JPH0974016A - Magnetic thin film with reduced high-frequency loss - Google Patents

Magnetic thin film with reduced high-frequency loss

Info

Publication number
JPH0974016A
JPH0974016A JP26342395A JP26342395A JPH0974016A JP H0974016 A JPH0974016 A JP H0974016A JP 26342395 A JP26342395 A JP 26342395A JP 26342395 A JP26342395 A JP 26342395A JP H0974016 A JPH0974016 A JP H0974016A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
magnetic thin
high frequency
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP26342395A
Other languages
Japanese (ja)
Inventor
Kiwamu Shirakawa
究 白川
Masao Midera
正雄 三寺
Susumu Murakami
進 村上
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute of Electric and Magnetic Alloys
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Electric and Magnetic Alloys, Research Institute for Electromagnetic Materials filed Critical Research Institute of Electric and Magnetic Alloys
Priority to JP26342395A priority Critical patent/JPH0974016A/en
Publication of JPH0974016A publication Critical patent/JPH0974016A/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-loss magnetic thin film which is a multilayer film of a high saturation magnetic flux density constituted of magnetic thin films and insulating thin films and which has a small loss at a high-frequency region. SOLUTION: A low-loss magnetic film is a multilayer magnetic thin film which is made by stacking magnetic thin films and insulating thin films alternately and a high-frequency device is the one which uses this thin film. In such a low-loss magnetic thin film, an effective value of a real part of a complex magnetic permeability is 450 or above and the ratio of the real part to an imaginary part is 50 or above at 100MHz and 20 or above at 200MHz.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波複素透磁率の実数
部の実効値が450以上で実数部と虚数部の比が100
MHzで50以上又は200MHzで20以上を示す高
周波低損失磁性薄膜と該薄膜の高周波用薄膜インダク
タ、トランスの磁心材および磁気センサー等の応用に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an effective value of the real part of high frequency complex permeability of 450 or more and a ratio of the real part to the imaginary part of 100.
The present invention relates to a high frequency low loss magnetic thin film showing 50 or more at MHz or 20 or more at 200 MHz, a thin film inductor for high frequency of the thin film, a magnetic core material of a transformer, a magnetic sensor and the like.

【0002】[0002]

【従来の技術】近年、携帯用電子機器の普及にともな
い、特に移動体通信分野において、高周波化、小型化の
傾向にある。これに伴い用いる部品も薄型化高周波化が
要求されている。しかし、従来100MHz以上の高周
波領域において用いられたインダクタ等には磁心を用い
ない、空心インダクタが用いられてきた。しかし、この
ような空心コイルを用いて、高いインダクタンスを得る
ためには、コイルの体積を大きくする必要があり、また
コイルの引き回し等により広い実装面積が必要であっ
た。この実装面積を小さくするためには、磁心を用い単
位体積当たりのインダクタンス値を増大させる必要があ
る。しかし従来の磁性膜をインダクタの磁心として用い
た場合には、高周波領域における磁心の損失の増大によ
り、その性能指数は空心インダクタに比べ非常に低下す
る。
2. Description of the Related Art In recent years, with the spread of portable electronic devices, there is a tendency toward higher frequencies and smaller sizes, especially in the field of mobile communications. Along with this, the components used are required to be thinner and have higher frequencies. However, an air-core inductor that does not use a magnetic core has been used for an inductor or the like that has been conventionally used in a high frequency region of 100 MHz or more. However, in order to obtain a high inductance by using such an air-core coil, it is necessary to increase the volume of the coil and a large mounting area is required due to the routing of the coil. In order to reduce this mounting area, it is necessary to increase the inductance value per unit volume by using a magnetic core. However, when the conventional magnetic film is used as the magnetic core of the inductor, the figure of merit is much lower than that of the air-core inductor due to the increase of the loss of the magnetic core in the high frequency region.

【0003】一方、薄膜トランスにおいても、高周波化
が検討されているが、高周波領域で低損失を示す磁性材
料の開発が十分でないため、薄膜トランスの高周波化は
達成されない。従来、高周波で損失が小さいとされるフ
ェライトを用いた場合でも使用可能な周波数は数MHz
以下である。
On the other hand, for thin film transformers, higher frequencies have been studied, but since the development of magnetic materials exhibiting low loss in the high frequency region has not been sufficiently developed, higher frequencies for thin film transformers cannot be achieved. Conventionally, the frequency that can be used is several MHz even when using ferrite, which is said to have low loss at high frequencies.
It is the following.

【0004】[0004]

