項3に係わる発明は、
請求項1または2に係わる発明において、少なくとも真
空混練前の槽内の鋳物砂の温度に基づいて、粘結剤の添
加量を調整することを特徴とするものである。
Further, the invention according to claim 3 of the present application is as follows.
In the invention according to claim 1 or 2, the addition amount of the binder is adjusted based on at least the temperature of the molding sand in the tank before vacuum kneading.

【0018】さらに、本願の請求項4に係わる発明は、
請求項3に係わる発明において、上記粘結剤の添加量
が、上記槽内の真空度が高い程、減量されることを特徴
とするものである。
Further, the invention according to claim 4 of the present application is
In the invention according to claim 3, the addition amount of the binder is reduced as the vacuum degree in the tank is higher.

【0019】本願の請求項5に係わる発明は、鋳物砂の
再生装置であって、真空混練槽と、該真空混練槽に対
し、回収砂、水および粘結剤をそれぞれ供給する各供給
手段と、真空混練前の槽内の鋳物砂の温度を検出する温
度検出手段とを備えるとともに、真空混練中の水蒸気発
生量と再生砂の強度との関係データ、槽内の真空度をパ
ラメータとする回収砂の温度と冷却水添加量との関係デ
ータおよび槽内の真空度をパラメータとする回収砂の温
度と真空混練中の水蒸気発生量との関係データに基づい
て、槽内の真空度を制御する制御手段とを備えてなるこ
とを特徴とするものである。
The invention according to claim 5 of the present application is a reclaiming apparatus for foundry sand, comprising a vacuum kneading tank, and respective supplying means for supplying recovered sand, water and a binder to the vacuum kneading tank, respectively. , With temperature detection means for detecting the temperature of the foundry sand in the tank before vacuum kneading, and the relationship data between the amount of water vapor generated during vacuum kneading and the strength of reclaimed sand, and the recovery with the degree of vacuum in the tank as parameters The degree of vacuum in the tank is controlled based on the relational data between the temperature of the sand and the amount of cooling water added and the relational data between the temperature of the recovered sand and the amount of water vapor generated during vacuum kneading with the degree of vacuum in the tank as a parameter. It is characterized by comprising a control means.

【0020】また、本願の請求項6に係わる発明は、請
求項5に係わる発明において、上記制御手段が、槽内の
真空度をパラメータとする回収砂の温度と冷却水添加量
との関係データに基づいて、冷却水添加量を制御するこ
とを特徴とするものである。
According to a sixth aspect of the present invention, in the invention according to the fifth aspect, the control means sets the relational data between the temperature of the recovered sand and the amount of cooling water added with the degree of vacuum in the tank as a parameter. Based on the above, the amount of cooling water added is controlled.

【0021】さらに、本願の請求項7に係わる発明は、
請求項5または6に係わる発明において、上記制御手段
が、再生砂の砂強度の目標値に対する真空混練中の水蒸
気発生量と粘結剤の添加量との関係データに基づいて、
上記粘結剤の添加量を制御することを特徴とするもので
ある。
Further, the invention according to claim 7 of the present application is
In the invention according to claim 5 or 6, the control means, based on the relational data between the amount of steam generated during vacuum kneading and the amount of binder added to the target value of the sand strength of the reclaimed sand,
It is characterized by controlling the addition amount of the binder.

【0022】[0022]

【発明の効果】前述のように、真空混練中の水蒸気の発
生量が多い程、粘結剤(ベントナイト)が活性化して再
生砂の強度、すなわち真空混練後造型される生型の抗圧
力が増大することが判明しており、また真空混練中の水
蒸気発生量は、真空混練槽内の真空度を高める程増大す
ること明らかである。
As described above, the greater the amount of water vapor generated during vacuum kneading, the more the binder (bentonite) is activated and the strength of the reclaimed sand, that is, the coercive pressure of the green mold molded after vacuum kneading, increases. It has been found that the amount of water vapor generated during vacuum kneading increases as the degree of vacuum in the vacuum kneading tank increases.

【0023】本願の請求項1および5に係わる発明によ
れば、再生砂の砂強度の目標値を設定し、この目標値に
対し、少なくとも真空混練前の真空混練槽内の鋳物砂の
温度に基づいて、槽内の真空度を調整するようにしてい
るので、槽内の真空度を一定(例えば74HPa)にし
ていた従来に比べて、真空混練槽内の真空度をより高め
て(気圧をより低くして)水の蒸発量を増大させること
ができる。
According to the inventions according to claims 1 and 5 of the present application, the target value of the sand strength of the recycled sand is set, and at least the temperature of the foundry sand in the vacuum kneading tank before vacuum kneading is set with respect to this target value. Since the degree of vacuum in the tank is adjusted based on the above, the degree of vacuum in the vacuum kneading tank is further increased (atmospheric pressure is higher than that in the conventional case in which the degree of vacuum in the tank is constant (for example, 74 HPa)). It can be lower) to increase water evaporation.

【0024】したがって、再生砂の強度が増大する分、
粘結剤の必要添加量を減量してもよいことになるから、
再生砂の強度を所定以上の値に維持しつつ粘結剤の使用
量を抑制して、生型造型コストの低減を図ることができ
る。
Therefore, as the strength of the reclaimed sand increases,
Since it is possible to reduce the necessary addition amount of the binder,
It is possible to suppress the amount of the binder used while maintaining the strength of the reclaimed sand at a value equal to or higher than a predetermined value, and to reduce the green molding cost.

