JPH0973018A - Light wave length multiplexer/demultiplexer - Google Patents

Light wave length multiplexer/demultiplexer

Info

Publication number
JPH0973018A
JPH0973018A JP22789995A JP22789995A JPH0973018A JP H0973018 A JPH0973018 A JP H0973018A JP 22789995 A JP22789995 A JP 22789995A JP 22789995 A JP22789995 A JP 22789995A JP H0973018 A JPH0973018 A JP H0973018A
Authority
JP
Japan
Prior art keywords
waveguide
output
input
side slab
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22789995A
Other languages
Japanese (ja)
Inventor
Kimio Inaba
公男 稲葉
Kenji Akiba
健次 秋葉
Naoto Uetsuka
尚登 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22789995A priority Critical patent/JPH0973018A/en
Publication of JPH0973018A publication Critical patent/JPH0973018A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the arrayed waveguides, e.g. comprising a filled groove in the array section
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12026Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence
    • G02B6/12028Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for reducing the temperature dependence based on a combination of materials having a different refractive index temperature dependence, i.e. the materials are used for transmitting light

Abstract

PROBLEM TO BE SOLVED: To provide a light wavelength multiplexer/demultiplexer capable of correcting a central wavelength deviation arising during production. SOLUTION: In a light wavelength multiplexer/demultiplexer provided with a substrate 101, at least one input waveguide 102 formed on the substrate 101, an input side slab waveguide path 103 of a flat plate structure connected to the input waveguide 102, an array waveguide diffraction grating 104 consisting of multiple channels of wave guide paths 113, 114,..., 115 each of which is connected to the input waveguide 102 and has a different waveguide path length Li(i=1, 2, 3,...) from the others by ΔL, an output side slab of a waveguide path 105 connected to the array waveguide diffraction grating 104, and multiple output waveguide paths 106, 107,..., 108 connected to the output side slab of the waveguide path 105, a slit 109 is formed on the array waveguide diffraction grating 104.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光波長合分波器に
関する。
TECHNICAL FIELD The present invention relates to an optical wavelength multiplexer / demultiplexer.

【0002】[0002]

【従来の技術】波長多重伝送技術において、アレイ導波
路型光波長合分波器(以下「アレイ型合分波器」とい
う。)は、特定の波長の光を出力側から取り出すことが
可能である。
2. Description of the Related Art In wavelength division multiplexing technology, an arrayed waveguide type optical wavelength multiplexer / demultiplexer (hereinafter referred to as "array type multiplexer / demultiplexer") is capable of extracting light of a specific wavelength from an output side. is there.

【0003】図4はアレイ導波路回折格子を用いた従来
の1入力N出力の光波長合分波器の平面図である。図5
(a)は図4のA−A線断面図、図5(b)は図4のB
−B線断面図、図5(c)は図4のC−C線断面図、図
5(d)は図4のD−D線断面図である。
FIG. 4 is a plan view of a conventional 1-input / N-output optical wavelength multiplexer / demultiplexer using an arrayed waveguide diffraction grating. FIG.
4A is a sectional view taken along the line AA in FIG. 4, and FIG.
-B line sectional drawing, FIG.5 (c) is CC sectional view taken on the line of FIG. 4, FIG.5 (d) is DD sectional view taken on the line of FIG.

【0004】以下、図4、図5(a)〜図5(d)を用
いて、従来の光波長合分波器の構成について説明する。
The configuration of a conventional optical wavelength multiplexer / demultiplexer will be described below with reference to FIGS. 4 and 5 (a) to 5 (d).

【0005】図4に示すように光波長合分波器は、基板
201 上に形成された入力用導波路202 と、この入力用導
波路202 が入力側(図では左下側)に接続された略扇形
の入力側スラブ導波路203 と、一端が入力側スラブ導波
路203 の出力側(図では右上側)に接続されたアレイ導
波路回折格子204 と、アレイ導波路回折格子204 の他端
が入力側に接続された略扇形の出力側スラブ導波路205
と、出力側スラブ導波路205 の出力側に接続されたN本
の出力用導波路206,207,…,208とから形成されている。
As shown in FIG. 4, the optical wavelength multiplexer / demultiplexer is a substrate
An input waveguide 202 formed on 201, a substantially fan-shaped input side slab waveguide 203 in which the input waveguide 202 is connected to the input side (lower left side in the figure), and one end of the input side slab waveguide An arrayed waveguide diffraction grating 204 connected to the output side (upper right side in the figure) of 203, and a substantially fan-shaped output side slab waveguide 205 having the other end of the arrayed waveguide diffraction grating 204 connected to the input side.
, And N output waveguides 206, 207, ..., 208 connected to the output side of the output side slab waveguide 205.

【0006】図5(a)〜図5(d)に示すように光波
長合分波器は、基板201 上にバッファ層209 を形成し、
バッファ層209 の上に、バッファ層209 よりもわずかに
屈折率の高い材料でコア210 を形成し、さらにコア210
をコア210 よりもわずかに屈折率の低いクラッド211 で
覆うことにより、入力用導波路202 (図5(a)),ス
ラブ導波路203 (図5(b))、アレイ導波路回折格子
204 (図5(c))及び出力用導波路206,207,…,208
(図5(d))を形成したものである。
As shown in FIGS. 5A to 5D, the optical wavelength multiplexer / demultiplexer has a buffer layer 209 formed on a substrate 201.
A core 210 is formed on the buffer layer 209 with a material having a slightly higher refractive index than that of the buffer layer 209.
By covering the core with a clad 211 having a refractive index slightly lower than that of the core 210, the input waveguide 202 (FIG. 5 (a)), the slab waveguide 203 (FIG. 5 (b)), the arrayed waveguide diffraction grating
204 (FIG. 5C) and output waveguides 206, 207, ..., 208
(FIG. 5D) is formed.