【発明が解決しようとする課題】磁心の損失を低減する
方法の一つとして、磁性薄膜と絶縁薄膜とを交互に積層
することは多く検討されている。しかし、これらの検討
において、磁性薄膜の評価の方法に問題があった。即
ち、測定感度や簡便さから実際に高周波領域で用いる寸
法や形状でない、例えば10mm×20mm等の大きい
寸法の試料で行われていた。しかし、実際に高周波領域
で用いるような、例えば数百μm×数mmのような
(1)小さい寸法にした場合には、高周波特性が劣化す
ること、(2)大きい寸法で低損失を示す磁性薄膜が微
小寸法形状にした場合に必ずしも低損失を示さないこと
が明らかになってきた。本発明は実際に高周波で用いる
寸法に成形された単体およびその集合体を用いて検討
し、微小寸法形状で低い損失を示す高周波磁性薄膜を提
供しようとするものである。
As one of the methods for reducing the loss of the magnetic core, it has been widely studied to alternately stack magnetic thin films and insulating thin films. However, in these studies, there was a problem in the method of evaluating the magnetic thin film. That is, it was performed on a sample having a large size such as 10 mm × 20 mm, which is not actually used in the high frequency region because of its measurement sensitivity and simplicity. However, when actually used in a high frequency region, for example, (1) small dimensions such as several hundreds of μm × several millimeters, high frequency characteristics deteriorate, and (2) large dimensions exhibit low loss. It has become clear that the thin film does not necessarily exhibit low loss when it is formed into a very small size. The present invention aims to provide a high-frequency magnetic thin film that exhibits low loss in a minute size and shape by examining using a single body and an aggregate thereof that are actually molded to a size used at high frequencies.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の事情を
鑑みて鋭意努力した結果である。磁性膜の磁化反転機構
を考えた場合、1MHz以下の低周波領域では磁壁移動
が主要因であり、100MHz以上の高周波領域では磁
化回転が主要因である。またこの中間領域では、磁壁移
動と磁化回転の双方が考えられる。従来の軟磁性膜の損
失低減は磁壁移動による損失を低減するために検討され
てきた。本発明は、100MHz以上の高周波での損失
を低減するために、微小寸法形状磁性膜を用いること
は、高周波での共鳴損失を低減するための手段である。
共鳴損失を低減するためには、大きい飽和磁束密度が必
要であるが、一般に大きい飽和磁束密度がを得ようとし
た場合には、磁歪が大きくなるので、従来実用軟磁性膜
として注目されなかった。本発明は100MHz以上の
磁化回転が主である領域における、磁歪、飽和磁束密度
と損失との関係を明確にすることにより、高周波損失に
は、磁歪の影響が小さいことが明らかとなり、高飽和磁
束密度を有する高周波低損失軟磁性膜の開発を可能にし
た。
The present invention is the result of earnest efforts in view of the above circumstances. Considering the magnetization reversal mechanism of the magnetic film, the domain wall movement is the main factor in the low frequency region of 1 MHz or less, and the magnetization rotation is the main factor in the high frequency region of 100 MHz or more. In this intermediate region, both domain wall movement and magnetization rotation can be considered. The loss reduction of the conventional soft magnetic film has been studied in order to reduce the loss due to the domain wall motion. In the present invention, in order to reduce the loss at a high frequency of 100 MHz or more, the use of the magnetic film having a minute size is a means for reducing the resonance loss at a high frequency.
In order to reduce the resonance loss, a large saturation magnetic flux density is necessary, but generally, when trying to obtain a large saturation magnetic flux density, the magnetostriction becomes large, so it has not been noticed as a conventional practical soft magnetic film. . In the present invention, by clarifying the relationship between the magnetostriction, the saturation magnetic flux density and the loss in the region where the magnetization rotation is mainly 100 MHz or more, it becomes clear that the influence of the magnetostriction on the high frequency loss is small, and the high saturation magnetic flux is high. It has made it possible to develop a high-frequency low-loss soft magnetic film with high density.

【0006】従って、本発明の高周波低損失磁性薄膜は
以下に示す通りである。即ち、第一の発明は、磁性薄膜
と絶縁薄膜を交互に積層する多層磁性薄膜において複素
透磁率の実数部の実効値が450以上で、かつ実数部と
虚数部の比が100MHzで50以上又は200MHz
で20以上を有することを特徴とする高周波低損失磁性
薄膜である。
Therefore, the high frequency low loss magnetic thin film of the present invention is as follows. That is, the first invention is that, in a multilayer magnetic thin film in which magnetic thin films and insulating thin films are alternately laminated, the effective value of the real part of the complex permeability is 450 or more, and the ratio of the real part and the imaginary part is 50 or more at 100 MHz or 200 MHz
And a high frequency low loss magnetic thin film.

【0007】或いはまた、第二の発明は、飽和磁束密度
が12kG以上を有する軟磁性薄膜を用いることを特徴
とする高周波低損失磁性薄膜である。
Alternatively, the second invention is a high-frequency low-loss magnetic thin film characterized by using a soft magnetic thin film having a saturation magnetic flux density of 12 kG or more.

【0008】或いはまた、第三の発明は、磁性薄膜が、
原子濃度で(Co1−xFe100−z(Si
1−y(但し、0.06<x<0.16、0.
3<y<0.7、25<z<16)からなり、絶縁薄膜
がSiO、Al、ZrO、AlNおよびBN
のうち1種または2種以上を含有した組成物からなるこ
とを特徴とする高周波低損失磁性薄膜である。
Alternatively, in the third invention, the magnetic thin film is
(Co 1-x Fe x ) 100-z (Si at atomic concentration
1-y B y) z (where, 0.06 <x <0.16,0.
3 <y <0.7, 25 <z <16), and the insulating thin film is SiO 2 , Al 2 O 3 , ZrO 2 , AlN and BN.
A high-frequency low-loss magnetic thin film comprising a composition containing one or more of the above.