【0025】また、本願の請求項2および6に係わる発
明によれば、真空混練前の真空混練槽内の鋳物砂の温度
に基づいて、さらに水の添加量を調整するようにしてい
るので、再生砂の含水量と砂強度との関係に基づいて添
加水量を決定していた従来に比べて、再生砂の品質をよ
り安定したものとすることができる。この結果、生型の
抗圧力をより均一に維持することができ、鋳造時の欠陥
の減少および鋳造品の寸法精度の向上に寄与することが
できる。
Further, according to the inventions according to claims 2 and 6 of the present application, the amount of water added is further adjusted based on the temperature of the foundry sand in the vacuum kneading tank before vacuum kneading. The quality of the reclaimed sand can be made more stable than in the conventional case where the amount of added water is determined based on the relationship between the water content of the reclaimed sand and the sand strength. As a result, the coercive pressure of the green mold can be maintained more uniformly, which can contribute to reduction of defects during casting and improvement of dimensional accuracy of the cast product.

【0026】さらに、本願の請求項3および7に係わる
発明によれば、真空混練前の槽内の鋳物砂の温度に基づ
いて、粘結剤の添加量を調整するようにしているので、
真空混練中の槽内の真空度との関連で粘結剤の添加量を
減量する場合の制御が容易になる。
Further, according to the inventions according to claims 3 and 7 of the present application, the addition amount of the binder is adjusted based on the temperature of the molding sand in the tank before vacuum kneading.
Control becomes easy when the amount of the binder added is reduced in relation to the degree of vacuum in the tank during vacuum kneading.

【0027】[0027]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0028】図1は、本発明に係わる鋳物砂の再生装置
の一実施の形態を概略的に示す説明図である。この鋳物
砂の再生装置は、真空ミキサー1と、この真空ミキサー
1に所定量の回収砂および添加剤としての粘結剤(例え
ばベントナイト)、さらに必要に応じて新砂を投入する
ための計量ホッパー2と、真空ミキサー1に所定量の水
を供給する水供給装置10とを備えている。
FIG. 1 is an explanatory view schematically showing an embodiment of a foundry sand recycling apparatus according to the present invention. This foundry sand recycling apparatus includes a vacuum mixer 1 and a weighing hopper 2 for introducing a predetermined amount of recovered sand, a binder (eg bentonite) as an additive, and fresh sand into the vacuum mixer 1 if necessary. And a water supply device 10 for supplying a predetermined amount of water to the vacuum mixer 1.

【0029】計量ホッパー2は、図示は省略するが、鋳
込み終了後に使用済みの型をばらして鋳物砂を回収する
回収ステーション、添加剤としてのベントナイト(粘結
剤)を供給するベントナイト供給装置および新砂を供給
するための新砂供給ステーションに、例えばコンベア装
置やフィーダー装置等の搬送手段を介して接続されてい
る。
Although not shown in the drawings, the weighing hopper 2 is a collection station for separating a used mold after casting and collecting foundry sand, a bentonite feeder for supplying bentonite (binder) as an additive, and fresh sand. It is connected to a fresh sand supply station for supplying slag via a conveying means such as a conveyor device or a feeder device.

【0030】水供給装置10は、真空ミキサー1内に供
給すべき水の量を計る水計量器11と、供給すべき水を
コンデンサ13側から供給ラインLsを通じて真空ミキ
サー1側に圧送する供給ポンプ12と、リターンライン
Lrを通じてコンデンサ13内に戻された水を、クーリ
ングタワー16に接続された熱交換器15を通過させた
上でコンデンサ13内に還流させる循環ポンプ14とを
備えており、ほぼ一定温度に保たれた水を真空ミキサー
1内に供給することができる。
The water supply device 10 comprises a water meter 11 for measuring the amount of water to be supplied into the vacuum mixer 1 and a supply pump for pumping the water to be supplied from the condenser 13 side to the vacuum mixer 1 side through the supply line Ls. 12 and a circulation pump 14 for returning the water returned into the condenser 13 through the return line Lr to the condenser 13 after passing through the heat exchanger 15 connected to the cooling tower 16, and is substantially constant. Water maintained at temperature can be fed into the vacuum mixer 1.

【0031】水計量器11の下流側には一次および二次
の注水制御弁18,19が設けられている。一次注水制
御弁18は、混練後の鋳物砂(再生砂)の含水量を所定
値に保つための混練用の保温水を一次注水として真空ミ
キサー1内に注水するためのもので、一方、二次注水制
御弁19は、混練時に高温の回収砂を冷却するための冷
却水を二次注水として真空ミキサー1内に注水するため
のものであり、真空ミキサー1内への注水量は、これら
一次および二次の注水制御弁18,19によって制御さ
れる。
Downstream of the water meter 11, primary and secondary water injection control valves 18 and 19 are provided. The primary water injection control valve 18 is for injecting warming water for kneading for maintaining the water content of the foundry sand (reclaimed sand) after kneading at a predetermined value into the vacuum mixer 1 as primary water, while The next water injection control valve 19 is for injecting the cooling water for cooling the high temperature recovered sand at the time of kneading into the vacuum mixer 1 as a secondary water injection. And the secondary water injection control valves 18 and 19.

