JPH0975313A - Manipulating device for biological signal measurement and brain magnetic field measuring instrument - Google Patents

Manipulating device for biological signal measurement and brain magnetic field measuring instrument

Info

Publication number
JPH0975313A
JPH0975313A JP7231633A JP23163395A JPH0975313A JP H0975313 A JPH0975313 A JP H0975313A JP 7231633 A JP7231633 A JP 7231633A JP 23163395 A JP23163395 A JP 23163395A JP H0975313 A JPH0975313 A JP H0975313A
Authority
JP
Japan
Prior art keywords
light
magnetic field
operating
optical fiber
biological signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7231633A
Other languages
Japanese (ja)
Inventor
Satoshi Fujita
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP7231633A priority Critical patent/JPH0975313A/en
Publication of JPH0975313A publication Critical patent/JPH0975313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide motion related biological information with a satisfactory S/N by providing a manipulating means composed of materials not to electromagnetically exert an adverse influence upon a biological signal inside a magnetism shield chamber and connecting optical fibers to a light emitting element and a light receiving element outside the magnetism shield chamber. SOLUTION: At a magnetism shield chamber 3 covered with plates 2 composed of magnetism shield materials, a manipulating member 7 at the top end part of a manipulating means 5 is moved upward and displaced with the tip of a forefinger 8 of the hand of an examinee as a human body to measure brain magnetic fields so that a light passage 11 can be opened for introducing light from one-side terminal parts 9a and 9b of a pair of optical fibers 9 and 10. Then, light from a light emitting element 12 provided at another-side terminal part 9b of optical fiber 9 is guided from the one-side terminal part 9a of optical fiber 9 through the light passage 11 to the one-side terminal part 10a of the other optical fiber 10. At another-side terminal part 10b of optical fiber 10, it is detected by a light receiving element 13 that the light passage 11 is not shielded. In this case, the other-side terminal parts 9b and 10b of optical fibers 9 and 10 are arranged outside rather than the plates 2 of magnetism shield chamber 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体信号、たとえ
ば人間の脳から発生される脳磁界を測定するためなどに
用いられ、被検体の運動に関連する磁界、すなわち運動
関連脳磁界MRF(Movement Relate Field)を測定する
ためなどに有利に実施することができる生体信号測定用
操作装置に関し、さらにそれを用いる脳磁界測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for measuring a biological signal, for example, a brain magnetic field generated from a human brain, and is related to a motion of a subject, that is, a motion-related brain magnetic field MRF (Movement). The present invention relates to an operating device for measuring a biological signal, which can be advantageously carried out for measuring a Relate Field, and to a brain magnetic field measuring device using the operating device.

【0002】[0002]

【従来の技術】従来から、脳の運動関連電位を測定する
には、脳波計の出力を、被検体が指を動かすときにおけ
る筋電図をトリガパルスとして、取り出す。筋電図を得
るには、筋の収縮に伴う活動電位を測定するために、収
縮する筋の筋腹直上の表皮上に一対の電極をおいて、随
意運動を行ったときの筋電図を記録し、その電極から得
られる信号を増幅、整流して用い、さらにその整流後の
筋電図の信号が、予め定めるしきい値を越えたときに、
トリガとして用いるための前記パルスを発生させ、この
トリガパルスから得られたときにおける脳波計で得られ
る運動関連電位の測定を行う。
2. Description of the Related Art Conventionally, in order to measure a movement-related potential of the brain, the output of an electroencephalograph is taken out by using an electromyogram when a subject moves a finger as a trigger pulse. In order to obtain an electromyogram, a pair of electrodes are placed on the epidermis just above the muscle abdomen of the contracting muscle in order to measure the action potential associated with the contraction of the muscle, and the electromyogram when voluntary movement is performed. After recording, the signal obtained from the electrode is amplified and used after rectification, and when the electromyogram signal after the rectification exceeds a predetermined threshold value,
The pulse for use as a trigger is generated, and the movement-related potential obtained by the electroencephalograph when the pulse is obtained is measured.

【0003】[0003]

【発明が解決しようとする課題】この先行技術では、筋
電図を得るために用いる電極に流れる電流によって、磁
界が生じ、その磁界が、脳波計の出力にノイズとして混
入する。運動関連脳磁界の中でも、特に運動の前に生じ
る運動準備脳磁界は、非常に低い周波数成分を有してい
るので、前述のノイズの混入によって、SN比が大きく
低下する。
In this prior art, a magnetic field is generated by the current flowing through the electrodes used for obtaining the electromyogram, and the magnetic field is mixed into the output of the electroencephalograph as noise. Among the exercise-related cerebral magnetic fields, the exercise preparation cerebral magnetic field, which particularly occurs before exercise, has a very low frequency component, so that the SN ratio is greatly reduced by the mixing of the noise.

【0004】またこの先行技術では、随意運動の際の筋
放電の波形が毎回異なるので、その運動とトリガパルス
との時間的関係が一定せず、したがって複数回にわたる
脳波計から得られる脳波の加算平均を正確に求めること
が不可能である。
Further, in this prior art, since the waveform of the muscle discharge during voluntary movement is different every time, the temporal relation between the movement and the trigger pulse is not constant, and therefore the electroencephalograms obtained from the electroencephalographs for multiple times are added. It is impossible to find the average accurately.

【0005】さらにこの先行技術では、指を、たとえば
5mm以上大きく動かして初めて、検出可能な筋電図の
信号が得られ、その動かす指、たとえば人差し指の筋電
図は、人差し指を動かさなくても、親指を動かしたとき
に発生し、したがってこのことからも正確なトリガパル
スを得ることが困難である。
Further, in this prior art, a detectable electromyographic signal is obtained only when the finger is moved by a large amount, for example, by 5 mm or more, and the electromyogram of the finger to be moved, for example, the index finger, can be obtained without moving the index finger. This occurs when the thumb is moved, and this also makes it difficult to obtain an accurate trigger pulse.

【0006】本発明の目的は、運動関連生体信号を、た
とえば運動関連脳磁界などを良好なSN比で、しかも運
動と生体信号との時間関係を正確に関連づけて得ること
ができるようにした生体信号測定用操作装置およびそれ
を用いる脳磁界測定装置を提供することである。
It is an object of the present invention to obtain a motion-related biological signal, for example, a motion-related brain magnetic field, with a good SN ratio, and more precisely, a time relationship between the motion and the biological signal. An object of the present invention is to provide a signal measuring operating device and a brain magnetic field measuring device using the same.