【0009】或いはまた、第四の発明は、磁性薄膜をア
ルゴンガス中で成膜し、絶縁薄膜をアルゴンガスまたは
アルゴン、酸素および窒素のうち2種以上の混合ガス中
で成膜することを特徴とする高周波低損失磁性薄膜であ
る。
Alternatively, the fourth invention is characterized in that the magnetic thin film is formed in argon gas and the insulating thin film is formed in argon gas or a mixed gas of two or more kinds of argon, oxygen and nitrogen. And a high-frequency low-loss magnetic thin film.

【0010】或いはまた、第五の発明は、矩形状磁性薄
膜に於て短辺が50μm以上1mm以下で、かつ長辺が
短辺の1.5倍を越える形状を有する単体または集合体
を形成することを特徴とする高周波低損失磁性薄膜であ
る。
Alternatively, the fifth aspect of the present invention is to form a single body or an aggregate having a rectangular magnetic thin film having a short side of 50 μm or more and 1 mm or less and a long side of more than 1.5 times the short side. And a high-frequency low-loss magnetic thin film.

【0011】或いはまた、第六の発明は、矩形状の長辺
方向が磁化困難方向になるように磁界中成膜することを
特徴とする高周波低損失磁性薄膜である。
Alternatively, the sixth invention is a high-frequency low-loss magnetic thin film, characterized in that the film is formed in a magnetic field such that the long side direction of the rectangular shape is in the direction of hard magnetization.

【0012】或いはまた、第七の発明は、高周波低損失
磁性薄膜からなる薄膜インダクタの構成を有する。
Alternatively, the seventh invention has a structure of a thin film inductor made of a high frequency low loss magnetic thin film.

【0013】或いはまた、第八の発明は、高周波低損失
磁性薄膜からなる薄膜トランスの構成を有する。
Alternatively, the eighth invention has a structure of a thin film transformer formed of a high frequency and low loss magnetic thin film.

【0014】或いはまた、第九の発明は、高周波低損失
磁性薄膜からなる磁気センサーの構成を有する。
Alternatively, the ninth invention has a structure of a magnetic sensor comprising a high frequency and low loss magnetic thin film.

【0015】[0015]

【作用】従来、磁性薄膜の高周波領域における特性の評
価は、実際に磁心として用いる薄膜の寸法ならびに形状
と高周波特性の関係を十分に考慮せずに行われてきた。
しかし、高周波領域での磁気特性はその形状、寸法に非
常に敏感であり、高周波領域で使用する場合には、通常
測定している寸法に比べ、例えば1/10〜1/20の
非常に小さい寸法で用いるため、測定値と実際の高周波
領域での値と異なり、高周波回路設計において問題とな
る。本発明の測定には、実際に高周波領域で用いられる
場合に近似した微小寸法形状の磁性薄膜単体や集合体を
作製し、その複素透磁率の周波数依存性より、低損失磁
性薄膜を見いだした。
In the past, the evaluation of the characteristics of the magnetic thin film in the high frequency region has been carried out without sufficiently considering the relationship between the size and shape of the thin film actually used as the magnetic core and the high frequency characteristics.
However, the magnetic characteristics in the high frequency region are very sensitive to the shape and size thereof, and when used in the high frequency region, they are very small, for example, 1/10 to 1/20, compared to the normally measured size. Since it is used in dimensions, it is a problem in high frequency circuit design, unlike the measured value and the value in the actual high frequency region. For the measurement of the present invention, a magnetic thin film simple substance or an aggregate having a minute dimension similar to that when actually used in a high frequency region was produced, and a low loss magnetic thin film was found from the frequency dependence of its complex permeability.

【0016】[0016]

【実施例】次に本発明の実施例について図面を用いて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【実施例1】高飽和磁束密度を有する高周波低損失薄膜
の作製および評価法について述べる。コバルト(C
o)、鉄(Fe),硅素(Si),堋素(B)またはC
o、Fe、ニオブ(Nb)、ジリコニュム(Zr)から
なる合金をアルゴン雰囲気中で高周波誘導電気炉で溶解
した後、よく攪拌して均質な溶融合金とし、円柱状に鋳
込んだ。ついで、これをアーク溶解炉で、直径100m
m、厚さ10mmの円盤状に成形し、これを切削して、
直径約75mm、厚さ1mmに成形した。
Example 1 A method for producing and evaluating a high frequency low loss thin film having a high saturation magnetic flux density will be described. Cobalt (C
o), iron (Fe), silicon (Si), silicon (B) or C
An alloy composed of o, Fe, niobium (Nb), and zirconium (Zr) was melted in a high-frequency induction electric furnace in an argon atmosphere, then stirred well to form a homogeneous molten alloy, which was cast into a columnar shape. Then, in an arc melting furnace, this is 100m in diameter.
m, molded into a disk shape with a thickness of 10 mm, cut this,
It was molded into a diameter of about 75 mm and a thickness of 1 mm.