【0032】真空ミキサー1には、途中に真空遮断弁2
2が介設された真空ダクト21が接続され、この真空ダ
クト21は、コンデンサ13を介して真空ポンプ23に
接続されている。また、コンデンサ13と真空ポンプ2
3との間の配管には圧力スイッチ24が介設され、さら
に、真空ポンプ23と並列に圧力調整弁25が接続され
ている。この圧力調整弁25は、図2に示すように、再
生装置の作動を制御する演算コントローラ30に電気的
に接続され、演算コントローラ30真空遮断弁22を開
いた状態で真空ポンプ23を駆動することにより、真空
ミキサー1内が真空ダクト21を介して真空引きされる
とともに、上記演算コントローラ30により、真空ミキ
サー1内の真空度が圧力調整弁25を介して調整される
ように構成されている。
The vacuum mixer 1 has a vacuum shut-off valve 2 on the way.
2 is connected to the vacuum duct 21. The vacuum duct 21 is connected to the vacuum pump 23 via the condenser 13. Also, the condenser 13 and the vacuum pump 2
A pressure switch 24 is provided in a pipe between the pressure control valve 3 and the pressure control valve 3, and a pressure control valve 25 is connected in parallel with the vacuum pump 23. As shown in FIG. 2, the pressure adjusting valve 25 is electrically connected to an arithmetic controller 30 that controls the operation of the regeneration device, and drives the vacuum pump 23 with the arithmetic controller 30 vacuum shutoff valve 22 open. Thus, the interior of the vacuum mixer 1 is evacuated through the vacuum duct 21, and the arithmetic controller 30 adjusts the degree of vacuum inside the vacuum mixer 1 through the pressure adjusting valve 25.

【0033】さらに、真空ミキサー1には、この真空ミ
キサー1内に大気を導入する大気解放弁26が接続さ
れ、この大気解放弁26を開くことにより、真空ミキサ
ー1内の真空状態をほぼ瞬時に解除することができるよ
うになっている。
Further, the vacuum mixer 1 is connected to an atmosphere release valve 26 for introducing the atmosphere into the vacuum mixer 1. By opening the atmosphere release valve 26, the vacuum state in the vacuum mixer 1 can be almost instantly. It can be canceled.

【0034】さらに、真空ミキサー1には、この真空ミ
キサー1内に投入された砂(主として回収砂)の温度と
含水量と検出するFKセンサ5が挿入されており、この
FKセンサ5は、図2に示すように、上記演算コントロ
ーラ30に電気的に接続され、この演算コントローラ3
0に対し検出信号を出力するようになっている。
Further, an FK sensor 5 for detecting the temperature and the water content of the sand (mainly recovered sand) charged in the vacuum mixer 1 is inserted in the vacuum mixer 1, and this FK sensor 5 is shown in FIG. As shown in FIG. 2, the arithmetic controller 3 is electrically connected to the arithmetic controller 30.
A detection signal is output for 0.

【0035】演算コントローラ30は、例えばマイクロ
コンピュータを主要部として構成され、上記圧力調整弁
25およびFKセンサ5の他に、水計量器11内のロー
ドセル11aおよび注水制御弁18,19が信号授受可
能に接続されており、上記ロードセル11aの検出信号
が演算コントローラ30に入力されるとともに、一次お
よび二次の注水制御弁18,19には、演算コントロー
ラ30から制御信号が出力されるようになっている。
The operation controller 30 is mainly composed of, for example, a microcomputer, and in addition to the pressure adjusting valve 25 and the FK sensor 5, a load cell 11a in the water meter 11 and water injection control valves 18, 19 can send and receive signals. The detection signal of the load cell 11a is input to the arithmetic controller 30, and a control signal is output from the arithmetic controller 30 to the primary and secondary water injection control valves 18 and 19. There is.

【0036】また、演算コントローラ30には、圧力ス
イッチ24からの真空度検出信号が入力され、演算コン
トローラ30は、この真空度検出信号に基づいて圧力調
整弁25の開閉度を制御して、真空ミキサー1内の真空
度を調整するようになっている。すなわち、圧力調整弁
25を完全に閉じると、外気が遮断されて真空度が高ま
り(気圧は低下する)、圧力調整弁25を開いて行く
と、外気が導入されて真空度が低下して(気圧は高ま
る)行くようになっている。。
A vacuum degree detection signal from the pressure switch 24 is input to the arithmetic controller 30, and the arithmetic controller 30 controls the opening / closing degree of the pressure adjusting valve 25 based on the vacuum degree detection signal to generate a vacuum. The degree of vacuum in the mixer 1 is adjusted. That is, when the pressure adjusting valve 25 is completely closed, the outside air is shut off and the degree of vacuum increases (atmospheric pressure decreases), and when the pressure adjusting valve 25 is opened, outside air is introduced and the degree of vacuum decreases ( The atmospheric pressure rises). .

【0037】さらに、図示しないベントナイト供給装置
が備えているベントナイト計量器31から、計量ホッパ
ー2に供給される粘結剤としてのベントナイトの切出し
量を表す信号が演算コントローラ30に入力され、演算
コントローラ30からは、ベントナイト供給装置が備え
ているベントナイト切出し用のスクリューコンベアの駆
動モータ32に対する制御信号が出力されるようになっ
ている。
Further, from the bentonite meter 31 provided in the bentonite supply device (not shown), a signal indicating the cut-out amount of bentonite as the binder supplied to the weighing hopper 2 is input to the arithmetic controller 30, and the arithmetic controller 30. The control signal is output to the drive motor 32 of the screw conveyor for cutting out the bentonite provided in the bentonite supply device.