【0007】[0007]

【課題を解決するための手段】本発明は、(a)生体信
号を測定するための生体信号測定装置の近傍に設けら
れ、測定すべき生体信号に電磁気的に悪影響を及ぼさな
い材料から成る操作手段であって、光通路を形成する操
作手段本体と、光を遮蔽する材料から成り、前記本体と
相対的に変位し、光通路に離脱可能に侵入して光通路を
遮断する操作部材とを有する操作手段と、(b)光通路
の操作部材に関して両側に各一端部が配置され、各他端
部が生体磁気計測装置から離れて設けられる一対の光フ
ァイバと、(c)一方の光ファイバの前記他端部に光を
導く発光素子と、(d)他方の光ファイバの前記他端部
からの光を受光する受光素子とを含むことを特徴とする
生体信号測定用操作装置である。本発明に従えば、光通
路を形成する操作手段本体と、その光通路を遮断するこ
とができる操作部材とは、測定すべき生体信号に電磁気
的に悪影響を及ぼさない材料、たとえばABS樹脂など
の合成樹脂またはセラミックなどの材料から成り、この
操作手段は、たとえば電界が遮蔽されていてもよい磁気
遮蔽室内などに設けられ、一方の光ファイバの他端部に
は発光素子からの光が導かれ、その一方の光ファイバの
一端部からの光は、操作部材によって遮断され、または
遮断されることなく、他方の光ファイバの一端部に導か
れ、この他方の光ファイバの前記一端部に導かれた光
は、他端部から受光素子に導かれる。発光素子と受光素
子とは、磁気遮蔽室の外方に設けられる。したがって磁
気遮蔽室内で、人間などの被検体の生体信号に電磁気的
なノイズが混入することが防がれ、その生体信号のSN
比を良好にすることができる。また本発明に従えば、操
作部材は被検体によって操作され、光経路を遮断し、ま
たは光通路に光を導くように操作部材を操作する変位量
は、極くわずかでよく、たとえば単一本の光ファイバの
コアの径であればよいので、この変位量はわずかでよ
く、生体信号の測定に悪影響が及ぶことはない。またこ
の操作部材の操作によれば、操作部材を操作する運動と
それによって得られる受光素子の電気信号出力との時間
関係が正確に一致することになる。
The present invention comprises: (a) an operation made of a material which is provided in the vicinity of a biological signal measuring device for measuring a biological signal and which does not electromagnetically adversely affect the biological signal to be measured. And an operating member main body that forms an optical path, and an operating member that is made of a material that blocks light and that is relatively displaced with respect to the main body and removably enters the optical path to block the optical path. (B) a pair of optical fibers, one end of each of which is arranged on both sides of the operation member of the optical path, and the other end of which is provided separately from the biomagnetism measuring device; (D) An operating device for measuring a biological signal, comprising: a light emitting element that guides light to the other end; and (d) a light receiving element that receives light from the other end of the other optical fiber. According to the present invention, the operating means main body forming the optical path and the operating member capable of blocking the optical path are made of a material that does not electromagnetically adversely affect the biological signal to be measured, such as ABS resin. The operating means is made of a material such as synthetic resin or ceramic, and is provided, for example, in a magnetically shielded room where the electric field may be shielded, and the light from the light emitting element is guided to the other end of one optical fiber. The light from one end of the one optical fiber is guided to the one end of the other optical fiber by being blocked or not blocked by the operating member, and is guided to the one end of the other optical fiber. The emitted light is guided to the light receiving element from the other end. The light emitting element and the light receiving element are provided outside the magnetically shielded room. Therefore, in the magnetically shielded room, it is possible to prevent electromagnetic noise from being mixed in with the biological signal of the subject such as a human being, and the biological signal SN
The ratio can be improved. According to the invention, the operation member is operated by the subject, and the displacement amount for operating the operation member so as to interrupt the light path or guide the light to the light path may be extremely small, for example, a single Since the diameter of the core of the optical fiber may be any, this displacement amount may be small and does not adversely affect the measurement of the biological signal. Further, by operating the operating member, the time relationship between the motion for operating the operating member and the electric signal output of the light receiving element obtained by the motion is accurately matched.

【0008】また本発明は、操作手段本体は、指の先端
部付近を操作部材の上部に乗せた状態で、手で緩やかに
覆うことができる幅を有し、かつ少なくとも手首付近が
乗載される長さを有する大略的に細長い形状に形成され
ることを特徴とする。本発明に従えば、操作部材は人間
の人指し指の先端部付近で操作されるものであって、こ
の操作時の状態で、操作手段本体は手で緩やかに覆うこ
とができる幅を有し、しかも、その手首付近が操作手段
本体上に乗載される長さを有し、大略的に細長い形状に
形成されており、これによって操作者は、操作部材を円
滑に操作することができる。
Further, according to the present invention, the operation means main body has a width that can be gently covered by hand with the vicinity of the tip of the finger placed on the upper part of the operation member, and at least the vicinity of the wrist is placed. It is characterized in that it is formed in a substantially elongated shape having a certain length. According to the present invention, the operation member is operated near the tip of the human index finger, and in this operation state, the operation means main body has a width that can be gently covered with the hand, and The vicinity of the wrist has a length to be mounted on the operation means main body, and is formed in a substantially elongated shape, whereby the operator can smoothly operate the operation member.

【0009】また本発明は、操作手段本体は、外形が大
略的に直方体状であり、長手方向先端部に収納凹所が形
成される支持体と、収納凹所に収納され、操作部材が上
下に変位自在に挿入され、一対の光ファイバの前記一端
部が支持体の長手方向に沿って固定され、前記各一端部
は、操作部材の両側で対向している保持部材とを有する
ことを特徴とする。本発明に従えば、操作手段本体の支
持体の収納凹所に保持器部材が収納され、この保持器部
材に、一対の光ファイバの前記各一端部が支持体の長手
方向に沿って固定されるので、一対の光ファイバを案内
して設置することが容易であり、生体信号の測定作業の
邪魔になることはない。
Further, according to the present invention, the operating means main body has a substantially rectangular parallelepiped outer shape, and has a support body having a storage recess formed at the distal end in the longitudinal direction, and the operation member is housed in the storage recess and the operating member is moved up and down. Is movably inserted into the optical fiber, the one ends of the pair of optical fibers are fixed along the longitudinal direction of the support, and each of the one ends has a holding member facing each other on both sides of the operating member. And According to the invention, the retainer member is accommodated in the accommodation recess of the support body of the operation means main body, and the one end portions of the pair of optical fibers are fixed to the retainer member along the longitudinal direction of the support body. Since it is easy to guide and install a pair of optical fibers, it does not interfere with the work of measuring a biomedical signal.