【0017】成膜に用いた基板は、厚さ約0.5mm、
幅50mm×長さ50mmのコーニング社製#7059
のガラス上に、ヘキストジャパン社製レジスト#421
0を用い、図1のように100μmのスペースをおいて
矩形状にパターニングしたものである。図1は短径1m
m、長径2mmの場合である。成膜はこの基板に配され
た微小磁性膜の長手方向に対して直角方向に約60Oe
の磁界を永久磁石で印加して行った。微小寸法形状の磁
性膜の集合体は成膜された後、リフトオフ法により形成
した。なお、基板は微小寸法形状にパターニングしたレ
ジストが固化しない程度に水冷した。
The substrate used for film formation has a thickness of about 0.5 mm,
Corning # 7059 with a width of 50 mm and a length of 50 mm
Hoechst Japan resist # 421 on the glass
0 is used to form a rectangular pattern with a space of 100 μm as shown in FIG. Figure 1 is 1m in minor axis
m and the major axis is 2 mm. The film formation is about 60 Oe in the direction perpendicular to the longitudinal direction of the minute magnetic film arranged on this substrate.
Was applied with a permanent magnet. The magnetic film aggregate having a minute size was formed by the lift-off method after being formed. The substrate was water-cooled to such an extent that the resist patterned into a minute size did not solidify.

【0018】CoFeSiB系およびCoNbZr系磁
性薄膜は印加電力200W、アルゴンガス流量30cc
/min、ガス圧3mTで成膜した。絶縁薄膜は、例え
ばSiO、Al、AiN、ZrO、B等のタ
ーゲットを用い、印加電力200W、酸素または窒素濃
度5〜30%のアルゴンとの混合ガスを用い、流量30
cc/min、ガス圧6mTで成膜した。多層膜は上記
条件のもとで所望の膜厚で磁性薄膜と絶縁薄膜を交互に
成膜して作製した。
The CoFeSiB and CoNbZr magnetic thin films have an applied power of 200 W and an argon gas flow rate of 30 cc.
/ Min, the gas pressure was 3 mT. The insulating thin film uses, for example, a target such as SiO 2 , Al 2 O 3 , AiN, ZrO 2 , and B, an applied power of 200 W, a mixed gas of oxygen or argon having a nitrogen concentration of 5 to 30%, and a flow rate of 30.
A film was formed at cc / min and a gas pressure of 6 mT. The multilayer film was produced by alternately forming magnetic thin films and insulating thin films with a desired film thickness under the above conditions.

【0019】作製した微小寸法形状磁性薄膜の集合体を
10mm×50mmの短冊状に切り出し、パラレルライ
ンとネットワークアナライザーを用い、500MHzま
での複素透磁率の周波数特性を測定した。複素透磁率の
実数部(μ′)と虚数部(μ″)との比より高周波特性
を評価した。
The thus-prepared assembly of magnetic thin films of minute dimensions was cut into a strip of 10 mm × 50 mm, and the frequency characteristic of complex magnetic permeability up to 500 MHz was measured using a parallel line and a network analyzer. The high frequency characteristics were evaluated from the ratio of the real part (μ ') and the imaginary part (μ ") of the complex magnetic permeability.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【実施例2】原子濃度で(Co1−xFe84(S
0.480.5216で構成される磁性薄膜とS
iOターゲットを用いて成膜した絶縁薄膜を交互に積
層した多層膜について、鉄濃度を変えた場合の飽和磁化
と200MHzでの複素透磁率の実数部(μ′)および
虚数部 (μ″)の変化を図2に示す。多層膜は磁性薄
膜0.1μm、絶縁薄膜0.05μmを10層積層した
構成になっている。横軸xは原子濃度で(Co1−x
84(Si0.480.5216と表示した
場合のFe濃度を示す。図より複素透磁率の実数部の値
は鉄濃度に対してほぼ一定であるが、虚数部はFe濃度
が増えるほど、すなわち飽和磁束密度が増えるほど、小
さくなっていることがわかる。従って、複素透磁率の実
数部(μ′)と虚数部(μ″)の比、μ′/μ″の値
(性能指数)を大きくする、即ち、損失を低下させるに
は飽和磁束密度の大きいことが要求されることを示して
いる。
Example 2 (Co 1-x Fe x ) 84 (S
i 0.48 B 0.52 ) 16 and a magnetic thin film composed of S
For a multilayer film in which insulating thin films are alternately stacked using an iO 2 target, the saturation magnetization and the real part (μ ′) and imaginary part (μ ″) of the complex permeability at 200 MHz when the iron concentration is changed. 2 shows that the multilayer film has a structure in which a magnetic thin film of 0.1 μm and an insulating thin film of 0.05 μm are laminated in ten layers, and the horizontal axis x is the atomic concentration (Co 1-x F
The Fe concentration in the case of being expressed as e x ) 84 ( Si0.48B0.52 ) 16 is shown. From the figure, it can be seen that the value of the real part of the complex permeability is almost constant with respect to the iron concentration, but the imaginary part becomes smaller as the Fe concentration increases, that is, as the saturation magnetic flux density increases. Therefore, the ratio of the real part (μ ') to the imaginary part (μ ") of complex permeability and the value of μ' / μ" (figure of merit) are increased, that is, the saturation magnetic flux density is large in order to reduce the loss. Is required.