【0038】なお、具体的には図示しないが、演算コン
トローラ30には、上記以外にも、例えば、計量ホッパ
ー2のロードセルからの検出信号、水供給装置10の供
給ラインLsの水温の検出信号等、種々の信号が入力さ
れ、また、例えば、真空遮断弁22や大気解放弁26等
のバルブ類、あるいは供給ポンプ12や真空ポンプ23
等のポンプ類に対して、種々の制御信号がそれぞれ出力
されるようになっている。
Although not specifically shown, the arithmetic controller 30 may have, in addition to the above, a detection signal from the load cell of the weighing hopper 2, a detection signal of the water temperature of the supply line Ls of the water supply device 10, and the like. , Various signals are input, and, for example, valves such as the vacuum shutoff valve 22 and the atmosphere release valve 26, or the supply pump 12 and the vacuum pump 23.
Various control signals are respectively output to the pumps such as.

【0039】以上のような構成を備えた鋳物砂再生装置
の作動について、図3のタイムチャートを参照しながら
説明する。
The operation of the foundry sand recycling apparatus having the above-mentioned structure will be described with reference to the time chart of FIG.

【0040】先ず、演算コントローラ30からの制御信
号に基づいて、図示しない鋳物砂回収ステーション側か
ら所定量の高温の回収砂が計量ホッパー2に搬送・投入
される。また、必要に応じて、図示しない新砂が新砂供
給ステーションから搬送・投入される。そして、これら
が真空ミキサー1内で大気圧下で予備混練される。
First, on the basis of a control signal from the arithmetic controller 30, a predetermined amount of high temperature recovered sand is conveyed and introduced into the weighing hopper 2 from the casting sand recovery station side (not shown). In addition, new sand (not shown) is transported and loaded from the new sand supply station as needed. Then, these are pre-kneaded in the vacuum mixer 1 under atmospheric pressure.

【0041】この予備混合が終了すると、FKセンサ5
が真空ミキサー1内の砂(主として回収砂)の温度と含
水量を測定して、その検出信号を演算コントローラ30
に入力する。
When this premixing is completed, the FK sensor 5
Measures the temperature and water content of the sand (mainly recovered sand) in the vacuum mixer 1 and outputs the detection signal to the arithmetic controller 30.
To enter.

【0042】演算コントローラ30には、再生砂の砂強
度の目標値と、図4、図5および図6に示す特性マップ
が予め入力されている。
A target value of the sand strength of the reclaimed sand and the characteristic maps shown in FIGS. 4, 5 and 6 are input in advance to the arithmetic controller 30.

【0043】図4の特性マップにおける直線Aは、真空
混練中の水蒸気量に対する再生砂の強度の関係を表し、
再生砂の強度は、真空混練中の水蒸気量に比例して増大
する。直線Bは、再生砂の強度の目標値を表す。また、
直線Cは、真空混練中の水蒸気量に対し砂強度を目標値
に保つ場合のベントナイト添加量を表し、ベントナイト
添加量は真空混練中の水蒸気量に反比例して減量させて
よいことを示している。
The straight line A in the characteristic map of FIG. 4 represents the relationship between the strength of the reclaimed sand and the amount of water vapor during vacuum kneading.
The strength of reclaimed sand increases in proportion to the amount of water vapor during vacuum kneading. The straight line B represents the target value of the strength of the recycled sand. Also,
The straight line C represents the amount of bentonite added when the sand strength is kept at the target value with respect to the amount of water vapor during vacuum kneading, and the amount of bentonite added may be inversely proportional to the amount of water vapor during vacuum kneading. .

【0044】また、図5の特性マップは、回収砂の温度
に対する冷却水添加量の関係を表し、また、図6の特性
マップは、回収砂の温度に対する真空混練中の水蒸気量
を表している。図5および図6における直線Aは、混練
後の砂の温度を40℃に設定して、水の沸騰点が40℃
となる真空度(74HPa)の場合であり、直線Bは、
混練後の砂の温度を30℃に設定して、水の沸騰点が3
0℃となる真空度(34HPa)の場合である。図5お
よび図6の特性マップは、真空度を高めると、回収砂の
温度が同じでも冷却水添加量および水蒸気量が増大する
ことを示しており、混練後の砂の温度を例えば20℃に
設定した場合は、さらに冷却水添加量および水蒸気量が
増大することになる。
The characteristic map of FIG. 5 shows the relationship of the cooling water addition amount with respect to the temperature of the recovered sand, and the characteristic map of FIG. 6 shows the amount of water vapor during vacuum kneading with respect to the temperature of the recovered sand. . The straight line A in FIG. 5 and FIG. 6 indicates that the temperature of the sand after kneading is set to 40 ° C. and the boiling point of water is 40 ° C.
When the degree of vacuum is (74 HPa), the straight line B is
Set the sand temperature after kneading to 30 ° C and set the boiling point of water to 3
This is the case where the degree of vacuum is 0 ° C. (34 HPa). The characteristic maps of FIGS. 5 and 6 show that when the degree of vacuum is increased, the amount of cooling water added and the amount of water vapor increase even if the temperature of the recovered sand is the same, and the temperature of the sand after kneading is increased to 20 ° C., for example. If set, the amount of cooling water added and the amount of water vapor will further increase.

【0045】したがって、真空ミキサー1内の真空度を
上げる程、また、回収砂の温度が高い程、ベントナイト
の添加量を減量することができる。
Therefore, the higher the degree of vacuum in the vacuum mixer 1 and the higher the temperature of the recovered sand, the more the amount of bentonite added can be reduced.