【0010】また本発明は、(a)磁気遮蔽室と、 (b)磁気遮蔽室内に設けられる脳磁界測定アセンブリ
であって、(b1)少なくとも頭蓋を覆う極低温容器
と、(b2)この低温容器内に設けられる複数の超伝導
量子干渉磁束計であって、頭蓋の外方に分布して配置さ
れ、かつ脳からの微弱な磁界を検出する脳磁界検出コイ
ルをそれぞれ有する超伝導量子干渉磁束計とを備える脳
磁界測定アセンブリと、 (c)遮蔽室内に設けられ、脳磁界の検出に電磁気的に
悪影響を及ぼさない材料から成る操作手段であって、
(c1)光経路を形成する操作手段本体と、(c2)光
を遮蔽する材料から成り、前記本体と相対的に変位し、
光通路に離脱可能に侵入して光通路を遮断する操作部材
とを有する操作手段と、 (d)光通路の操作部材に関して両側に各一端部が配置
され、各他端部が磁気遮蔽室の外に延びて設けられる一
対の光ファイバと、 (e)一方の光ファイバの前記他端部に光を導く発光素
子と、 (f)他方の光ファイバの前記他端部からの光を受光す
る受光素子と、 (g)前記磁束計の出力をストアするメモリと、 (h)受光素子の出力に応答して、光が受光または遮断
された時点の前後における前記磁束計の出力をメモリに
ストアさせる制御手段とを含むことを特徴とする脳磁界
測定装置である。また本発明は、メモリにストアされた
各磁束計毎の時間経過に伴う複数回の各出力を、加算平
均する手段をさらに含むことを特徴とする。本発明に従
えば、人間の脳の微弱な脳磁界が脳磁界測定アセンブリ
によって測定され、こうして得られた超伝導量子干渉磁
束計の出力がメモリにストアされ、操作部材によって操
作された時点における各回毎の出力をメモリにストア
し、さらにその加算平均を行うことによって、各磁束計
毎の正確な脳磁界波形を得ることができる。
The present invention also provides (a) a magnetically shielded room, (b) a brain magnetic field measurement assembly provided in the magnetically shielded room, wherein (b1) a cryogenic container covering at least the skull, and (b2) the low temperature container. A plurality of superconducting quantum interference magnetometers provided in a container, each superconducting quantum interference magnetic flux being distributed outside the skull and having a brain magnetic field detection coil for detecting a weak magnetic field from the brain. A brain magnetic field measurement assembly including a meter, and (c) an operating means which is provided in the shielded room and is made of a material that does not electromagnetically affect the detection of the brain magnetic field,
(C1) made of an operation means main body forming an optical path, and (c2) made of a material for shielding light, and relatively displaced with respect to the main body,
An operating means having an operating member that releasably enters the optical path and blocks the optical path, and (d) one end portion is arranged on both sides of the operating member of the optical path and the other end portion of the magnetic shield chamber is provided. A pair of optical fibers extending outwardly; (e) a light emitting element for guiding light to the other end of one optical fiber; (f) receiving light from the other end of the other optical fiber A light-receiving element, (g) a memory for storing the output of the magnetometer, and (h) a memory for storing the output of the magnetometer before and after light is received or blocked in response to the output of the light-receiving element. And a control means for controlling the magnetic field. Further, the present invention is characterized by further including means for averaging the outputs of a plurality of times stored in the memory for each magnetic flux meter over time. According to the present invention, the weak brain magnetic field of the human brain is measured by the brain magnetic field measurement assembly, the output of the superconducting quantum interference magnetometer thus obtained is stored in the memory, and each time when it is operated by the operating member. Accurate brain magnetic field waveforms for each magnetometer can be obtained by storing the output for each of them in a memory and further performing the averaging thereof.

【0011】[0011]

【発明の実施の形態】図1は、本発明の実施の一形態の
脳磁界測定用操作装置1の使用状態を示す斜視図であ
る。磁気遮蔽材料から成る板2によって覆われた磁気遮
蔽室3内において、脳磁界が測定されるべき人体である
被検体の手4によって操作手段5の先端部6に設けてあ
る操作部材7を人指し指8の先端部で上昇変位すること
によって、一対の光ファイバ9,10の一端部9a,9
bからの光を導く光通路11を開く。これによって一方
の光ファイバ9の他端部9bに設けられた発光ダイオー
ドなどの発光素子12からの光が、その光ファイバ9の
前記一端部9aから光通路11を経て、他方の光ファイ
バ10の前記一端部10aに導かれる。光ファイバ10
の他端部10bでは、ホトトランジスタなどのような受
光素子13によって受光され、こうして光通路11が遮
断されなくなったことが検出される。磁気遮蔽室3は、
板2によって囲まれており、この板2の強磁性材料は、
たとえばパーマロイであり、さらに接地された導電性板
によって磁気遮蔽室3が囲まれて電界遮蔽室を同様に形
成している。
1 is a perspective view showing a usage state of an operating apparatus 1 for measuring brain magnetic field according to an embodiment of the present invention. In the magnetically shielded room 3 covered by the plate 2 made of magnetically shielded material, the operating member 7 provided at the tip 6 of the operating means 5 is pointed by the hand 4 of the subject, which is the human body whose brain magnetic field is to be measured. By moving upward at the tip of the optical fiber 8, the end portions 9a, 9 of the pair of optical fibers 9, 10 are
The light path 11 for guiding the light from b is opened. As a result, light from a light emitting element 12 such as a light emitting diode provided on the other end 9b of one optical fiber 9 passes through the optical path 11 from the one end 9a of the optical fiber 9 and then the other optical fiber 10 of the other optical fiber 10. It is guided to the one end 10a. Optical fiber 10
At the other end 10b of the light receiving element 13, light is received by a light receiving element 13 such as a phototransistor, and it is detected that the optical path 11 is no longer blocked. The magnetically shielded room 3
It is surrounded by a plate 2, the ferromagnetic material of which is
For example, permalloy is used, and the magnetically shielded chamber 3 is surrounded by a conductive plate that is grounded to form an electric field shielded chamber in the same manner.

【0012】光ファイバ9,10の他端部9b,10b
は、磁気遮蔽室3の板2よりも外方に配置される。した
がって測定されるべき脳磁界に、発光素子12および受
光素子13による電磁気的なノイズの混入が防がれ、検
出される脳磁界のSN比が向上される。
The other ends 9b, 10b of the optical fibers 9, 10
Are arranged outside the plate 2 of the magnetically shielded chamber 3. Therefore, the electromagnetic noise due to the light emitting element 12 and the light receiving element 13 is prevented from being mixed into the brain magnetic field to be measured, and the SN ratio of the detected brain magnetic field is improved.