【0022】[0022]

【実施例3】実施例2のように磁性薄膜と絶縁薄膜を積
層した場合の、磁性膜膜厚と絶縁膜膜厚に対する複素透
磁率の実数部と虚数部の比の関係について述べる。一例
として、飽和磁束密度13kGの(Co0.95Fe
0.0582(Si0.60.518軟磁性膜と
SiOをターゲットとして成膜した絶縁薄膜を用いて
積層した場合の磁性膜膜厚と絶縁膜膜厚に対する複素透
磁率の実数部と虚数部の比の関係を図3に示す。積層数
は10層、単位磁性膜の寸法は1mm×2mmの場合で
ある。縦軸が磁性膜の膜厚、横軸が絶縁膜の膜厚、図中
の数字は100MHzでの実数部と虚数部の比の値であ
る。総磁性膜厚が2μmになるように、積層数をかえて
ある。この場合は磁性膜厚0.1μm、絶縁膜0.05
μm近傍で実数部と虚数部の比が一番大きい、即ちこの
膜厚の組み合わせにより、高周波損失が一番小さい磁性
薄膜が得られる。
Third Embodiment The relationship between the ratio of the real part and the imaginary part of the complex permeability to the magnetic film thickness and the insulating film thickness when the magnetic thin film and the insulating thin film are laminated as in the second embodiment will be described. As an example, a saturated magnetic flux density of 13 kG (Co 0.95 Fe
0.05 ) 82 (Si 0.6 B 0.5 ) 18 Soft magnetic film and complex magnetic permeability with respect to film thickness of insulating film when laminated with an insulating thin film formed by targeting SiO 2 The relationship between the real part and the imaginary part of is shown in FIG. The number of laminated layers is 10 and the size of the unit magnetic film is 1 mm × 2 mm. The vertical axis represents the film thickness of the magnetic film, the horizontal axis represents the film thickness of the insulating film, and the numbers in the figure are values of the ratio of the real part and the imaginary part at 100 MHz. The number of stacked layers is changed so that the total magnetic film thickness is 2 μm. In this case, the magnetic film thickness is 0.1 μm and the insulating film is 0.05.
In the vicinity of μm, the ratio of the real part and the imaginary part is the largest, that is, the combination of the film thicknesses gives the magnetic thin film having the smallest high frequency loss.

【0023】[0023]

【実施例4】従来、軟磁性膜をデバイス等に用いる場合
はモールド等により軟磁性特性が劣化しないように磁歪
が零に近い材料が検討されてきた。図4に原子濃度で
(Co1−xFe82(Si0.480.52
18と表示した場合のFe濃度に対する磁歪定数を示
す。成膜の冷却時に基板と磁性膜との熱膨張の違や、大
きい歪みがあること、磁性薄膜が絶縁薄膜と積層される
ことで磁性薄膜にかなりの内部応力が存在しているにも
かかわらず、磁歪が比較的大きい領域で複素透磁率の虚
数部の小さい磁性膜が得られることがわかる。このこと
より、多層膜における高周波損失には、単層膜の場合に
比べて磁歪の影響が少ないことがわかる。
[Embodiment 4] Conventionally, when a soft magnetic film is used in a device or the like, a material having a magnetostriction close to zero has been studied so that the soft magnetic characteristics are not deteriorated by molding or the like. FIG. 4 shows the atomic concentration of (Co 1-x Fe x ) 82 (Si 0.48 B 0.52 ).
The magnetostriction constant with respect to the Fe concentration when indicated as 18 is shown. Despite the fact that there is a large difference in thermal expansion between the substrate and the magnetic film during film formation cooling, large strain, and that the magnetic thin film is laminated with the insulating thin film, there is considerable internal stress in the magnetic thin film. It can be seen that a magnetic film having a small imaginary part of complex magnetic permeability can be obtained in a region where the magnetostriction is relatively large. From this, it can be seen that the high frequency loss in the multilayer film is less affected by magnetostriction than in the case of the single layer film.

【0024】[0024]

【実施例5】高周波で低損失を示す組成(Co0.9
0.182(Si0.550.4518の磁性
薄膜とSiOターゲットを用いて作製した絶縁薄膜と
をそれぞれ0.1μmおよび0.05μmの膜厚で交互
に30層積層し、図5のような巻線型インダクタの磁心
として用いた。磁心の寸法は幅200μm、長さ2mm
である。コイルの厚みは3μm、ライン(L)/スペー
ス(S)は80μm/20μm、巻き数は20ターンで
ある。この場合、コイルと磁心間の絶縁層の膜厚はレジ
ストをキュアし3μmにしてある。
Example 5 A composition showing low loss at high frequencies (Co 0.9 F
e 0.1 ) 82 (Si 0.55 B 0.45 ) 18 magnetic thin film and an insulating thin film formed by using a SiO 2 target are alternately laminated in 30 layers with a thickness of 0.1 μm and 0.05 μm, respectively. Then, it was used as a magnetic core of a wire-wound inductor as shown in FIG. The size of the magnetic core is 200 μm wide and 2 mm long
It is. The thickness of the coil is 3 μm, the line (L) / space (S) is 80 μm / 20 μm, and the number of turns is 20 turns. In this case, the film thickness of the insulating layer between the coil and the magnetic core is set to 3 μm by curing the resist.