【0007】また、アレイ導波路回折格子204 は、長さ
i(i=1,2,3,…)がΔLずつ異なる(例えば
i=Li+1−ΔL)複数本のチャネル導波路212,213,
…,214により構成されている。また、入力側スラブ導波
路203 、出力側スラブ導波路205 は膜厚方向にのみ閉じ
込め効果をもつ平板構造をしている。
The arrayed waveguide diffraction grating 204 has a plurality of channel waveguides whose lengths L i (i = 1, 2, 3, ...) Are different by ΔL (for example, L i = L i + 1 −ΔL). 212,213,
…, 214. The input-side slab waveguide 203 and the output-side slab waveguide 205 have a flat plate structure having a confining effect only in the film thickness direction.

【0008】図6(a)は出力側スラブ導波路端面での
光強度の波形を示し、図6(b)は図6(a)に示した
波形の位置に対応した出力側スラブ導波路の端面を示す
図である(図5(d)を簡略化した図でもある)。
FIG. 6A shows the waveform of the light intensity at the end face of the output side slab waveguide, and FIG. 6B shows the waveform of the output side slab waveguide corresponding to the position of the waveform shown in FIG. 6A. It is a figure which shows an end surface (it is also the figure which simplified FIG.5 (d)).

【0009】以下、図4、図6(a)、(b)を用い
て、アレイ導波路回折格子型の光波長合分波器の動作原
理を示す。
The operation principle of the arrayed waveguide diffraction grating type optical wavelength multiplexer / demultiplexer will be described below with reference to FIGS. 4, 6A and 6B.

【0010】波長λ1 −λN のN波が多重されている波
長多重光215 は、入力用導波路202に続く入力側スラブ
導波路203 において回折効果により広げられた後、さら
に入力側スラブ導波路203 に続くアレイ導波路回折格子
204 を構成する複数個のチャネル導波路211,212,…,213
内に伝搬され、アレイ導波路回折格子204 に接続された
出力側スラブ導波路205 に導入される。
The wavelength-multiplexed light 215 in which N waves of wavelengths λ 1N are multiplexed is spread by the diffraction effect in the input-side slab waveguide 203 following the input waveguide 202, and then further input-side slab guide is performed. Arrayed waveguide grating following waveguide 203
A plurality of channel waveguides 211, 212, ..., 213 constituting 204
It is propagated in and introduced into the output side slab waveguide 205 connected to the arrayed waveguide diffraction grating 204.

【0011】ここで、アレイ導波路回折格子204 に導入
された光は、各チャネル導波路211,212,…,213の長さL
iがそれぞれ異なるために、光束の位相がずれる。この
位相ずれは波長分散をもつため、出力側スラブ導波路20
5 の端面216 において、各波長の集光ビーム61,62,…,6
3 は、それぞれx1 , x2 , …, xN に集光する(図6
(a))。そのため、波長λ1 〜λN を、それぞれ出力
用導波路206,207,…,208に分波することができる。
Here, the light introduced into the arrayed waveguide diffraction grating 204 is the length L of each channel waveguide 211, 212, ..., 213.
Since i is different from each other, the phases of the light beams are deviated. Since this phase shift has chromatic dispersion, the output side slab waveguide 20
Focused beams 61, 62,…, 6 of each wavelength at the end face 216 of 5
3 is focused on x 1 , x 2 , ..., x N , respectively (Fig. 6).
(A)). Therefore, the wavelengths λ 1 to λ N can be demultiplexed into the output waveguides 206, 207, ..., 208, respectively.

【0012】図7は各出力用導波路における集光ビーム
と導波モードとの関係を示す波長損失特性図であり、横
軸が端面216 (図4参照)上の集光位置を示し、縦軸が
光強度を示している。図8は出力用導波路の波長損失特
性図であり、横軸が波長を示し、縦軸が損失を示してい
る。
FIG. 7 is a wavelength loss characteristic diagram showing the relationship between the focused beam and the guided mode in each output waveguide, where the horizontal axis indicates the focusing position on the end face 216 (see FIG. 4), and the vertical axis indicates the vertical direction. The axis shows the light intensity. FIG. 8 is a wavelength loss characteristic diagram of the output waveguide, in which the horizontal axis represents wavelength and the vertical axis represents loss.

【0013】以下、一例として第i出力用導波路の波長
損失特性について図7及び図8を参照して説明する。
As an example, the wavelength loss characteristic of the i-th output waveguide will be described below with reference to FIGS. 7 and 8.

【0014】図7において出力側スラブ導波路205 の端
面216 における集光ビーム218 はその波長により集光位
置xがシフトする。このとき、出力用導波路に結合する
光の強度は、第i出力用導波路の導波モード219 の曲線
と集光ビーム218 の曲線とが囲む重畳部分(図の網点
部)220 の積分で現される。そのため、波長のシフト
(矢印P1 )とともに集光位置xがシフトすると、徐々
に重畳部分220 の積分値が大きくなり、損失が小さくな
る。
In FIG. 7, the focus position x of the focused beam 218 on the end face 216 of the output side slab waveguide 205 is shifted depending on its wavelength. At this time, the intensity of the light coupled to the output waveguide is the integral of the overlap portion (dotted area) 220 surrounded by the curve of the waveguide mode 219 of the i-th output waveguide and the curve of the focused beam 218. Is represented by. Therefore, when the focusing position x shifts with the shift of the wavelength (arrow P 1 ), the integrated value of the superposed portion 220 gradually increases and the loss decreases.