【0046】演算コントローラ30では、予め設定され
た再生砂の砂強度の目標値およびFKセンサ5で検出さ
れた真空混練前の鋳物砂の温度に応じた上記図4〜図6
の特性値を用いて、真空ミキサー1内の真空度の設定お
よびベントナイトの添加量の設定が行なわれる。
4 to 6 in accordance with the preset target value of the sand strength of the reclaimed sand and the temperature of the foundry sand before vacuum kneading detected by the FK sensor 5 in the arithmetic controller 30.
Using the characteristic value of, the degree of vacuum in the vacuum mixer 1 and the amount of bentonite added are set.

【0047】また、演算コントローラ30では、予め設
定された再生砂の砂強度の目標値および再生砂の温度
(再生砂の温度が低い程、抜型抵抗が低下して、鋳型成
形時の不良が少なくなる)に対して、FKセンサ5で検
出された真空混練前の真空ミキサー1内の鋳物砂の温度
に基づいて再生砂の含水量を設定し、この設定された目
標含水量とFKセンサ5で検出された真空混練前の鋳物
砂の含水量とに基づいて、添加すべき水分量を演算し、
さらに、この水分量を混練用の一次水と冷却用の二次水
とに振り分ける演算が行なわれる。
Further, in the arithmetic controller 30, the preset target value of the sand strength of the reclaimed sand and the temperature of the reclaimed sand (the lower the temperature of the reclaimed sand, the lower the die-resisting resistance and the less the defects during molding). , The water content of the reclaimed sand is set based on the temperature of the foundry sand in the vacuum mixer 1 before vacuum kneading detected by the FK sensor 5, and the set target water content and the FK sensor 5 are set. Based on the detected water content of the casting sand before vacuum kneading, calculate the amount of water to be added,
Further, a calculation is performed to distribute the amount of water to the primary water for kneading and the secondary water for cooling.

【0048】そして、この演算値に基づいて一次水量が
定められ、一次注水制御弁18に制御信号が出力されて
弁18が開かれ、真空ミキサー1内に所定量の一次水が
投入されるとともに、演算コントローラ30からの信号
で、ベントナイト切出し用のスクリューコンベアの駆動
モータ32が駆動されて、ベントナイトがベントナイト
計量器31に送られ、ベントナイト切出し量が測定され
る。ベントナイト切出し量が前記設定値に達すると、演
算コントローラ30からの制御信号に基づいて、上記駆
動モータ32が停止されるとともに、ベントナイト計量
器31内のベントナイトが空気圧送により計量ホッパー
2を経て真空ミキサー1内に投入される。
Then, the amount of primary water is determined based on this calculated value, a control signal is output to the primary water injection control valve 18 to open the valve 18, and a predetermined amount of primary water is introduced into the vacuum mixer 1. A signal from the arithmetic controller 30 drives the screw conveyor drive motor 32 for cutting bentonite, sends bentonite to the bentonite meter 31, and measures the bentonite cutting amount. When the bentonite cut-out amount reaches the set value, the drive motor 32 is stopped based on the control signal from the arithmetic controller 30, and the bentonite in the bentonite meter 31 is pneumatically fed through the measuring hopper 2 to the vacuum mixer. It is thrown into 1.

【0049】真空ミキサー1内に対する砂、一次水およ
びベントナイトの投入が終了すると、真空ミキサー1内
に通じる各経路に設けられたゲートバルブ等が閉じられ
た上で、真空遮断弁22が開かれ、かつ圧力制御弁25
が閉じられるとともに真空ポンプ23が駆動され、これ
により、真空ミキサー1内が真空引きされる。圧力スイ
ッチ24からの真空ミキサー1内の真空度を表す信号は
演算コントローラ30に入力され、真空ミキサー1内の
真空度が前記決定値(74HPa以下)に達すると、演
算コントローラ30からの制御信号に基づいて、真空ポ
ンプ23を作動させた状態で圧力制御弁25の開度が調
整され、真空ミキサー1内の真空度が前記設定値に保た
れるともに、真空混練が開始される。なお、真空度74
HPaにおける水の沸騰点は40℃となり、34HPa
における水の沸騰点は30℃となる。
When the addition of sand, primary water and bentonite to the inside of the vacuum mixer 1 is completed, the gate valves and the like provided on each path leading to the inside of the vacuum mixer 1 are closed, and then the vacuum shutoff valve 22 is opened. And pressure control valve 25
Is closed and the vacuum pump 23 is driven, whereby the inside of the vacuum mixer 1 is evacuated. A signal indicating the degree of vacuum in the vacuum mixer 1 from the pressure switch 24 is input to the arithmetic controller 30, and when the degree of vacuum in the vacuum mixer 1 reaches the determined value (74 HPa or less), a control signal from the arithmetic controller 30 is output. Based on this, the opening degree of the pressure control valve 25 is adjusted while the vacuum pump 23 is operating, the degree of vacuum in the vacuum mixer 1 is maintained at the set value, and the vacuum kneading is started. The degree of vacuum is 74
The boiling point of water at HPa is 40 ° C. and is 34 HPa
The boiling point of water is 30 ° C.

【0050】そして、この真空混練中の途中(好ましく
は、真空混練工程の前半)に、冷却用の二次水の投入が
行なわれる。すなわち、演算コントローラ30からの制
御信号に基づいて、二次注水制御弁19が所定時間だけ
開かれ、真空ミキサー1内に所定量の二次水が投入され
る。前述したように、この二次水が蒸発することによ
り、真空ミキサー1内の砂が設定温度にまで急速に冷却
される。
Then, during the vacuum kneading (preferably in the first half of the vacuum kneading step), secondary water for cooling is added. That is, based on the control signal from the arithmetic controller 30, the secondary water injection control valve 19 is opened for a predetermined time, and a predetermined amount of secondary water is put into the vacuum mixer 1. As described above, by evaporating the secondary water, the sand in the vacuum mixer 1 is rapidly cooled to the set temperature.