【0025】薄膜インダクタのインダクタンスおよび抵
抗の周波数特性を図6に示す。比較のために高周波用磁
性材料で磁歪がほぼ零のCo81Nb16Zr磁性膜
を用いZrOと多層化した磁性膜を磁心として用いた
場合の結果を示す。損失抵抗は高周波領域において、C
81Nb16Zr薄膜を磁心として用いた場合の方
が低周波から増大している。このことは、インダクタの
作製過程でコイルや磁性薄膜の絶縁等により、磁心の内
部応力がたかまっていることが予測されているが、それ
にもかかわらず磁歪が比較的大きいCoFeSiB/S
iO多層膜の損失が小さいことを示している。したが
って、実施例3に述べたように磁性膜の高周波損失にお
よぼす磁歪の影響は小さいと考えられる。
The frequency characteristics of the inductance and resistance of the thin film inductor are shown in FIG. For comparison, the results are shown in the case where a magnetic material for high frequencies, Co 81 Nb 16 Zr 3 magnetic film having almost zero magnetostriction is used and a magnetic film multilayered with ZrO 2 is used as a magnetic core. Loss resistance is C in the high frequency range.
When the 81 Nb 16 Zr 3 thin film is used as a magnetic core, the frequency increases from a low frequency. It is predicted that the internal stress of the magnetic core is increased due to the insulation of the coil and the magnetic thin film during the manufacturing process of the inductor, but nevertheless, CoFeSiB / S having a relatively large magnetostriction is produced.
It shows that the loss of the iO 2 multilayer film is small. Therefore, as described in Example 3, it is considered that the effect of magnetostriction on the high frequency loss of the magnetic film is small.

【0026】[0026]

【実施例6】(Co1−xFe82(Si0.48
0.5218単層膜と、この磁性膜とSiOをタ
ーゲットとし作製した絶縁膜とを多層化した磁性薄膜の
複素透磁率の実数部と虚数部を比較した結果を図7に示
す。多層化により虚数部の値は小さくなり、総磁性膜の
厚さが同じ場合には、多層化により、複素透磁率の実数
部の値を変えることなく虚数部の値を小さくできる。
Example 6 (Co 1-x Fe x ) 82 (Si 0.48 )
B 0.52 ) 18 single layer film, and the result of comparing the real part and the imaginary part of the complex magnetic permeability of the magnetic thin film in which this magnetic film and the insulating film produced by targeting SiO 2 are multilayered are shown in FIG. 7. . The value of the imaginary part becomes small due to the multi-layering, and when the total magnetic film has the same thickness, the value of the imaginary part can be made small without changing the value of the real part of the complex magnetic permeability by the multi-layering.

【0027】[0027]

【実施例7】実施例5のインダクタの挿入損失の周波数
特性について述べる。図8は磁心幅を300μmとし、
同じコイルピッチで巻数をかえ、磁心長さを変えた場合
の挿入損失を周波数に対して示す。磁心の長さを小さく
して、インダクタンス値を小さくしても、磁心の損失抵
抗の増大により共振周波数を高くすることができない。
Seventh Embodiment The frequency characteristics of the insertion loss of the inductor of the fifth embodiment will be described. In FIG. 8, the magnetic core width is 300 μm,
The insertion loss when the number of turns is changed with the same coil pitch and the magnetic core length is changed is shown with respect to frequency. Even if the length of the magnetic core is reduced and the inductance value is reduced, the resonance frequency cannot be increased due to an increase in loss resistance of the magnetic core.

【0028】一方、磁心幅を250μm以下の磁心幅を
用いたインダクタを用い、巻数を変えて、磁心の長さを
変え、インダクタンス値を変えた場合の挿入損失の周波
数特性を図9に示す。磁心の損失抵抗の増加がないため
インダクタンスの低下、即ち、巻数の低下にともない、
共鳴周波数は増大している。この結果は、矩形の磁心を
用いる場合には、磁心の輻に対して、十分長いことが必
要であることを示している。
On the other hand, FIG. 9 shows frequency characteristics of insertion loss when an inductor having a magnetic core width of 250 μm or less is used, the number of turns is changed, the length of the magnetic core is changed, and the inductance value is changed. Since the loss resistance of the magnetic core does not increase, the inductance decreases, that is, the number of turns decreases,
The resonance frequency is increasing. This result shows that when a rectangular magnetic core is used, it must be sufficiently long with respect to the radiation of the magnetic core.

【0029】[0029]

【発明の効果】上記のように、本発明の高周波領域で低
損失を示す多層膜は薄膜インダクタのの高周波領域にお
ける性能指数を向上させ、フィルタ等に用いた場合は挿
入損失の減衰量を増加させることになる。また、高周波
低損失磁性薄膜を用いることにより、高周波での損失抵
抗を低減できるため、高周波デバイスの性能を向上させ
ることができ、その工業的意義は大きい。
As described above, the multilayer film showing low loss in the high frequency region of the present invention improves the performance index of the thin film inductor in the high frequency region, and increases the attenuation of the insertion loss when used in a filter or the like. I will let you. Further, since the loss resistance at high frequencies can be reduced by using the high frequency low loss magnetic thin film, the performance of the high frequency device can be improved, and its industrial significance is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】微小寸法形状およびその集合体の平面形状FIG. 1 Small dimensional shape and planar shape of its aggregate

【図2】(Co1−xFe82(Si0.48
0.5218/SiO多層膜の飽和磁化、複素透磁
率の実数部および虚数部と鉄濃度との関係を示す特性図
FIG. 2 is (Co 1-x Fe x ) 82 (Si 0.48 B
0.52 ) 18 / SiO 2 multilayer magnetization characteristic graph showing the relationship between the saturation magnetization, the real and imaginary parts of the complex permeability and the iron concentration.