【0015】図8において実線で示す曲線221 は第i出
力用導波路の損失波長特性を示し、破線で示す曲線225
は第i+1出力用導波路の損失波長特性を示し、一点鎖
線で示す曲線224 は第i−1出力用導波路の損失波長特
性を示している。また、帯域226 は第i出力用導波路の
使用帯域を示している。
In FIG. 8, a curve 221 shown by a solid line shows a loss wavelength characteristic of the i-th output waveguide, and a curve 225 shown by a broken line.
Shows the loss wavelength characteristic of the (i + 1) th output waveguide, and the curve 224 indicated by the alternate long and short dash line shows the loss wavelength characteristic of the (i-1) th output waveguide. A band 226 indicates a band used by the i-th output waveguide.

【0016】波長がさらにシフトすると波長λi で最小
となり、その後は徐々に大きくなる。そのため、損失波
長特性の曲線221 は波長λi で最小値をもつような形状
となる。ここで、前述した波長の最小値から3dB上が
ったところを3dB帯域幅223 と呼び、以後この3dB
帯域幅の中心の波長を中心波長222 と定義する。尚、22
7 はクロストークである。
When the wavelength shifts further, it becomes minimum at the wavelength λ i , and thereafter becomes gradually larger. Therefore, the loss wavelength characteristic curve 221 has a shape having a minimum value at the wavelength λ i . Here, the point where 3 dB is increased from the above-mentioned minimum value of wavelength is referred to as 3 dB bandwidth 223.
The central wavelength of the bandwidth is defined as the central wavelength 222. 22
7 is crosstalk.

【0017】[0017]

【発明が解決しようとする課題】しかしながら、従来の
アレイ導波路回折格子型光合分波器には次のような問題
があった。
However, the conventional arrayed waveguide diffraction grating type optical multiplexer / demultiplexer has the following problems.

【0018】各出力ポートからの出射光の中心波長は、
ある所望の値になることを必要とされ、この中心波長か
らのずれは0.1nm以下が要求される。出射光の中心
波長は製造段階で生じるアレイ導波路回折格子の光路長
差やチャネル導波路のコアの太さ等のバラツキにより、
目的とした中心波長からずれが生じ、歩留まり低下の原
因となっていた。
The center wavelength of the light emitted from each output port is
It is required to have a desired value, and the deviation from the center wavelength is required to be 0.1 nm or less. The center wavelength of the emitted light varies due to variations in the optical path length of the arrayed waveguide diffraction grating and the thickness of the core of the channel waveguide that occur at the manufacturing stage.
There was a deviation from the intended center wavelength, which was a cause of yield reduction.

【0019】そこで、本発明の目的は、上記課題を解決
し、製造段階で生じる中心波長ずれを補正することがで
きる光波長合分波器を提供することにある。
Therefore, an object of the present invention is to solve the above problems and to provide an optical wavelength multiplexer / demultiplexer capable of correcting the central wavelength shift occurring in the manufacturing stage.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明は、基板と、基板上に形成された少なくとも1
本の入力用導波路と、入力用導波路に接続され平板構造
を有する入力側スラブ導波路と、入力用導波路に接続さ
れΔLずつ異なる導波路長Li(i=1,2,3,…)
の複数のチャネル導波路からなるアレイ導波路回折格子
と、アレイ導波路回折格子に接続された出力側スラブ導
波路と、出力側スラブ導波路に接続された複数本の出力
用導波路とを備えた光波長合分波器において、アレイ導
波路回折格子にスリットを形成したものである。
In order to achieve the above object, the present invention comprises a substrate and at least one substrate formed on the substrate.
Book input waveguide, an input-side slab waveguide connected to the input waveguide and having a flat plate structure, and a waveguide length L i (i = 1, 2, 3,) connected to the input waveguide and different by ΔL. …)
An arrayed-waveguide diffraction grating consisting of a plurality of channel waveguides, an output-side slab waveguide connected to the arrayed-waveguide diffraction grating, and a plurality of output-use waveguides connected to the output-side slab waveguide. In this optical wavelength multiplexer / demultiplexer, slits are formed in the arrayed waveguide diffraction grating.

【0021】また本発明は、基板と、基板上に形成され
た少なくとも1本の入力用導波路と、入力用導波路に接
続され平板構造を有する入力側スラブ導波路と、入力用
導波路に接続されΔLずつ異なる導波路長Li(i=
1,2,3,…)の複数のチャネル導波路からなるアレ
イ導波路回折格子と、アレイ導波路回折格子に接続され
た出力側スラブ導波路と、出力側スラブ導波路に接続さ
れた複数本の出力用導波路とを備えた光波長合分波器に
おいて、アレイ導波路回折格子にスリットを形成し、こ
のスリットの幅を各光路で異なるようにしたものであ
る。
The present invention also provides a substrate, at least one input waveguide formed on the substrate, an input-side slab waveguide connected to the input waveguide and having a flat plate structure, and an input waveguide. Waveguide lengths L i (i =
, 1, 2, 3, ...) Array waveguide diffraction grating consisting of a plurality of channel waveguides, an output-side slab waveguide connected to the array waveguide diffraction grating, and a plurality of output-side slab waveguides connected to the output-side slab waveguide In the optical wavelength multiplexer / demultiplexer provided with the output waveguide, the slit is formed in the arrayed waveguide diffraction grating, and the width of the slit is made different in each optical path.