【0013】図2は装置1が備えられた脳磁界測定装置
14の側方から見た全体の構成を簡略化して示す断面図
であり、図3はその脳磁界測定装置14の使用状態を示
す斜視図である。頭部17の脳磁界は、ベッド16に着
座した状態で、磁界測定アセンブリ18によって検出さ
れる。被検体は参照符15で示されている。
FIG. 2 is a sectional view showing a simplified overall configuration of the brain magnetic field measuring apparatus 14 provided with the apparatus 1 as viewed from the side, and FIG. 3 shows a state of use of the brain magnetic field measuring apparatus 14. It is a perspective view. The brain magnetic field of the head 17 is detected by the magnetic field measuring assembly 18 while seated on the bed 16. The subject is designated by the reference numeral 15.

【0014】被検体15の頭部17の脳磁界を検出する
ための脳磁界測定アセンブリ18は、一対のアーム19
の遊端部に、水平な軸線まわりに角変位して揺動可能に
取付けられている。そのアーム19の基端部は、建屋内
の磁気遮蔽室3の板2である側壁20に、水平軸線まわ
りに揺動可能に設けられる。アーム19を保持するため
に一対の支柱21が磁気遮蔽室3の天井板に固定され、
門形ガントリを構成する。
The brain magnetic field measurement assembly 18 for detecting the brain magnetic field of the head 17 of the subject 15 comprises a pair of arms 19
Is attached to the free end of the so as to be swingable by being angularly displaced about a horizontal axis. The base end of the arm 19 is provided on the side wall 20 which is the plate 2 of the magnetically shielded room 3 in the building so as to be swingable around the horizontal axis. A pair of columns 21 is fixed to the ceiling plate of the magnetically shielded room 3 to hold the arm 19,
Configure a portal gantry.

【0015】ベッド16は、背もたれ部22と着座部2
3とを含み、手摺24上には操作手段1が置かれて、手
4によって操作される。
The bed 16 includes a backrest 22 and a seat 2
The operation means 1 is placed on the handrail 24 and is operated by the hand 4.

【0016】図4は操作手段5の平面図であり、図5は
その側面図である。操作手段5は、操作手段本体25
と、操作部材26とを有する。操作手段本体25は、基
本的には支持体27と光ファイバ9,10を保持する保
持部材28とを有する。支持体27は、基体29と、そ
の上部に固定される蓋体30とを有する。支持体27
は、その外形が大略的に直方体状であり、図4および図
5の左右方向である長手方向の先端部(図4および図5
の左方の端部)には、収納凹所31が形成される。
FIG. 4 is a plan view of the operating means 5, and FIG. 5 is a side view thereof. The operating means 5 is an operating means body 25.
And an operation member 26. The operation means main body 25 basically has a support 27 and a holding member 28 for holding the optical fibers 9 and 10. The support body 27 includes a base body 29 and a lid body 30 fixed to the upper portion thereof. Support 27
Has a substantially rectangular parallelepiped outer shape, and has a tip portion in the longitudinal direction which is the left-right direction in FIGS. 4 and 5 (see FIGS. 4 and 5).
A storage recess 31 is formed at the left end of the storage recess 31.

【0017】操作手段本体25は、人差し指8の先端部
付近を操作部材26の上部に乗せた状態で、手4で緩や
かに覆うことができる幅W1を有し、かつ少なくとも手
根骨のある手首32付近が乗載される長さL1を有す
る。本発明の実施のこの形態では、幅W1=60mm、
長さL1=170mm、高さH1=25mmであっても
よい。操作部材26の長さL2および幅W2は、L2=
W2=20mmであってもよく、操作手段本体25の端
部から距離L3=120mmであってもよい。
The operating means main body 25 has a width W1 that can be gently covered by the hand 4 with the vicinity of the tip of the index finger 8 placed on the upper part of the operating member 26, and at least a wrist having a carpal bone. The length L1 of about 32 is mounted. In this embodiment of the invention, the width W1 = 60 mm,
The length L1 may be 170 mm and the height H1 may be 25 mm. The length L2 and the width W2 of the operating member 26 are L2 =
W2 = 20 mm may be sufficient, and distance L3 = 120 mm from the end part of the operation means main body 25 may be sufficient.

【0018】図6は図4の切断面線VI−VIから見た
断面図であり、図7は図4の切断面線VII−VIIか
ら見た断面図である。保持部材28は、前述のように支
持体27に形成された収納凹所31内に収納されて固定
されており、この支持体27に形成されている光経路1
1を遮断することができるように、操作部材26が設け
られる。
FIG. 6 is a sectional view taken along section line VI-VI in FIG. 4, and FIG. 7 is a sectional view taken along section line VII-VII in FIG. The holding member 28 is housed and fixed in the housing recess 31 formed in the support body 27 as described above, and the optical path 1 formed in the support body 27.
An operation member 26 is provided so that the control unit 1 can be shut off.

【0019】図8は保持部材28の平面図であり、図9
はその保持部材28の側面図であり、図10は保持部材
28の正面図である。これらの図面を参照して、保持部
材28は、操作部材26と同様に光を遮蔽する材料から
成り、光ファイバ9,10の一端部9a,10aを挿入
する保持孔32,33が設けられ、ビス34,35によ
って固定される。各光ファイバ9,10の一端部9a,
10aは、レンズと反射鏡とを備えた端部材36,37
に光学的接続され、調整ボルト38,39によって、各
一端部9a,10aの光が光通路11を通るように調整
される。保持孔32,33の軸線は一仮想平面40内で
平行である。
FIG. 8 is a plan view of the holding member 28, and FIG.
Is a side view of the holding member 28, and FIG. 10 is a front view of the holding member 28. With reference to these drawings, the holding member 28 is made of a material that shields light similarly to the operating member 26, and holding holes 32 and 33 into which the one ends 9a and 10a of the optical fibers 9 and 10 are inserted are provided. It is fixed by screws 34 and 35. One end 9a of each optical fiber 9,10,
10a is an end member 36, 37 including a lens and a reflecting mirror.
Is adjusted so that the light at each end 9a, 10a passes through the optical path 11 by adjusting bolts 38, 39. The axes of the holding holes 32 and 33 are parallel within one imaginary plane 40.

【0020】支持体27の基体29には、この先端部に
おいて保持孔32,33に個別的に対応した挿通孔4
1,42が形成され、光ファイバ9,10がそれぞれ挿
通する。保持部材28には、光通路11に臨む案内孔4
3が形成される。
In the base body 29 of the support body 27, the insertion hole 4 corresponding to the holding holes 32 and 33 at the tip thereof is provided.
1, 42 are formed, and the optical fibers 9 and 10 are inserted therein. The holding member 28 has a guide hole 4 facing the optical path 11.
3 is formed.