【図3】(Co0.95Fe0.0582(Si
0.60.418/SiO多層膜における磁性膜
および絶縁膜の膜厚と複素透磁率の実数部と虚数部の比
との関係を示す特性図
FIG. 3 is (Co 0.95 Fe 0.05 ) 82 (Si
0.6 B 0.4 ) 18 / SiO 2 multilayer film characteristic diagram showing the relationship between the film thickness of the magnetic film and the insulating film and the ratio of the real part and the imaginary part of the complex permeability.

【図4】(Co1−xFe82(Si0.48
0.5218/SiO単層および多層膜の磁歪と鉄
濃度との関係を示す特性図
FIG. 4 is (Co 1-x Fe x ) 82 (Si 0.48 B
0.52 ) 18 / SiO 2 single layer and multi-layered film showing characteristic relationship between magnetostriction and iron concentration

【図5】薄膜インダクタの外観図[Figure 5] External view of thin film inductor

【図6】(Co0.9Fe0.182(Si0.48
0.5218およびCo81Nb16Zr薄膜を
もちいたインダクタの抵抗およびインダクタンスとの関
係を示す特性図
FIG. 6 is (Co 0.9 Fe 0.1 ) 82 (Si 0.48
B 0.52 ) 18 and Co 81 Nb 16 Zr 3 thin-film inductors showing the relationship between resistance and inductance

【図7】(Co1−xFe82(Si0.55
0.4518単層膜および多層膜における複素透磁率
の実数部および虚数部との関係を示す特性図
FIG. 7: (Co 1-x Fe x ) 82 (Si 0.55 B
0.45 ) 18 Characteristic diagram showing the relationship between the real part and the imaginary part of the complex permeability in a single-layer film and a multilayer film

【図8】幅300μmの多層薄膜を磁心としたインダク
タを用いた場合のフィルタの挿入損失と周波数との関係
を示す特性図
FIG. 8 is a characteristic diagram showing the relationship between the insertion loss of a filter and the frequency when an inductor using a multilayer thin film with a width of 300 μm as a magnetic core is used.

【図9】幅200μmの多層薄膜を磁心としたインダク
タを用いた場合のフィルタの挿入損失と周波数との関係
を示す特性図
FIG. 9 is a characteristic diagram showing the relationship between the insertion loss of a filter and the frequency when an inductor using a multilayer thin film having a width of 200 μm as a magnetic core is used.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】磁性薄膜と絶縁薄膜を交互に積層する多層
磁性薄膜において、複素透磁率の実数部の実効値が45
0以上で、かつ実数部と虚数部の比が100MHzで5
0以上または200MHzで20以上を有することを特
徴とする高周波低損失磁性薄膜。
1. In a multilayer magnetic thin film in which magnetic thin films and insulating thin films are alternately laminated, the effective value of the real part of complex permeability is 45.
0 or more and the ratio of the real part and the imaginary part is 5 at 100MHz
A high frequency low loss magnetic thin film having 0 or more or 20 or more at 200 MHz.
【請求項2】飽和磁束密度が12kG以上を有する磁性
薄膜からなることを特徴とする請求項1に記載の高周波
低損失磁性薄膜。
2. The high frequency low loss magnetic thin film according to claim 1, wherein the magnetic thin film has a saturation magnetic flux density of 12 kG or more.
【請求項3】磁性薄膜が、原子濃度で(Co1−xFe
100−z(Si1−y(但し、0.02
<x<0.16、0.3<y<0.7、25<z<1
4)からなる合金またはCo(残部)、8〜20at.
%Nb、2〜5at.%Zr合金からなり、絶縁薄膜が
SiO、Al、ZrO、AlNおよびBNの
うち1種または2種以上を含有した組成物からなること
を特徴とする請求項1または請求項2に記載の高周波低
損失磁性薄膜。
3. The magnetic thin film has an atomic concentration of (Co 1-x Fe
x ) 100-z (Si 1- y By ) z (however, 0.02
<X <0.16, 0.3 <y <0.7, 25 <z <1
4) alloy or Co (the balance), 8 to 20 at.
% Nb, 2-5 at. % Zr alloy, and the insulating thin film is composed of a composition containing one or more of SiO 2 , Al 2 O 3 , ZrO 2 , AlN and BN. The high-frequency low-loss magnetic thin film described in (4).
【請求項4】磁性薄膜をアルゴンガス中で成膜し、絶縁
薄膜をアルゴンガスまたはアルゴン、酸素および窒素の
うち2種以上の混合ガス中で成膜することを特徴とする
請求項1ないし3のいずれか1項に記載の高周波低損失
磁性薄膜。
4. A magnetic thin film is formed in an argon gas, and an insulating thin film is formed in an argon gas or a mixed gas of two or more kinds of argon, oxygen and nitrogen. The high frequency low loss magnetic thin film according to any one of 1.
【請求項5】矩形状磁性薄膜において短辺が50μm以
上1mm以下で、かつ長辺が短辺の1.5倍を越える形
状を有する単体または集合体を形成することを特徴とす
る請求項1ないし4のいずれか1項に記載の高周波低損
失磁性薄膜。
5. A rectangular magnetic thin film having a short side of 50 μm or more and 1 mm or less and a long side of more than 1.5 times the short side is formed, or a single body or an aggregate is formed. 5. A high-frequency low-loss magnetic thin film according to any one of items 1 to 4.
【請求項6】矩形状の長辺方向が磁化困難方向になるよ
うに磁界中成膜することを特徴とする請求項1ないし5
のいずれか1項に記載の高周波低損失磁性薄膜。
6. The film formation in a magnetic field so that the direction of the longer side of the rectangular shape is the direction of hard magnetization.
The high frequency low loss magnetic thin film according to any one of 1.
【請求項7】請求項1ないし6のいずれか1項に記載の
高周波低損失磁性薄膜よりなる薄膜インダクタ。
7. A thin film inductor comprising the high frequency low loss magnetic thin film according to claim 1. Description:
【請求項8】請求項1ないし6のいずれか1項に記載の
高周波低損失磁性薄膜よりなる薄膜トランス。
8. A thin film transformer comprising the high frequency low loss magnetic thin film according to any one of claims 1 to 6.
【請求項9】請求項1ないし6のいずれか1項に記載の
高周波低損失磁性薄膜よりなる磁気センサー。
9. A magnetic sensor comprising the high frequency low loss magnetic thin film according to claim 1. Description:
JP26342395A 1995-09-05 1995-09-05 Magnetic thin film with reduced high-frequency loss Abandoned JPH0974016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26342395A JPH0974016A (en) 1995-09-05 1995-09-05 Magnetic thin film with reduced high-frequency loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26342395A JPH0974016A (en) 1995-09-05 1995-09-05 Magnetic thin film with reduced high-frequency loss