【0022】上記構成に加え本発明は、スリットに所望
の屈折率を持つ整合剤を注入してもよい。
In addition to the above structure, in the present invention, a matching agent having a desired refractive index may be injected into the slit.

【0023】上記構成によって、アレイ導波路回折格子
のチャネル導波路を伝搬する光がスリットを通過して対
向するチャネル導波路に入射する際にスリットによって
光路長差が生じ、出力ポートから出射される光の波長が
変化する。スリット内に整合剤を注入することにより光
路長差がさらに変化して出力ポートから出射される光の
波長を所望の波長にすることができる。
With the above structure, when the light propagating through the channel waveguide of the arrayed-waveguide diffraction grating passes through the slit and enters the opposing channel waveguide, a slit causes an optical path length difference and is emitted from the output port. The wavelength of light changes. By injecting the matching agent into the slit, the optical path length difference is further changed, and the wavelength of the light emitted from the output port can be set to a desired wavelength.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0025】図1は本発明の光波長合分波器の一実施の
形態を示す平面図である。
FIG. 1 is a plan view showing an embodiment of an optical wavelength multiplexer / demultiplexer according to the present invention.

【0026】この光波長合分波器は、波長間隔ΔLの光
信号を合分波するための、アレイ導波路回折格子型の光
波長合分波器である。光波長合分波器は、石英系ガラス
基板(以下「基板」という。)101 上に、光ファイバ99
から波長多重光100 が入射される入力用導波路102 と、
入力側(図では左下側)が入力用導波路102 に接続され
た略扇形の入力側スラブ導波路103 と、一端が入力側ス
ラブ導波路103 の出力側(図では右上側)に接続された
アレイ導波路回折格子104 と、アレイ導波路回折格子10
4 の他端に入力側(図では左上側)が接続された略扇形
の出力側スラブ導波路105 と、出力側スラブ導波路105
の出力側(図では右下側)に接続された出力用導波路10
6,107,…,108とが形成されており、かつ、アレイ導波路
回折格子104 に屈折率制御用のスリット(溝)109 が形
成されたものである。
This optical wavelength multiplexer / demultiplexer is an arrayed waveguide grating type optical wavelength multiplexer / demultiplexer for multiplexing / demultiplexing an optical signal having a wavelength interval ΔL. The optical wavelength multiplexer / demultiplexer is composed of a quartz glass substrate (hereinafter referred to as “substrate”) 101 and an optical fiber 99.
An input waveguide 102 on which wavelength-multiplexed light 100 is incident from
The input side (lower left side in the figure) is a fan-shaped input side slab waveguide 103 connected to the input waveguide 102, and one end is connected to the output side (upper right side in the figure) of the input side slab waveguide 103. Array waveguide diffraction grating 104 and array waveguide diffraction grating 10
The output side slab waveguide 105 and the output side slab waveguide 105 that are connected to the input side (upper left side in the figure) to the other end of 4
Output waveguide 10 connected to the output side (lower right side in the figure) of
, 107, and 108, and a slit (groove) 109 for controlling the refractive index is formed in the arrayed waveguide diffraction grating 104.

【0027】この光波長合分波器は、図4に示した従来
の光波長合分波器と同様に、基板101 の上に、バッファ
層(209) を形成し、バッファ層(209) よりもわずかに屈
折率の高い材料でコア(210) を形成し、さらにコア(21
0) をコア(210) よりもわずかに屈折率の低いクラッド
(211) で覆ったものである。
This optical wavelength multiplexer / demultiplexer is similar to the conventional optical wavelength multiplexer / demultiplexer shown in FIG. 4 except that a buffer layer (209) is formed on a substrate 101 and the buffer layer (209) Core (210) from a material with a slightly higher refractive index.
(0) is a cladding with a slightly lower refractive index than the core (210)
It is covered with (211).

【0028】入力用導波路102 は、矩型断面構造をもつ
チャネル導波路で、入力側スラブ導波路103 の直前にお
いて、コア幅が入力側スラブ導波路103 に向かって緩や
かに拡大するようなテーパ構造を有している。
The input waveguide 102 is a channel waveguide having a rectangular cross-section structure, and a taper whose core width is gradually expanded toward the input side slab waveguide 103 immediately before the input side slab waveguide 103. It has a structure.

【0029】入力側スラブ導波路103 は横方向(基板表
面に沿った方向、すなわち紙面に平行な方向)に閉じ込
め構造がない平板構造を有している。アレイ導波路回折
格子104 側の端面111 は、入力用導波路102 と入力側ス
ラブ導波路103 との接続点に曲率中心112 をもつ円弧形
状を有している。
The input side slab waveguide 103 has a flat plate structure having no confinement structure in the lateral direction (direction along the substrate surface, that is, direction parallel to the paper surface). The end face 111 on the arrayed waveguide diffraction grating 104 side has an arc shape having a curvature center 112 at the connection point between the input waveguide 102 and the input side slab waveguide 103.