【0021】操作部材26は、人指し指8によって操作
される操作片44と、両側方に突出するフランジ45
と、案内孔43に挿入されて光通路11を遮断すること
ができる遮光片46とを有し、一体的に成形されて構成
される。操作片44の上部には、一方のファスナ47が
固定される。指8が挿入されることができる筒状の他方
のファスナ48は、前記一方のファスナ47と離脱可能
に接続することができる。これらのファスナ47,48
は、商品名ベルクロまたはマジックテープとして商業的
に入手可能である。
The operation member 26 includes an operation piece 44 operated by the index finger 8 and a flange 45 protruding to both sides.
And a light-shielding piece 46 that can be inserted into the guide hole 43 to block the optical path 11, and are integrally molded. One fastener 47 is fixed to the upper portion of the operation piece 44. The other tubular fastener 48 into which the finger 8 can be inserted can be detachably connected to the one fastener 47. These fasteners 47, 48
Is commercially available under the tradename Velcro or Velcro.

【0022】フランジ45は、蓋30の下方で収納凹所
31内に存在し、操作部材26の抜止めの働きを果す。
遮光片46が、案内孔43の底49に当接している状態
では、光通路11は遮断され、光ファイバ9の一端部9
aから端部材36を介する光は、その遮光片46によっ
て遮断され、他方の光ファイバ10の一端部10aの端
部材37には伝達されない。人差し指8を上昇して操作
部材26を上昇すると、光通路11を介して、端部材3
6からの光はもう1つの端部材37に導かれることがで
きる。操作部材26の上昇の最大変位量は、図6におい
て参照符H2で示されるとおりであって、フランジ45
が蓋30の下面に当接するまでの距離である。この最大
変位量H2は、光ファイバ9,10が単一本から成ると
き、そのコアの径以上であればよく、したがってその光
を光通路11に通すために必要な変位量は、たとえば2
〜3mm未満であっもよい。このように人差し指8の変
位量がわずかですむことによって、測定されるべき脳磁
界に悪影響を及ぼすことがなく、好都合である。
The flange 45 exists in the storage recess 31 below the lid 30 and serves to prevent the operating member 26 from coming off.
When the light blocking piece 46 is in contact with the bottom 49 of the guide hole 43, the optical path 11 is blocked and the one end portion 9 of the optical fiber 9 is blocked.
The light from a through the end member 36 is blocked by the light shielding piece 46 and is not transmitted to the end member 37 of the one end 10a of the other optical fiber 10. When the index finger 8 is raised and the operation member 26 is raised, the end member 3 is passed through the optical path 11.
Light from 6 can be directed to the other end member 37. The maximum amount of displacement for raising the operating member 26 is as indicated by reference numeral H2 in FIG.
Is the distance to contact the lower surface of the lid 30. When the optical fibers 9 and 10 are composed of a single optical fiber, the maximum displacement amount H2 may be equal to or larger than the diameter of its core. Therefore, the displacement amount required to pass the light through the optical path 11 is, for example, 2
It may be less than ~ 3 mm. As described above, the displacement of the index finger 8 is small, which is advantageous because it does not adversely affect the brain magnetic field to be measured.

【0023】図11は、図1〜図10に示される本発明
の実施の一形態の原理を簡略化して示す図である。駆動
回路51によって発光素子12が駆動され、その光は光
ファイバ9の他端部9bから一端部9aに導かれ、人指
し指8によって操作部材26が上昇されることによっ
て、その光通路11を経て、他方の光ファイバ10の一
端部10aに導かれ、他端部10bから受光素子13に
よって受光される。こうして受光素子13の出力端子5
2からは、受光素子13によって光が受光されたことま
たは光が受光されなくなったことを表すトリガパルスで
ある電気信号出力が導出される。
FIG. 11 is a simplified view of the principle of the embodiment of the present invention shown in FIGS. The light emitting element 12 is driven by the drive circuit 51, the light thereof is guided from the other end 9b of the optical fiber 9 to the one end 9a, and the operating member 26 is lifted by the index finger 8, so that the light passes through the optical path 11. The light is guided to one end 10a of the other optical fiber 10 and received by the light receiving element 13 from the other end 10b. Thus, the output terminal 5 of the light receiving element 13
From 2, an electric signal output, which is a trigger pulse indicating that light is received by the light receiving element 13 or that light is no longer received, is derived.

【0024】操作手段5を構成する各構成要素は、測定
すべき脳磁界に悪影響を及ぼさない材料、たとえばAB
S樹脂などの合成樹脂材料およびセラミックなどの材料
から成る。
Each component constituting the operating means 5 is made of a material such as AB which does not adversely affect the brain magnetic field to be measured.
It is made of a synthetic resin material such as S resin and a material such as ceramic.

【0025】図12は、脳磁界測定アセンブリ18の一
部の簡略化した縦断面図である。被検体15の頭部17
の少なくとも頭蓋を覆う極低温容器53は、外槽54と
内槽55との間に真空断熱層56が介在されて構成さ
れ、その内槽55内には、液体ヘリウム57が貯留さ
れ、超伝導量子干渉(略称SQUID)磁束計58が浸
漬して構成される。
FIG. 12 is a simplified longitudinal sectional view of a portion of the brain magnetic field measurement assembly 18. Head 17 of subject 15
The cryogenic container 53 that covers at least the skull is configured such that a vacuum heat insulating layer 56 is interposed between an outer tank 54 and an inner tank 55, and liquid helium 57 is stored in the inner tank 55, and superconductivity is maintained. A quantum interference (abbreviated as SQUID) magnetometer 58 is formed by immersion.

【0026】磁束計58は頭蓋を覆うように複数個配置
される。各磁束計58は、脳磁界を検出する検出コイル
59と、その検出コイルに接続される結合コイル60と
を含み、各結合コイル60は、SQUID素子61に磁
気結合される。SQUID素子61は、たとえばいわゆ
る直流形であって、超伝導リングに2つのジョフソン結
合を有する構成を有しており、このSQUID素子には
直流定電流源が接続され、その定電流源からの電流がS
QUID素子61に供給される。SQUID素子61の
出力電圧は、増幅器で増幅され、ライン62を経て、磁
気遮蔽室3の外方に設けられた電気回路63の同期検波
回路64に与えられ、アナログ/デジタル変換回路でデ
ジタル値に変換され、微弱磁界に対応したデジタル信号
がマイクロコンピュータなどによって実現される処理回
路66に入力される。本発明の実施の他の形態として直
流形SQUID素子61に代えて、1つのジョフソン接
合を有する超伝導リングに関連して、共振コイルとコン
デナサとの並列共振回路を設け、高周波電流を与えて共
振回路からの外部検出磁界に対応した電圧を得る構成と
したいわゆる交流形SQUID素子を用いてもよい。
A plurality of magnetometers 58 are arranged so as to cover the skull. Each magnetometer 58 includes a detection coil 59 for detecting a brain magnetic field and a coupling coil 60 connected to the detection coil, and each coupling coil 60 is magnetically coupled to the SQUID element 61. The SQUID element 61 is, for example, of a so-called direct current type, and has a structure having two Josephson couplings in a superconducting ring. A direct current constant current source is connected to the SQUID element, and a current from the constant current source is connected. Is S
It is supplied to the QUID element 61. The output voltage of the SQUID element 61 is amplified by the amplifier, is given to the synchronous detection circuit 64 of the electric circuit 63 provided outside the magnetically shielded room 3 via the line 62, and is converted into a digital value by the analog / digital conversion circuit. The converted digital signal corresponding to the weak magnetic field is input to the processing circuit 66 realized by a microcomputer or the like. As another embodiment of the present invention, instead of the DC type SQUID element 61, a parallel resonance circuit of a resonance coil and a condenser is provided in association with a superconducting ring having one Joffson junction, and a high frequency current is applied to cause resonance. A so-called AC SQUID element configured to obtain a voltage corresponding to the external detection magnetic field from the circuit may be used.