Publications (1)

Publication Number Publication Date
JPH0974016A true JPH0974016A (en) 1997-03-18

Family

ID=17389292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26342395A Abandoned JPH0974016A (en) 1995-09-05 1995-09-05 Magnetic thin film with reduced high-frequency loss

Country Status (1)

Country Link
JP (1) JPH0974016A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769122A1 (en) * 1997-09-29 1999-04-02 Commissariat Energie Atomique METHOD FOR INCREASING THE FREQUENCY OF OPERATION OF A MAGNETIC CIRCUIT AND CORRESPONDING MAGNETIC CIRCUIT
US7752737B2 (en) 2007-07-03 2010-07-13 Fuji Electric Device Technology Co., Ltd. Method for manufacturing a powder magnetic core
US8974608B2 (en) 2007-04-17 2015-03-10 Fuji Electric Co., Ltd. Powder magnetic core and the method of manufacturing the same
CN108701520A (en) * 2016-03-01 2018-10-23 日东电工株式会社 Thin magnetic film and coil module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769122A1 (en) * 1997-09-29 1999-04-02 Commissariat Energie Atomique METHOD FOR INCREASING THE FREQUENCY OF OPERATION OF A MAGNETIC CIRCUIT AND CORRESPONDING MAGNETIC CIRCUIT
WO1999017319A1 (en) * 1997-09-29 1999-04-08 Commissariat A L'energie Atomique Method for increasing the operating frequency of a magnetic circuit and corresponding magnetic circuit
US6940383B2 (en) 1997-09-29 2005-09-06 Commissariat A L'energie Atomique Method for increasing the operating frequency of a magnetic circuit and corresponding magnetic circuit
US8974608B2 (en) 2007-04-17 2015-03-10 Fuji Electric Co., Ltd. Powder magnetic core and the method of manufacturing the same
US7752737B2 (en) 2007-07-03 2010-07-13 Fuji Electric Device Technology Co., Ltd. Method for manufacturing a powder magnetic core
CN108701520A (en) * 2016-03-01 2018-10-23 日东电工株式会社 Thin magnetic film and coil module

Similar Documents

Publication Publication Date Title
KR100627115B1 (en) High-frequency magnetic thin film, composite magnetic thin film, and magnetic device using same
US20080078474A1 (en) Magnetic core using amorphous soft magnetic alloy
US20090004475A1 (en) Magnetic materials made from magnetic nanoparticles and associated methods
JP2011171772A (en) Gapped amorphous metal-based magnetic core
Luborsky Applications of amorphous alloys
US7989095B2 (en) Magnetic layer with nanodispersoids having a bimodal distribution
Zhan et al. Nanocomposite co/sio/sub 2/soft magnetic materials
Luborsky et al. The role of amorphous materials in the magnetics industry
JP2002541331A (en) Magnetic glassy alloys for high frequency applications
Warlimont The impact of amorphous metals on the field of soft magnetic materials
Schaefer et al. Magnetic losses in ferrites and nanocrystalline ribbons for power applications
JPH0974016A (en) Magnetic thin film with reduced high-frequency loss
Kurata et al. Study of thin film micro transformer with high operating frequency and coupling coefficient
JP3420490B2 (en) Noise limiting transformer device and its manufacturing method
Kataoka et al. High frequency permeability of nanocrystalline Fe–Cu–Nb–Si–B single and multilayer films
JPH10270246A (en) Magnetic thin film
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
Miyazaki et al. Magnetic properties of rapidly quenched Fe—Si alloys
JP3091817B2 (en) Micro magnetic element core
JP2004207552A (en) Composite core
JP3638291B2 (en) Low loss core
JP3810881B2 (en) High frequency soft magnetic film
Kurata et al. Solenoid-type thin-film micro-transformer
JPH05101930A (en) Soft magnetic thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Effective date: 20040419

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20040525

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040726

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914

A521 Written amendment

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050107

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050318

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070315