【0051】上記真空混練工程が終了すると、真空遮断
弁22が閉じられるとともに大気解放弁26が開かれ
て、真空ミキサー1内が大気圧状態となる。そして、真
空遮断弁22が開かれる前に閉じられた各ゲートバルブ
が開かれ、大気圧下で所定時間だけ混練が行なわれる。
この大気圧混練が終了すると、真空ミキサー1の排出口
1aから、予め設定された量の水分を含む、したがっ
て、予め設定された砂強度を有する再生砂が排出され、
再び鋳型の造型に供される。
When the vacuum kneading step is completed, the vacuum shutoff valve 22 is closed and the atmosphere release valve 26 is opened to bring the inside of the vacuum mixer 1 to the atmospheric pressure state. Then, each gate valve that is closed before the vacuum shutoff valve 22 is opened is opened, and kneading is performed for a predetermined time under atmospheric pressure.
When this atmospheric pressure kneading is completed, regenerated sand containing a preset amount of water and therefore having a preset sand strength is discharged from the discharge port 1a of the vacuum mixer 1,
It is again used for molding.

【0052】このようにして、1サイクル(本実施の形
態では180秒)の再生処理が行なわれるようになって
いる。
In this way, one cycle (180 seconds in the present embodiment) of reproduction processing is performed.

【0053】以上説明したように、本実施の形態によれ
ば、再生砂の砂強度の目標値および図4〜図6の特性マ
ップを予め演算コントローラ30に入力しておき、演算
コントローラ30が、FKセンサ5で検出した真空混練
前の真空ミキサー1内の鋳物砂の温度に基づいて、再生
砂の砂強度が目標値となるように、水供給装置10によ
る真空ミキサー1内への二次水の供給量、真空ミキサー
1内の真空度およびベントナイトの切出し量を制御して
いるので、真空ミキサー1内の真空度を一定にした状態
で、再生砂の含水量と砂強度との関係に基づいて添加水
量を決定していた従来に比べて、真空混練槽内の真空度
をより高めて(気圧をより低くして)水の蒸発量を増大
させることができる。
As described above, according to the present embodiment, the target value of the sand strength of the reclaimed sand and the characteristic maps of FIGS. 4 to 6 are input to the arithmetic controller 30 in advance, and the arithmetic controller 30 Based on the temperature of the foundry sand in the vacuum mixer 1 before vacuum kneading detected by the FK sensor 5, the secondary water into the vacuum mixer 1 by the water supply device 10 is adjusted so that the sand strength of the reclaimed sand reaches a target value. The amount of water supplied, the degree of vacuum in the vacuum mixer 1, and the amount of bentonite cut out are controlled. Therefore, with the degree of vacuum in the vacuum mixer 1 kept constant, based on the relationship between the water content of the reclaimed sand and the sand strength. The amount of water evaporated can be increased by increasing the degree of vacuum in the vacuum kneading tank (lowering the atmospheric pressure) as compared with the conventional method in which the amount of added water is determined.

【0054】したがって、再生砂の強度が増大する分、
粘結剤の必要添加量を減量してもよいことになるから、
再生砂の強度を所定以上の値に維持しつつ粘結剤の使用
量を抑制して、生型造型コストの低減を図ることができ
る。また、再生砂の品質をより安定したものとすること
ができるため、生型の抗圧力をより均一に維持すること
ができ、鋳造時の欠陥の減少および鋳造品の寸法精度の
向上に寄与することができる。
Therefore, as the strength of the reclaimed sand increases,
Since it is possible to reduce the necessary addition amount of the binder,
It is possible to suppress the amount of the binder used while maintaining the strength of the reclaimed sand at a value equal to or higher than a predetermined value, and to reduce the green molding cost. Further, since the quality of the reclaimed sand can be made more stable, the coercive pressure of the green mold can be maintained more uniformly, which contributes to reduction of defects during casting and improvement of dimensional accuracy of cast products. be able to.

【0055】なお、上述した本実施の形態においては、
演算コントローラ30が圧力制御弁25の開度を制御す
ることによって、真空ミキサー1内の真空度を調整して
いるが、圧力制御弁25に代えて、真空ポンプ23にイ
ンバータを取り付け、このインバータの周波数を演算コ
ントローラ30が制御することによって、真空ポンプ2
3自体の出力を制御し、これにより真空ミキサー1内の
真空度を調整するようにしてもよい。
In the above-described embodiment,
The arithmetic controller 30 adjusts the degree of vacuum in the vacuum mixer 1 by controlling the opening degree of the pressure control valve 25. Instead of the pressure control valve 25, an inverter is attached to the vacuum pump 23, and By controlling the frequency by the arithmetic controller 30, the vacuum pump 2
The degree of vacuum in the vacuum mixer 1 may be adjusted by controlling the output of 3 itself.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係わる鋳物砂再生装置の
全体構成を概略的に示す説明図
FIG. 1 is an explanatory view schematically showing the overall configuration of a foundry sand reclamation apparatus according to an embodiment of the present invention.

【図2】図1の鋳物砂再生装置における水および粘結剤
の供給制御系ならびに真空ミキサー内の真空度の制御系
とを示す説明図
2 is an explanatory diagram showing a water and binder supply control system and a vacuum degree control system in a vacuum mixer in the foundry sand reclamation apparatus of FIG. 1. FIG.