【0027】処理回路66にはメモリ67が備えられ
る。被検体15に刺激を与え、これによって被検体15
は人差し指8を用いて操作部材26を上昇変位して操作
を行う。これによって刺激を行うたびに、SQUID素
子61からは、その刺激のたび毎に、図13(1)で示
される信号が得られる。被検体15は、操作部材26を
操作し、これによって受光素子13では、図13(2)
に示されるように、各時刻t1,t2において電気信号
出力が得られる。メモリ67では、各SQUID素子6
1の時間経過に伴う出力を常時ストアしており、特にそ
の受光素子13からの信号出力が得られた時刻t1,t
2の前後にわたる等しい各期間T10,T20における
波形を前述のようにデジタル値でメモリ67にストアす
る。処理回路66は、このような図13(1)において
得られる時間T10,T20にわたる波形を、たとえば
100回程度の複数回にわたって加算平均し、これによ
ってノイズによる誤差をなくして、各SQUID素子6
1毎の脳磁界を正確に得ることができる。
The processing circuit 66 includes a memory 67. The subject 15 is stimulated, whereby
Uses the index finger 8 to move the operating member 26 upward to perform an operation. As a result, each time stimulation is performed, the SQUID element 61 obtains the signal shown in FIG. 13A for each stimulation. The subject 15 operates the operation member 26, whereby the light receiving element 13 is operated as shown in FIG.
As shown in, the electric signal output is obtained at each of the times t1 and t2. In the memory 67, each SQUID element 6
The output with the passage of time of 1 is always stored, and in particular, at times t1 and t when the signal output from the light receiving element 13 is obtained.
The waveforms in each of the equal periods T10 and T20 over 2 and 1 are stored in the memory 67 as digital values as described above. The processing circuit 66 adds and averages the waveforms over the time T10 and T20 obtained in FIG. 13 (1) over a plurality of times, for example, about 100 times, thereby eliminating an error due to noise, and thus each SQUID element 6
It is possible to accurately obtain each cerebral magnetic field.

【0028】[0028]

【発明の効果】以上のように本発明によれば、生体信号
測定装置が設置された磁気遮蔽室内に、その生体信号に
電磁気的に悪影響を及ぼさない材料から成る操作手段が
設けられ、この操作手段の操作部材によって光経路が遮
断され、または光経路を経て光が導かれるように、一対
の光ファイバが設けられ、この光ファイバは磁気遮蔽室
の外部で発光素子と受光素子とにそれぞれ接続されるよ
うにしたので、その発光素子および受光素子による生体
信号への悪影響が防がれ、生体信号のSN比を良好にす
ることができ、このことは特に運動準備脳磁界などのよ
うに非常に低い周波数成分を有し、またその信号が微弱
であるとき、このSN比が良好であることが重要なこと
である。
As described above, according to the present invention, the operation means made of a material that does not electromagnetically affect the biological signal is provided in the magnetically shielded room in which the biological signal measuring device is installed. A pair of optical fibers are provided so that the optical path is blocked by the operation member of the means or the light is guided through the optical path, and the optical fibers are connected to the light emitting element and the light receiving element outside the magnetically shielded chamber, respectively. Since the light emitting element and the light receiving element can prevent the biological signal from being adversely affected, it is possible to improve the SN ratio of the biological signal. It is important that this signal-to-noise ratio is good when it has a low frequency component at and the signal is weak.

【0029】本発明によれば、被検体の人差し指などの
指によって操作部材が操作され、その操作量は、光ファ
イバの光を遮断する程度に極くわずかの変位量でよいの
で、その随意運動と受光素子から得られる電気信号出力
との時間的関係が正確に一致することになり、これによ
ってその受光素子の電気信号出力に時間的に対応する測
定された生体信号を正確に得ることができるようにな
る。
According to the present invention, the operation member is operated by a finger such as the index finger of the subject, and the operation amount thereof may be a very small displacement amount so as to block the light of the optical fiber. And the electrical relationship between the electric signal output obtained from the light-receiving element and the time relationship are accurately matched, whereby the measured biological signal temporally corresponding to the electrical signal output of the light-receiving element can be accurately obtained. Like

【0030】さらに本発明によれば、操作手段本体は人
指し指の先端部付近を操作部材の上部に乗せた状態で、
手で緩やかに覆うことができる幅を有し、また少なくと
も手首付近が乗載される長さを有しているので、被検体
の極自然な状態で操作部材を操作することができ、この
ことによってもまた運動と受光素子から得られる信号出
力との時間的関係を正確に関連づけることが可能となる
という優れた効果が達成される。
Further, according to the present invention, the operation means main body is placed with the vicinity of the tip of the index finger placed on the upper part of the operation member.
Since it has a width that can be gently covered with the hand and has a length that can be placed around at least the wrist, it is possible to operate the operation member in a very natural state of the subject. Also by this, the excellent effect that the temporal relationship between the motion and the signal output obtained from the light receiving element can be accurately associated can be achieved.

【0031】さらに本発明によれば、操作手段本体の支
持体の収納凹所内に、一対の光ファイバの一端部が固定
された保持部材が収納されるように構成されるので、そ
の一対の光ファイバをたとえば平行な状態で案内して導
くことができ、したがって光ファイバが被検体および作
業者などに引掛かったり、または障害物に引掛かったり
することが防がれ、円滑な測定作業を行うことができ
る。
Further, according to the present invention, since the holding member to which one end of the pair of optical fibers is fixed is housed in the housing recess of the support of the operation means main body, the pair of optical fibers is stored. For example, the fibers can be guided and guided in a parallel state, so that the optical fiber is prevented from being caught by the subject and an operator, or by an obstacle, and a smooth measurement work is performed. be able to.

【0032】さらに本発明によれば、磁気遮蔽室内に設
けられた脳磁界測定アセンブリによって微弱な脳磁界の
分布を測定することができ、受光素子の出力に応答して
メモリに、その光が受光または遮断された時点の前後に
おける超伝導量子干渉磁束計の出力をストアし、その時
間経過に伴う複数回の各出力を、各磁束計毎に加算平均
し、各磁束計毎の正確な脳磁界の測定が可能となる。
Further, according to the present invention, the distribution of the weak brain magnetic field can be measured by the brain magnetic field measuring assembly provided in the magnetically shielded room, and the light is received by the memory in response to the output of the light receiving element. Or, the output of the superconducting quantum interference magnetometer before and after the time of interruption is stored, and the outputs of multiple times with the passage of time are added and averaged for each magnetometer, and the accurate brain magnetic field for each magnetometer is stored. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態の操作手段1の使用状態
を簡略化して示す斜視図である。
FIG. 1 is a perspective view schematically showing a usage state of an operating unit 1 according to an embodiment of the present invention.

【図2】操作手段1を備えた脳磁界測定装置14の全体
の構成を簡略化して示す断面図である。
FIG. 2 is a cross-sectional view showing a simplified overall configuration of a brain magnetic field measurement apparatus 14 including an operating means 1.

【図3】脳磁界測定装置14によって脳磁界を測定して
いる状態を示す斜視図である。
FIG. 3 is a perspective view showing a state where a brain magnetic field is measured by a brain magnetic field measuring device 14.

【図4】操作手段1の平面図である。FIG. 4 is a plan view of the operating means 1.

【図5】操作手段1の側面図である。5 is a side view of the operating means 1. FIG.

【図6】図4の切断面線VI−VIから見た断面図であ
る。
FIG. 6 is a sectional view taken along section line VI-VI in FIG. 4;

【図7】図4の切断面線VII−VIIから見た断面図
である。
7 is a cross-sectional view taken along the section line VII-VII in FIG.

【図8】保持部材28の平面図である。FIG. 8 is a plan view of a holding member 28.

【図9】保持部材28の側面図である。9 is a side view of a holding member 28. FIG.

【図10】保持部材28の正面図である。FIG. 10 is a front view of a holding member 28.

【図11】図1〜図10に示される本発明の実施の一形
態の原理を簡略化して示す図である。
FIG. 11 is a diagram showing a simplified principle of the embodiment of the present invention shown in FIGS.

【図12】脳磁界測定アセンブリ18の一部の構成を簡
略化して示す縦断面図である。
FIG. 12 is a vertical cross-sectional view showing a simplified configuration of part of the brain magnetic field measurement assembly 18.

【図13】脳磁界測定装置14の動作を説明するための
波形図である。
FIG. 13 is a waveform diagram for explaining the operation of the brain magnetic field measurement apparatus 14.

【符号の説明】[Explanation of symbols]