【0030】アレイ導波路回折格子104 は矩形断面をも
つ複数のチャネル導波路113,114,…,115で構成されてい
る。それぞれのチャネル導波路113,114,…,115は長さL
iはΔL(一定値)ずつ異なり、長さの順に配置されて
いる(例えばLi=Li+1−ΔL)、i=1,2,3,
…)。これらのチャネル導波路113,114,…,115の寸法は
使用する波長帯域においてシングルモード条件を満足す
るように設計されている。また、入力側スラブ導波路10
3 の出力側付近では、コア幅が入力側スラブ導波路103
に向かって緩やかに拡大するようなテーパ構造をもち、
入力側スラブ導波路103 のアレイ導波路回折格子104 側
の端面111 の曲率中心112 から放射状に配置されてい
る。また、出力側スラブ導波路1O5 の入力側付近におい
ても、同様にコア幅が出力側スラブ導波路1O5 に向かっ
て緩やかに拡大するようなテーパ構造をもち、出力側ス
ラブ導波路105 のアレイ導波路回折格子104 側の端面11
6 の曲率中心119 から放射状に配置されている。
The arrayed waveguide diffraction grating 104 is composed of a plurality of channel waveguides 113, 114, ..., 115 having a rectangular cross section. The length of each channel waveguide 113, 114, ..., 115 is L
i is different by ΔL (constant value) and arranged in the order of length (for example, L i = L i + 1 −ΔL), i = 1, 2, 3,
…). The dimensions of these channel waveguides 113, 114, ..., 115 are designed to satisfy the single mode condition in the wavelength band used. In addition, the input side slab waveguide 10
In the vicinity of the output side of 3, the core width is
It has a taper structure that gradually expands toward
The input side slab waveguide 103 is arranged radially from the center of curvature 112 of the end face 111 on the array waveguide diffraction grating 104 side. Also, in the vicinity of the input side of the output side slab waveguide 1O5, the core width also has a taper structure that gradually expands toward the output side slab waveguide 1O5, and the array waveguide of the output side slab waveguide 105 is also provided. End face 11 on the side of the diffraction grating 104
They are arranged radially from the center of curvature 119.

【0031】また、アレイ導波路回折格子104 上のスリ
ット109 は各光路長差がΔlとなるように形成されてい
る。このスリット109 にはチャネル導波路113,114,…,1
15の屈折率と若干異なる整合剤としての接着剤(例えば
紫外線硬化型エポキシ系接着剤等) 110 が注入されて硬
化している。
The slits 109 on the arrayed waveguide diffraction grating 104 are formed so that the optical path length difference is Δl. Channel slits 113, 114, ..., 1 are provided in this slit 109.
An adhesive (for example, an ultraviolet curable epoxy adhesive) 110 as a matching agent, which is slightly different from the refractive index of 15, is injected and cured.

【0032】出力側スラブ導波路1O5 は、入力側スラブ
導波路103 と同様に、横方向に閉じ込め構造がない平板
構造である。アレイ導波路回折格子104 側の端面116
は、出力用導波路106,107,…,108と出力側スラブ導波路
1O5 との接続面に曲率中心119をもつ円弧形状をしてい
る。また、出力用導波路106,107,…,108側の端面118
は、アレイ導波路回折格子104 側の端面116 上に曲率中
心117 をもつような円弧形状を有している。
The output-side slab waveguide 1O5, like the input-side slab waveguide 103, has a flat plate structure having no lateral confinement structure. Array waveguide diffraction grating 104 end face 116
, The output waveguides 106, 107, ..., 108 and the output side slab waveguide
It has an arc shape with a center of curvature 119 on the connection surface with 1O5. Further, the end face 118 on the side of the output waveguides 106, 107, ...
Has an arc shape having a center of curvature 117 on the end surface 116 on the arrayed waveguide diffraction grating 104 side.

【0033】出力用導波路106,107,…,108は、矩形断面
をもつN本のチャネル導波路で構成されている。出力用
導波路106,107,…,108は出力側スラブ導被路1O5 の出力
側付近では直線形状をもち、出力用導波路106,107,…,1
08側の端面118 に沿つて、角度Δθの間隔で、その曲率
中心117 から放射状に配置されている。
The output waveguides 106, 107, ..., 108 are composed of N channel waveguides having a rectangular cross section. The output waveguides 106, 107, ..., 108 have a linear shape near the output side of the output side slab guided path 1O5, and the output waveguides 106, 107 ,.
Along the end face 118 on the 08 side, they are arranged radially from the center of curvature 117 at intervals of an angle Δθ.

【0034】以下、図2及び図3を用いて、図1に示し
た光波長合分波器の中心波長制御方法について説明す
る。
The center wavelength control method of the optical wavelength multiplexer / demultiplexer shown in FIG. 1 will be described below with reference to FIGS. 2 and 3.

【0035】アレイ導波路回折格子型の光波長合分波器
はスリット109 が形成されていない場合、出力ポートの
中央から出射する光の中心波長λ1 は数1式で表され
る。
In the arrayed-waveguide diffraction grating type optical wavelength multiplexer / demultiplexer, when the slit 109 is not formed, the central wavelength λ 1 of the light emitted from the center of the output port is expressed by the equation (1).

【0036】[0036]

【数1】λ1 =ΔL・Neff /m ここでmは回折次数、Neff は等価屈折率、ΔLは各チ
ャネルの光路長差を示す。
## EQU1 ## λ 1 = ΔLN eff / m where m is the diffraction order, N eff is the equivalent refractive index, and ΔL is the optical path length difference of each channel.