【図3】図1の鋳物砂再生装置の動作の説明に供するタ
イムチャート
FIG. 3 is a time chart used to explain the operation of the foundry sand reclamation apparatus of FIG.

【図4】真空混練中の水蒸気量に対する再生砂の強度お
よびベントナイト添加量の関係を表す特性マップ
FIG. 4 is a characteristic map showing the relationship between the strength of reclaimed sand and the amount of bentonite added to the amount of water vapor during vacuum kneading.

【図5】真空ミキサー内の真空度をパラメータとする回
収砂の温度と冷却水添加量との関係を表す特性マップ
FIG. 5 is a characteristic map showing the relationship between the temperature of the recovered sand and the amount of cooling water added with the degree of vacuum in the vacuum mixer as a parameter.

【図6】真空ミキサー内の真空度をパラメータとする回
収砂の温度に対する真空混練中の水蒸気量を表す特性マ
ップ
FIG. 6 is a characteristic map showing the amount of water vapor during vacuum kneading with respect to the temperature of the recovered sand with the degree of vacuum in the vacuum mixer as a parameter.

【図7】再生砂の含水量と生型の抗圧力との関係を表す
グラフ
FIG. 7 is a graph showing the relationship between the water content of recycled sand and the coercive pressure of green mold.

【符号の説明】[Explanation of symbols]

1 真空ミキサー 5 FKセンサ 10 水供給装置 18 一次注水制御弁 19 二次注水制御弁 23 真空ポンプ 24 圧力スイッチ 25 圧力制御弁 30 演算コントローラ 31 ベントナイト計量器 1 Vacuum Mixer 5 FK Sensor 10 Water Supply Device 18 Primary Water Injection Control Valve 19 Secondary Water Injection Control Valve 23 Vacuum Pump 24 Pressure Switch 25 Pressure Control Valve 30 Arithmetic Controller 31 Bentonite Scale

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空混練槽内に回収砂を投入し、水およ
び粘結剤を添加して混練することにより上記回収砂を再
生する鋳物砂の再生方法において、 再生砂の砂強度の目標値を予め設定し、該目標値に対
し、少なくとも真空混練前の槽内の鋳物砂の温度に基づ
いて、槽内の真空度を調整することを特徴とする鋳物砂
の再生方法。
1. A method for reclaiming foundry sand by throwing recovered sand into a vacuum kneading tank and kneading by adding water and a binder, wherein a target value of sand strength of reclaimed sand is provided. Is set in advance, and the degree of vacuum in the tank is adjusted based on at least the temperature of the molding sand in the tank before vacuum kneading with respect to the target value.
【請求項2】 少なくとも真空混練前の槽内の鋳物砂の
温度に基づいて、水の添加量を調整することを特徴とす
る請求項1記載の鋳物砂の再生方法。
2. The method for reclaiming foundry sand according to claim 1, wherein the amount of water added is adjusted based on at least the temperature of the foundry sand in the tank before vacuum kneading.
【請求項3】 少なくとも真空混練前の槽内の鋳物砂の
温度に基づいて、粘結剤の添加量を調整することを特徴
とする請求項1または2記載の鋳物砂の再生方法。
3. The method for reclaiming foundry sand according to claim 1, wherein the amount of the binder added is adjusted based on at least the temperature of the foundry sand in the tank before vacuum kneading.
【請求項4】 上記粘結剤の添加量は、上記槽内の真空
度が高い程、減量されることを特徴とする請求項3記載
の鋳物砂の再生方法。
4. The method for reclaiming foundry sand according to claim 3, wherein the amount of the binder added is reduced as the degree of vacuum in the tank increases.
【請求項5】 真空混練槽と、該真空混練槽に対し、回
収砂、水および粘結剤をそれぞれ供給する各供給手段
と、真空混練前の槽内の鋳物砂の温度を検出する温度検
出手段とを備えるとともに、真空混練中の水蒸気発生量
と再生砂の強度との関係データ、槽内の真空度をパラメ
ータとする回収砂の温度と冷却水添加量との関係データ
および槽内の真空度をパラメータとする回収砂の温度と
真空混練中の水蒸気発生量との関係データに基づいて、
槽内の真空度を制御する制御手段とを備えてなることを
特徴とする鋳物砂の再生装置。
5. A vacuum kneading tank, supply means for respectively supplying recovered sand, water and a binder to the vacuum kneading tank, and temperature detection for detecting the temperature of foundry sand in the tank before vacuum kneading. And the relationship between the amount of steam generated during vacuum kneading and the strength of reclaimed sand, the relationship between the temperature of the recovered sand and the amount of cooling water added as a parameter, and the vacuum in the tank. Based on the relational data between the temperature of the recovered sand and the amount of water vapor generated during vacuum kneading, the degree of which is a parameter,
A reclaiming device for foundry sand, comprising a control means for controlling the degree of vacuum in the tank.
【請求項6】 上記制御手段は、槽内の真空度をパラメ
ータとする回収砂の温度と冷却水添加量との関係データ
に基づいて、冷却水添加量を制御することを特徴とする
請求項5記載の鋳物砂の再生装置。
6. The control means controls the added amount of cooling water based on the relational data between the temperature of the recovered sand and the added amount of cooling water with the degree of vacuum in the tank as a parameter. 5. The molding sand recycling apparatus of item 5.
【請求項7】 上記制御手段は、再生砂の砂強度の目標
値に対する真空混練中の水蒸気発生量と粘結剤の添加量
との関係データに基づいて、上記粘結剤の添加量を制御
することを特徴とする請求項5または6記載の鋳物砂の
再生装置。
7. The control means controls the addition amount of the binder based on the relational data between the amount of steam generated during vacuum kneading and the addition amount of the binder with respect to the target value of the sand strength of the reclaimed sand. 7. The apparatus for reclaiming foundry sand according to claim 5 or 6, wherein
JP23514795A 1995-09-13 1995-09-13 Casting sand recycling method and apparatus Expired - Fee Related JP3705627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23514795A JP3705627B2 (en) 1995-09-13 1995-09-13 Casting sand recycling method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23514795A JP3705627B2 (en) 1995-09-13 1995-09-13 Casting sand recycling method and apparatus