1 脳磁界測定用操作装置 3 磁気遮蔽室 4 手 5 操作手段 8 人差し指 9,10 光ファイバ 11 光通路 12 発光素子 13 受光素子 14 脳磁界測定装置 16 ベッド 17 頭部 18 磁界測定アセンブリ 25 操作手段本体 26 操作部材 27 支持体 28 保持部材 29 基体 30 蓋体 31 収納凹所 44 操作片 45 フランジ 46 遮光片 58 超伝導量子干渉磁束計 59 検出コイル 67 メモリ DESCRIPTION OF SYMBOLS 1 Operating device for measuring brain magnetic field 3 Magnetically shielded room 4 Hands 5 Operating means 8 Index finger 9,10 Optical fiber 11 Optical path 12 Light emitting element 13 Light receiving element 14 Brain magnetic field measuring device 16 Bed 17 Head 18 Magnetic field measuring assembly 25 Operating means main body 26 operation member 27 support member 28 holding member 29 base body 30 lid 31 storage recess 44 operation piece 45 flange 46 light shielding piece 58 superconducting quantum interference magnetometer 59 detection coil 67 memory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (a)生体信号を測定するための生体信
号測定装置の近傍に設けられ、測定すべき生体信号に電
磁気的に悪影響を及ぼさない材料から成る操作手段であ
って、 光通路を形成する操作手段本体と、 光を遮蔽する材料から成り、前記本体と相対的に変位
し、光通路に離脱可能に侵入して光通路を遮断する操作
部材とを有する操作手段と、 (b)光通路の操作部材に関して両側に各一端部が配置
され、各他端部が生体磁気計測装置から離れて設けられ
る一対の光ファイバと、 (c)一方の光ファイバの前記他端部に光を導く発光素
子と、 (d)他方の光ファイバの前記他端部からの光を受光す
る受光素子とを含むことを特徴とする生体信号測定用操
作装置。
1. (a) An operating means which is provided in the vicinity of a biological signal measuring device for measuring a biological signal and which is made of a material that does not electromagnetically adversely affect the biological signal to be measured. (B) an operation means having an operation means main body to be formed and an operation member made of a material that shields light, which is relatively displaced with respect to the main body and removably enters into the light passage to interrupt the light passage; A pair of optical fibers, one end of each of which is arranged on both sides of the operation member of the optical path, and the other end of which is provided separately from the biomagnetism measuring device, and (c) light is applied to the other end of the one optical fiber. An operating device for measuring a biological signal, comprising: a light emitting element for guiding; and (d) a light receiving element for receiving light from the other end of the other optical fiber.
【請求項2】 操作手段本体は、指の先端部付近を操作
部材の上部に乗せた状態で、手で緩やかに覆うことがで
きる幅を有し、かつ少なくとも手首付近が乗載される長
さを有する大略的に細長い形状に形成されることを特徴
とする請求項1記載の生体信号測定用操作装置。
2. The operation means main body has a width that can be gently covered with a hand with the vicinity of the tip of a finger placed on the upper portion of the operation member, and has a length on which at least the vicinity of the wrist is placed. The operating device for measuring a biological signal according to claim 1, wherein the operating device has a substantially elongated shape.
【請求項3】 操作手段本体は、 外形が大略的に直方体状であり、長手方向先端部に収納
凹所が形成される支持体と、 収納凹所に収納され、操作部材が上下に変位自在に挿入
され、一対の光ファイバの前記一端部が支持体の長手方
向に沿って固定され、前記各一端部は、操作部材の両側
で対向している保持部材とを有することを特徴とする請
求項1または2記載の生体信号測定用操作装置。
3. The operating means main body has a substantially rectangular parallelepiped outer shape, a support body having a storage recess formed at the distal end in the longitudinal direction, and an operating member housed in the storage recess, and the operating member is vertically displaceable. The pair of optical fibers are fixed to each other along the longitudinal direction of the support body, and each of the one ends has a holding member facing each other on both sides of the operating member. Item 2. An operating device for measuring a biological signal according to item 1 or 2.
【請求項4】 (a)磁気遮蔽室と、 (b)磁気遮蔽室内に設けられる脳磁界測定アセンブリ
であって、(b1)少なくとも頭蓋を覆う極低温容器
と、(b2)この低温容器内に設けられる複数の超伝導
量子干渉磁束計であって、頭蓋の外方に分布して配置さ
れ、かつ脳からの微弱な磁界を検出する脳磁界検出コイ
ルをそれぞれ有する超伝導量子干渉磁束計とを備える脳
磁界測定アセンブリと、 (c)遮蔽室内に設けられ、脳磁界の検出に電磁気的に
悪影響を及ぼさない材料から成る操作手段であって、
(c1)光経路を形成する操作手段本体と、(c2)光
を遮蔽する材料から成り、前記本体と相対的に変位し、
光通路に離脱可能に侵入して光通路を遮断する操作部材
とを有する操作手段と、 (d)光通路の操作部材に関して両側に各一端部が配置
され、各他端部が磁気遮蔽室の外に延びて設けられる一
対の光ファイバと、 (e)一方の光ファイバの前記他端部に光を導く発光素
子と、 (f)他方の光ファイバの前記他端部からの光を受光す
る受光素子と、 (g)前記磁束計の出力をストアするメモリと、 (h)受光素子の出力に応答して、光が受光または遮断
された時点の前後における前記磁束計の出力をメモリに
ストアさせる制御手段とを含むことを特徴とする脳磁界
測定装置。
4. (a) a magnetically shielded room, (b) a brain magnetic field measurement assembly provided in the magnetically shielded room, wherein (b1) a cryogenic container covering at least the skull, and (b2) a cryogenic container in the cryogenic container. A plurality of superconducting quantum interference magnetometers provided, which are distributed and arranged outside the skull, and each have a brain magnetic field detecting coil for detecting a weak magnetic field from the brain. A brain magnetic field measurement assembly provided; and (c) an operating means which is provided in the shielded room and is made of a material that does not electromagnetically affect the detection of the brain magnetic field.
(C1) made of an operation means main body forming an optical path, and (c2) made of a material for shielding light, and relatively displaced with respect to the main body,
An operating means having an operating member that releasably enters the optical path and blocks the optical path, and (d) one end portion is arranged on both sides of the operating member of the optical path and the other end portion of the magnetic shield chamber is provided. A pair of optical fibers extending outwardly; (e) a light emitting element for guiding light to the other end of one optical fiber; (f) receiving light from the other end of the other optical fiber A light-receiving element, (g) a memory for storing the output of the magnetometer, and (h) a memory for storing the output of the magnetometer before and after light is received or blocked in response to the output of the light-receiving element. An apparatus for measuring a brain magnetic field, comprising:
【請求項5】 メモリにストアされた各磁束計毎の時間
経過に伴う複数回の各出力を、加算平均する手段をさら
に含むことを特徴とする請求項4記載の脳磁界測定装
置。
5. The cerebral magnetic field measurement apparatus according to claim 4, further comprising means for averaging the outputs of a plurality of times stored in the memory for each magnetometer, the outputs being output a plurality of times.
JP7231633A 1995-09-08 1995-09-08 Manipulating device for biological signal measurement and brain magnetic field measuring instrument Pending JPH0975313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7231633A JPH0975313A (en) 1995-09-08 1995-09-08 Manipulating device for biological signal measurement and brain magnetic field measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7231633A JPH0975313A (en) 1995-09-08 1995-09-08 Manipulating device for biological signal measurement and brain magnetic field measuring instrument

Publications (1)

Publication Number Publication Date
JPH0975313A true JPH0975313A (en) 1997-03-25

Family

ID=16926572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7231633A Pending JPH0975313A (en) 1995-09-08 1995-09-08 Manipulating device for biological signal measurement and brain magnetic field measuring instrument

Country Status (1)

Country Link
JP (1) JPH0975313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434690B1 (en) * 2002-07-19 2004-06-04 소광섭 Apparatus and method for detecting luminescence from biological systems in response to magnetic fields

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100434690B1 (en) * 2002-07-19 2004-06-04 소광섭 Apparatus and method for detecting luminescence from biological systems in response to magnetic fields

Similar Documents

Publication Publication Date Title
JP2945480B2 (en) Electrocardiogram sensor device
Kado et al. Magnetoencephalogram systems developed at KIT
EP0483698B1 (en) Sensor position indicator coils to be used in magnetoencephalographic experiments and a means of attaching them to the head
US4793355A (en) Apparatus for process for making biomagnetic measurements
EP1911398A2 (en) Biomagnetic field measurement apparatus
EP0538873B1 (en) Nonmagnetic tactile stimulator and apparatus utilizing the stimulator
JPH0975313A (en) Manipulating device for biological signal measurement and brain magnetic field measuring instrument
Felblinger et al. Recordings of eye movements for stimulus control during fMRI by means of electro‐oculographic methods
Kobayashi et al. Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement
JPH06133941A (en) Device for magnetic measurement for human body equiped with nonmagnetic movement detector
Kim et al. Development of a rat biomagnetic measurement system using a high-TC SQUID magnetometer
Kim et al. Measurement of Rat Magnetocardiograms by Using a High-$ T_ {\rm C} $ SQUID Magnetometer System
CA2379800A1 (en) Method and device for measuring biomagnetic and in particular cardiomagnetic fields
JP3595660B2 (en) Measuring device for biological magnetic field
JP3720960B2 (en) Processing method of measurement data of magnetic field generated by living body
JP3058619B2 (en) Biological magnetic field map generator
Ohmichi et al. A method of magnetocardiography for clinical use
JP3228702B2 (en) Measurement method of magnetic field of living body and magnetic field map display
JP3228703B2 (en) Method and apparatus for processing measurement data of magnetic field generated by living body
JP3140733B2 (en) Biological magnetic field map display
Kim et al. Development of a bio-magnetic measurement system and sensor configuration analysis for rats
JP3140734B2 (en) Biological magnetic field map display
Lang et al. Neuromagnetic recordings of the human peripheral nerve with planar SQUID gradiometers
Lee et al. Tangential cardiomagnetic field measurement system based on double relaxation oscillation SQUID planar gradiometers
Bruno et al. Experimental localization ability of planar gradiometer systems for biomagnetic measurements