【0037】チャネル導波路113,114,…,115にスリット
109 を形成し、このスリット109 中に異なる屈折率を持
つ接着剤110 を用いることにより、同じ出力ポートから
出射される光の中心波長λ2 は数2式へと変化する。
Slits in the channel waveguides 113, 114, ..., 115
By forming 109 and using an adhesive 110 having a different refractive index in this slit 109, the central wavelength λ 2 of the light emitted from the same output port is changed to the formula (2).

【0038】[0038]

【数2】 λ2 ={(ΔL−Δl)・Neff +Δl・Neffa}/m ここでNeffaは接着剤110 の屈折率、Δlはスリット10
9 の各チャネル導波路113,114,…,115の光路長差を示
す。これにより、屈折率変化後の波長シフトΔλは、N
effa−Neff =Δnとすると数3式で現される。
[Number 2] λ 2 = {(ΔL-Δl ) · N eff + Δl · N effa} / m where N effa the refractive index of the adhesive 110, .DELTA.l slit 10
9 shows the optical path length difference between the channel waveguides 113, 114, ..., 115 in FIG. Accordingly, the wavelength shift Δλ after the change of the refractive index is N
If effa −N eff = Δn, then this is expressed by Equation 3.

【0039】[0039]

【数3】Δλ=λ2 一λ1 =Δl・Δn/m すなわち、スリット109 に注入された接着剤110 の光路
長差Δlを変えることより、出力ポートから出射される
光の波長を変化させることができる。
## EQU3 ## Δλ = λ 2 1 λ 1 = ΔlΔn / m That is, the wavelength of the light emitted from the output port is changed by changing the optical path length difference Δl of the adhesive 110 injected into the slit 109. be able to.

【0040】図2は基板の屈折率に対するスリットの屈
折率を示す図であり、横軸は波長を示し、縦軸は損失を
示す。
FIG. 2 is a diagram showing the refractive index of the slit with respect to the refractive index of the substrate. The horizontal axis represents wavelength and the vertical axis represents loss.

【0041】同図において、実線で示す曲線Laは、ス
リット109 内の接着剤110 の屈折率が基板101 の屈折率
と同じ場合の損失波長特性を示している。破線で示す曲
線Lbと、一点鎖線で示す曲線Lcは、スリット109 内
の接着剤110 の屈折率が基板101 の屈折率と異なる場合
の損失波長特性を示している。また、λaはスリット10
9 内の接着剤110 の屈折率n1 が基板101 の屈折率n0
と同じ場合の中心波長である。λbはスリット109 内の
接着剤110 の屈折率n1 を基板101 の屈折率n0 より小
さくした場合の中心波長である。λcはスリット109 内
の接着剤110 の屈折率n1 を基板101 の屈折率n0 より
大きくした場合の中心波長である。
In the same figure, a curve La shown by a solid line shows the loss wavelength characteristic when the refractive index of the adhesive 110 in the slit 109 is the same as the refractive index of the substrate 101. A curved line Lb indicated by a broken line and a curved line Lc indicated by an alternate long and short dash line show loss wavelength characteristics when the refractive index of the adhesive 110 in the slit 109 is different from that of the substrate 101. Also, λa is the slit 10
The refractive index n 1 of the adhesive 110 in 9 is the refractive index n 0 of the substrate 101.
Is the center wavelength in the same case as. λb is the center wavelength when the refractive index n 1 of the adhesive 110 in the slit 109 is smaller than the refractive index n 0 of the substrate 101. λc is the center wavelength when the refractive index n 1 of the adhesive 110 in the slit 109 is made larger than the refractive index n 0 of the substrate 101.

【0042】図3は回折次数mを80とし、Δlを0.
5μmとし、スリット内の接着剤の屈折率を変えたとき
の中心波長のシフト量を示す図である。
In FIG. 3, the diffraction order m is 80, and Δl is 0.
FIG. 5 is a diagram showing the shift amount of the central wavelength when the refractive index of the adhesive in the slit is changed to 5 μm.

【0043】屈折率差は基板101 の屈折率n0 がスリッ
ト109 内の接着剤110 の屈折率より小さい時には、中心
波長は短波長側へシフトし、その逆の場合には長波長側
へシフトする(図2)。
The refractive index difference is such that when the refractive index n 0 of the substrate 101 is smaller than the refractive index of the adhesive 110 in the slit 109, the center wavelength shifts to the short wavelength side, and in the opposite case, it shifts to the long wavelength side. (Fig. 2).

【0044】屈折率差を0から0.05まで変化させる
と中心波長は0から0.3nm程度まで変化することが
分かる。
It can be seen that when the refractive index difference is changed from 0 to 0.05, the center wavelength is changed from 0 to 0.3 nm.

【0045】以上において本実施の形態によれば、アレ
イ導波路回折格子にスリットを形成したので、製造段階
で生じる中心波長ずれを補正することができる光波長合
分波器を実現することができる。
As described above, according to the present embodiment, since the slits are formed in the arrayed waveguide diffraction grating, it is possible to realize the optical wavelength multiplexer / demultiplexer capable of correcting the center wavelength shift occurring in the manufacturing stage. .

【0046】尚、上述した実施の形態では、石英系ガラ
ス基板を用いた場合について説明したが、これに限定さ
れず他の光透過性材料(例えば半導体、LiNbO
3 等) を用いたアレイ導波路回折格子型の波長合分波器
を形成してもよい。
In the above-described embodiments, the case where the quartz glass substrate is used has been described, but the present invention is not limited to this, and other light transmissive materials (for example, semiconductor, LiNbO 2) are used.
(3 etc.) may be used to form an arrayed waveguide grating type wavelength multiplexer / demultiplexer.

【0047】また、中心波長制御に基板と屈折率の若干
異なるエポキシ系接着剤を用いたが、光透過性があり、
所望の屈折率を持つ材料(例えば低温ガラス)を用いて
も同様の効果が得られる。
Further, an epoxy adhesive having a refractive index slightly different from that of the substrate was used for controlling the center wavelength, but it has light transmittance,
The same effect can be obtained by using a material having a desired refractive index (for example, low temperature glass).

【0048】[0048]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0049】光波長合分波器において、アレイ導波路回
折格子にスリットを形成したので、製造段階で生じる中
心波長ずれを補正することができる光波長合分波器を実
現することができる。
In the optical wavelength multiplexer / demultiplexer, since the slits are formed in the arrayed waveguide diffraction grating, it is possible to realize the optical wavelength multiplexer / demultiplexer capable of correcting the center wavelength shift occurring in the manufacturing stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光波長合分波器の一実施の形態を示す
平面図である。
FIG. 1 is a plan view showing an embodiment of an optical wavelength multiplexer / demultiplexer according to the present invention.

【図2】基板の屈折率に対するスリットの屈折率を示す
図である。
FIG. 2 is a diagram showing a refractive index of a slit with respect to a refractive index of a substrate.

【図3】回折次数mを80とし、Δlを0.5μmと
し、スリット内の接着剤の屈折率を変えたときの中心波
長のシフト量を示す図である。
FIG. 3 is a diagram showing the shift amount of the center wavelength when the diffraction order m is 80, Δl is 0.5 μm, and the refractive index of the adhesive in the slit is changed.

【図4】アレイ導波路回折格子を用いた従来の1入力N
出力の光波長合分波器の平面図である。
FIG. 4 is a conventional one-input N using an arrayed-waveguide diffraction grating.
It is a top view of an output optical wavelength multiplexer / demultiplexer.

【図5】(a)は図4のA−A線断面図、(b)は図4
のB−B線断面図、(c)は図4のC−C線断面図、
(d)は図4のD−D線断面図である。
5A is a sectional view taken along the line AA of FIG. 4, and FIG.
4 is a sectional view taken along the line BB of FIG. 4, (c) is a sectional view taken along the line CC of FIG.
(D) is the DD sectional view taken on the line of FIG.

【図6】(a)は出力側スラブ導波路端面での光強度の
波形を示し、(b)は(a)に示した波形の位置に対応
した出力側スラブ導波路の端面を示す図である。
6A is a diagram showing a waveform of light intensity at the end face of the output side slab waveguide, and FIG. 6B is a diagram showing an end face of the output side slab waveguide corresponding to the position of the waveform shown in FIG. 6A. is there.

【図7】各出力用導波路における集光ビームと導波モー
ドとの関係を示す波長損失特性図である。
FIG. 7 is a wavelength loss characteristic diagram showing a relationship between a focused beam and a waveguide mode in each output waveguide.

【図8】出力用導波路の波長損失特性図である。FIG. 8 is a wavelength loss characteristic diagram of the output waveguide.

【符号の説明】[Explanation of symbols]

101 基板 102 入力用導波路 103 入力側スラブ導波路 113,114,…,115 チャネル導波路 104 アレイ導波路回折格子 105 出力側スラブ導波路 109 スリット 101 substrate 102 input waveguide 103 input slab waveguide 113,114, ..., 115 channel waveguide 104 array waveguide diffraction grating 105 output slab waveguide 109 slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成された少なくと
も1本の入力用導波路と、該入力用導波路に接続され平
板構造を有する入力側スラブ導波路と、上記入力用導波
路に接続されΔLずつ異なる導波路長Li(i=1,
2,3,…)の複数のチャネル導波路からなるアレイ導
波路回折格子と、該アレイ導波路回折格子に接続された
出力側スラブ導波路と、該出力側スラブ導波路に接続さ
れた複数本の出力用導波路とを備えた光波長合分波器に
おいて、上記アレイ導波路回折格子にスリットを形成し
たことを特徴とする光波長合分波器。
1. A substrate, at least one input waveguide formed on the substrate, an input-side slab waveguide connected to the input waveguide and having a flat plate structure, and the input waveguide. Wavelength lengths L i (i = 1,
2, 3, ...) Arrayed-waveguide diffraction gratings composed of a plurality of channel waveguides, an output-side slab waveguide connected to the arrayed-waveguide diffraction grating, and a plurality of output-side slab waveguides connected to the output-side slab waveguide In the optical wavelength multiplexer / demultiplexer having the output waveguide, a slit is formed in the arrayed waveguide diffraction grating.
【請求項2】 基板と、該基板上に形成された少なくと
も1本の入力用導波路と、該入力用導波路に接続され平
板構造を有する入力側スラブ導波路と、上記入力用導波
路に接続されΔLずつ異なる導波路長Li(i=1,
2,3,…)の複数のチャネル導波路からなるアレイ導
波路回折格子と、該アレイ導波路回折格子に接続された
出力側スラブ導波路と、該出力側スラブ導波路に接続さ
れた複数本の出力用導波路とを備えた光波長合分波器に
おいて、上記アレイ導波路回折格子にスリットを形成
し、このスリットの幅を各光路で異なるようにしたこと
を特徴とする波長合分波器。
2. A substrate, at least one input waveguide formed on the substrate, an input-side slab waveguide connected to the input waveguide and having a flat plate structure, and the input waveguide. Wavelength lengths L i (i = 1,
2, 3, ...) Arrayed-waveguide diffraction gratings composed of a plurality of channel waveguides, an output-side slab waveguide connected to the arrayed-waveguide diffraction grating, and a plurality of output-side slab waveguides connected to the output-side slab waveguide In the optical wavelength multiplexer / demultiplexer provided with the output waveguide, a slit is formed in the arrayed waveguide diffraction grating, and the width of the slit is made different in each optical path. vessel.
【請求項3】 上記スリットに所望の屈折率を持つ整合
剤を注入した請求項1又は2記載の光波長合分波器。
3. The optical wavelength multiplexer / demultiplexer according to claim 1, wherein a matching agent having a desired refractive index is injected into the slit.
JP22789995A 1995-09-05 1995-09-05 Light wave length multiplexer/demultiplexer Pending JPH0973018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22789995A JPH0973018A (en) 1995-09-05 1995-09-05 Light wave length multiplexer/demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22789995A JPH0973018A (en) 1995-09-05 1995-09-05 Light wave length multiplexer/demultiplexer

Publications (1)

Publication Number Publication Date
JPH0973018A true JPH0973018A (en) 1997-03-18

Family

ID=16868060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22789995A Pending JPH0973018A (en) 1995-09-05 1995-09-05 Light wave length multiplexer/demultiplexer

Country Status (1)

Country Link
JP (1) JPH0973018A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019254A1 (en) * 1998-09-25 2000-04-06 The Furukawa Electric Co., Ltd. Optical wavelength multiplexer/demultiplexer
EP1045264A1 (en) * 1998-10-22 2000-10-18 The Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer
KR100343559B1 (en) * 2000-02-24 2002-07-20 영 철 정 Flat Passband Arrayed Waveguide Grating Wavelength Router Based on Fourier Optics and Misaligned Waveguides
KR100786407B1 (en) * 2006-01-26 2007-12-17 전남대학교산학협력단 Method of trimming a center wave of a arrayed waveguide grating device
JP2009163013A (en) * 2008-01-07 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer demultiplexer and adjusting method thereof
JP2012008597A (en) * 2011-09-09 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexing/demultiplexing device and adjustment method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019254A1 (en) * 1998-09-25 2000-04-06 The Furukawa Electric Co., Ltd. Optical wavelength multiplexer/demultiplexer
US6415072B1 (en) 1998-09-25 2002-07-02 The Furukawa Electric Co., Ltd. Optical wavelength multiplexing and dividing device
EP1045264A1 (en) * 1998-10-22 2000-10-18 The Furukawa Electric Co., Ltd. Optical multiplexer/demultiplexer
EP1045264A4 (en) * 1998-10-22 2003-12-17 Furukawa Electric Co Ltd Optical multiplexer/demultiplexer
KR100343559B1 (en) * 2000-02-24 2002-07-20 영 철 정 Flat Passband Arrayed Waveguide Grating Wavelength Router Based on Fourier Optics and Misaligned Waveguides
KR100786407B1 (en) * 2006-01-26 2007-12-17 전남대학교산학협력단 Method of trimming a center wave of a arrayed waveguide grating device
JP2009163013A (en) * 2008-01-07 2009-07-23 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexer demultiplexer and adjusting method thereof
JP2012008597A (en) * 2011-09-09 2012-01-12 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexing/demultiplexing device and adjustment method thereof

Similar Documents

Publication Publication Date Title
US5841919A (en) Optical wavelength multiplexer/demultiplexer
CA2240056C (en) Optical wavelength multiplexer/demultiplexer
US5212758A (en) Planar lens and low order array multiplexer
US5982960A (en) Optical wavelength multiplexer/demultiplexer
US6549696B1 (en) Optical wavelength multiplexer/demultiplexer
JP3726062B2 (en) Optical multiplexer / demultiplexer
WO2000011508A1 (en) Array waveguide diffraction grating optical multiplexer/demultiplexer
EP1059545B1 (en) Arrayed waveguide grating multiplexer and demultiplexer
US6501882B2 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer
JPH05313029A (en) Light wave combining/splitting instrument
JP3039491B2 (en) Optical wavelength multiplexer / demultiplexer
US6741772B2 (en) Optical multiplexer/demultiplexer and waveguide type optical coupler
US6591038B1 (en) Optical interleaver and demultiplexing apparatus for wavelength division multiplexed optical communications
JPH0973018A (en) Light wave length multiplexer/demultiplexer
US11860411B2 (en) Super-compact arrayed waveguide grating (AWG) wavelength division multiplexer based on sub-wavelength grating
JP2003172830A (en) Optical multiplexer/demultiplexer
JPH08122557A (en) Optical wavelength multiplexer/demultiplexer
US7031569B2 (en) Optical multi-demultiplexer
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
JPH11218624A (en) Light wavelength multiplexer/demultiplexer
US6134361A (en) Optical multiplexer/demultiplexer
US6920265B2 (en) Arrayed waveguide grating type optical multiplexer/demultiplexer
JP3247819B2 (en) Array grating type optical multiplexer / demultiplexer
JP2001051138A (en) Temperature independent optical composer and divider
JPH10177114A (en) Optical wavelength multiplexer/demultiplexer