Publications (2)

Publication Number Publication Date
JPH0976044A true JPH0976044A (en) 1997-03-25
JP3705627B2 JP3705627B2 (en) 2005-10-12

Family

ID=16981756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23514795A Expired - Fee Related JP3705627B2 (en) 1995-09-13 1995-09-13 Casting sand recycling method and apparatus

Country Status (1)

Country Link
JP (1) JP3705627B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509219A (en) * 1999-09-23 2003-03-11 マシネンファブリク グスタフ アイリッヒ Pretreatment method of casting sand for casting and apparatus therefor
JP2003535700A (en) * 2000-06-23 2003-12-02 マシネンファブリク グスタフ アイリッヒ Method and apparatus for compounding sand foundry
CN103949580A (en) * 2014-04-29 2014-07-30 常州市通力机电设备制造有限公司 Multi-rotor frequency-changing sand mixer and sand mixing method
WO2018230886A1 (en) * 2017-06-13 2018-12-20 한국생산기술연구원 Closed-loop sand reclamation-type system for producing castings, casting production monitoring system, and washing apparatus provided therein
KR20180135538A (en) * 2017-06-13 2018-12-21 한국생산기술연구원 Closed-loop sand reclaim type casting manufacturing system
KR20180135537A (en) * 2017-06-13 2018-12-21 한국생산기술연구원 Casting ware production monitoring system and closed-loop sand reclaim type cast manufacturing method using of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509219A (en) * 1999-09-23 2003-03-11 マシネンファブリク グスタフ アイリッヒ Pretreatment method of casting sand for casting and apparatus therefor
JP4948729B2 (en) * 1999-09-23 2012-06-06 マシネンファブリク グスタフ アイリッヒ Pretreatment method for casting sand for casting and apparatus therefor
JP2003535700A (en) * 2000-06-23 2003-12-02 マシネンファブリク グスタフ アイリッヒ Method and apparatus for compounding sand foundry
CN103949580A (en) * 2014-04-29 2014-07-30 常州市通力机电设备制造有限公司 Multi-rotor frequency-changing sand mixer and sand mixing method
CN103949580B (en) * 2014-04-29 2016-04-13 常州市通力机电设备制造有限公司 Many rotor-side variable frequencies puddle mixer and mulling method
WO2018230886A1 (en) * 2017-06-13 2018-12-20 한국생산기술연구원 Closed-loop sand reclamation-type system for producing castings, casting production monitoring system, and washing apparatus provided therein
KR20180135538A (en) * 2017-06-13 2018-12-21 한국생산기술연구원 Closed-loop sand reclaim type casting manufacturing system
KR20180135537A (en) * 2017-06-13 2018-12-21 한국생산기술연구원 Casting ware production monitoring system and closed-loop sand reclaim type cast manufacturing method using of the same
CN110740825A (en) * 2017-06-13 2020-01-31 韩国生产技术研究院 Closed-cycle sand reclamation casting manufacturing system, casting manufacturing monitoring system and washing device equipped with same
CN110740825B (en) * 2017-06-13 2021-08-31 韩国生产技术研究院 Closed-cycle sand reclamation casting manufacturing system, casting manufacturing monitoring system and washing device equipped with same

Also Published As

Publication number Publication date
JP3705627B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
EP0017368B2 (en) Method and apparatus for cryogenic grinding
JPH10249482A (en) Method for regenerating molding sand
US20180133719A1 (en) Molding sand reclamation method and reclamation equipment
JPH0976044A (en) Method for reclamation of molding sand and its device
KR100362782B1 (en) Recycling method and apparatus for casting sand
EP0140856B1 (en) Cryogen shot blast deflashing system
US20150027872A1 (en) Modified coal production equipment
US10675634B2 (en) Systems, methods, and apparatuses for manufacturing micronized powder
JPS62213802A (en) Method and apparatus for vacuum evaporation treatment of mixture
JP2982629B2 (en) Method and apparatus for adjusting kneading of foundry sand
US20030037899A1 (en) Collected sand processing method
JP4353596B2 (en) Casting sand kneading adjustment method
JP3752269B2 (en) Casting sand recycling method and apparatus
US2607199A (en) Method of cooling and conveying material
JP3003326U (en) Automatic filling device for granular dry ice
US4252001A (en) Method and apparatus for cooling foundry sand
JP2933775B2 (en) Coal dust humidification equipment during preheating drying
US4611469A (en) Method and apparatus for cooling foundry sand
EP3513887A1 (en) Recovered-sand cooling system and recovered-sand cooling method
US4348867A (en) Method for treating moist pulverulent material
US6926063B1 (en) Method for conditioning foundry moulding sand and a device therefor
JP6879063B2 (en) Recovery sand cooling system and recovery sand cooling method
JPH11146724A (en) Humidity conditioning control unit for farm product storehouse
WO1990003875A1 (en) Cold concrete production apparatus
JPH06278867A (en) Method of discharging and conveying required amount of powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees