JPH0972700A - Thrust controller for high-speed airframe - Google Patents

Thrust controller for high-speed airframe

Info

Publication number
JPH0972700A
JPH0972700A JP22764595A JP22764595A JPH0972700A JP H0972700 A JPH0972700 A JP H0972700A JP 22764595 A JP22764595 A JP 22764595A JP 22764595 A JP22764595 A JP 22764595A JP H0972700 A JPH0972700 A JP H0972700A
Authority
JP
Japan
Prior art keywords
stage
speed
injection nozzle
combustion chamber
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22764595A
Other languages
Japanese (ja)
Inventor
Takeshi Fube
剛 布部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP22764595A priority Critical patent/JPH0972700A/en
Publication of JPH0972700A publication Critical patent/JPH0972700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thrust controller for a high-speed airframe capable of arriving at a predetermined speed in a short time and holding a predetermined speed as it is without acceleration due to the residue of fuel. SOLUTION: The thrust controller for a high-speed airframe has a second- stage part 7 having a first combustion chamber 5 containing a first solid propellant 5a and a propulsion injection nozzle 6, and a third-stage part 10 having a second combustion chamber 8 containing second solid propellant 8a and an attitude control injection nozzle 9, and comprises a discharge gas channel 22 for introducing combustion gas from the first chamber of the second stage to the nozzle of the third stage, a flow regulating valve 24 for regulating the gas flow rate passing the channel, and a control unit 26 for detecting the pressure in the first chamber to control the valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高速飛翔体の推力
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thrust control device for a high-speed flying object.

【0002】[0002]

【従来の技術】準中距離以下の弾道ミサイルを大気圏外
で迎撃する高速飛翔体が、米国等で開発されている。図
4は、この迎撃システムを模式的に示すものであり、弾
道ミサイル1の発射が確認されると、これに対応して高
速飛翔体2を発射し、大気圏外で弾道ミサイル1に衝突
させてこれを破壊するようになっている。
2. Description of the Related Art A high-speed flying object for intercepting a ballistic missile having a sub-medium range or less outside the atmosphere has been developed in the United States and other countries. FIG. 4 schematically shows the intercepting system. When the launch of the ballistic missile 1 is confirmed, the high-speed flying object 2 is fired in response to this, and the ballistic missile 1 is made to collide with the ballistic missile 1 outside the atmosphere. This is to be destroyed.

【0003】弾道ミサイル1は、通常多段ロケットであ
り、地上から80km前後の大気圏外では弾道部1aの
みが曲線3のように慣性飛行し、目標地点まで自由落下
する。これに対して、高速飛翔体2は、例えば3段ロケ
ットであり、(a)1段ロケットで大気圏外に達して1
段目を切り離し、(b)2段ロケットで衝突予定地点A
に向けて姿勢制御と速度調整を行った後、2段目を切り
離し、次いで(c)衝突予定付近まで慣性飛行し、
(d)最後に、3段目に設けられた目標捕捉装置で目標
(弾道ミサイル1)を捕らえながら、3段目自体の位置
を制御して弾道ミサイル1に衝突する制御軌跡4を描
く。なお、3段目の飛行自体(c及びd)は慣性飛行で
あり、(d)において飛行方向に直交する方向に燃焼ガ
スを噴射して、位置制御するようになっている。
[0003] The ballistic missile 1 is usually a multi-stage rocket, and only the ballistic portion 1a inertially flies as shown by a curve 3 outside the atmosphere at about 80 km from the ground and falls freely to a target point. On the other hand, the high-speed flying object 2 is, for example, a three-stage rocket.
Disconnect the stage, and (b) expected collision point A with a two-stage rocket
After performing attitude control and speed adjustment toward, the second stage is separated, and then (c) inertial flight to near the scheduled collision,
(D) Finally, while capturing the target (ballistic missile 1) with the target capturing device provided in the third stage, the position of the third stage itself is controlled to draw the control trajectory 4 that collides with the ballistic missile 1. Note that the third stage flight itself (c and d) is an inertial flight, and the position is controlled by injecting combustion gas in a direction orthogonal to the flight direction in (d).

【0004】[0004]

【発明が解決しようとする課題】高速飛翔体2の2段目
及び3段目に用いられる燃料として固体推進剤があり、
一旦着火すると、自己燃焼を継続し、その間の燃焼速度
の調整は困難である。そのため、従来の2段目の燃焼
(b)では、燃料の内面形状を工夫してできるだけ一定
の燃焼速度にすると共に、その燃焼の継続中に、姿勢制
御と速度制御を完了する必要がある。しかし、姿勢制御
は、ノズルの噴射方向の制御等により比較的容易である
が、速度制御は、短時間に所定の高速に達するように
内圧を高めると、空気抵抗が低下した大気圏外では燃料
の残量により更に加速されるおそれがあり、逆に所定
の速度で燃料がほぼ尽きるように徐々に加速すると、所
定の速度に達するのに時間がかかり、弾道ミサイル1を
確実に迎撃できなくなる問題点があった。
There is a solid propellant as a fuel used in the second and third stages of the high-speed projectile 2.
Once ignited, self-combustion continues and it is difficult to adjust the burning rate during that period. Therefore, in the conventional second-stage combustion (b), it is necessary to devise the shape of the inner surface of the fuel to make the combustion speed as constant as possible, and to complete the attitude control and the speed control while continuing the combustion. However, the attitude control is relatively easy by controlling the injection direction of the nozzles, etc., but the speed control is such that if the internal pressure is increased to reach a predetermined high speed in a short time, the fuel resistance will be increased outside the atmosphere where the air resistance has decreased. There is a risk of further acceleration depending on the remaining amount. Conversely, if the fuel is gradually accelerated at a predetermined speed so that the fuel is almost exhausted, it will take time to reach the predetermined speed, and it will not be possible to reliably intercept the ballistic missile 1. was there.

【0005】本発明はかかる問題点を解決するために創
案されたものである。すなわち、本発明の目的は、短時
間に所定の高速に達することができ、かつ燃料の残量に
よる加速がなく、所定の速度をそのまま保持することが
できる高速飛翔体の推力制御装置を提供することにあ
る。
The present invention was devised to solve such problems. That is, an object of the present invention is to provide a thrust control device for a high-speed flying vehicle, which can reach a predetermined high speed in a short time, does not accelerate due to the remaining amount of fuel, and can maintain the predetermined speed as it is. Especially.

【0006】[0006]

【課題を解決するための手段】本発明によれば、第1固
体推進剤を内蔵する第1燃焼室と推進用噴射ノズルを有
する2段目と、第2固体推進剤を内蔵する第2燃焼室と
姿勢制御用噴射ノズルを有する3段目と、を備えた高速
飛翔体の推力制御装置において、2段目の第1燃焼室か
ら3段目の姿勢制御用噴射ノズルまで燃焼ガスを導く放
出ガス流路と、該放出ガス流路を通るガス流量を調節す
る流量調節弁と、第1燃焼室内の圧力を検出して流量調
節弁を制御する制御装置と、を備えたことを特徴とする
高速飛翔体の推力制御装置が提供される。
According to the present invention, a first combustion chamber containing a first solid propellant and a second stage having a propelling injection nozzle, and a second combustion containing a second solid propellant. In a thrust control device for a high-speed projectile, which includes a chamber and a third stage having an attitude control injection nozzle, a discharge for guiding combustion gas from the first combustion chamber in the second stage to the injection nozzle for attitude control in the third stage A gas flow path, a flow rate control valve for controlling a gas flow rate through the discharge gas flow channel, and a control device for detecting the pressure in the first combustion chamber to control the flow rate control valve. A thrust control device for a high-speed flying object is provided.

【0007】固体推進剤の燃焼速度rは、r=a・pn
(式1)の実験式で表すことができる。ここで、aは定
数、pは燃焼圧、nは推進剤による定数である。従っ
て、上記本発明を構成する制御装置により第1燃焼室内
の圧力を検出して流量調節弁を制御することにより、目
標の速度に達するまでは内圧を高めて加速時間を短縮
し、次いで所定の速度に達した後は、一定速度を保持す
るように内圧を制御することができる。
The burning velocity r of the solid propellant is r = a · p n
It can be expressed by the empirical formula of (Formula 1). Here, a is a constant, p is a combustion pressure, and n is a constant depending on the propellant. Therefore, by detecting the pressure in the first combustion chamber and controlling the flow rate control valve by the control device constituting the present invention, the internal pressure is increased to shorten the acceleration time until the target speed is reached, and then the predetermined time is reached. After reaching the speed, the internal pressure can be controlled to maintain a constant speed.

【0008】また、流量調節弁を通して姿勢制御用噴射
ノズルに導かれた燃焼ガスは、複数の噴射ノズルから反
対方向に同量噴射させれば、姿勢に影響なく外部に放出
することができ、或いは複数の噴射ノズルの噴出量を調
整すれば、2段目の燃焼時にも姿勢制御に役立てること
ができ、2段目の方向制御機構等を簡略化することがで
きる。
The combustion gas guided to the attitude control injection nozzle through the flow rate control valve can be discharged to the outside without affecting the attitude by injecting the same amount in the opposite direction from a plurality of injection nozzles, or If the ejection amounts of the plurality of injection nozzles are adjusted, the attitude control can be utilized even during the second stage combustion, and the second direction control mechanism and the like can be simplified.

【0009】更に、本発明の好ましい実施形態によれ
ば、前記第1及び第2固体推進剤は、軸線に沿った貫通
孔をそれぞれ有する。この構成により、第1固体推進剤
の軸方向反対側に推進用噴射ノズルと放出ガス流路を配
置することができ、かつ第2固体推進剤の軸方向反対側
に姿勢制御用噴射ノズルを別々に配置することができ
る。
Further, according to a preferred embodiment of the present invention, the first and second solid propellants each have a through hole extending along an axis. With this configuration, the propulsion injection nozzle and the discharge gas passage can be arranged on the axially opposite side of the first solid propellant, and the attitude control injection nozzle is separately provided on the axially opposite side of the second solid propellant. Can be placed at.

【0010】[0010]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において共通す
る部分には同一の符号を付して使用する。図1は、本発
明による推力制御装置を備えた高速飛翔体の構成図であ
る。この図に示すように、この高速飛翔体は、第1固体
推進剤5aを内蔵する第1燃焼室5と推進用噴射ノズル
6を有する2段目部分7と、第2固体推進剤8aを内蔵
する第2燃焼室8と姿勢制御用噴射ノズル9を有する3
段目部分10と、を備えている。更に、この高速飛翔体
は、1段目部分11を有し、この1段目部分11の推進
ロケットにより、図4に例示したように大気圏外まで達
することができるようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a configuration diagram of a high-speed flying object including a thrust control device according to the present invention. As shown in this figure, this high-speed projectile contains a first combustion chamber 5 containing a first solid propellant 5a, a second stage portion 7 having a propulsion injection nozzle 6, and a second solid propellant 8a. 3 having the second combustion chamber 8 and the attitude control injection nozzle 9
And a step portion 10. Further, this high-speed flying object has a first-stage portion 11, and the propulsion rocket of the first-stage portion 11 can reach outside the atmosphere as illustrated in FIG.

【0011】固体推進剤5a,8aは、固体ロケット用
の固体推進剤であり、分子内に燃焼を維持するのに十分
な酸素を含む物質からなる均質系推薬であっても、或い
は酸化剤を別に混合した混合系推薬であってもよい。ま
た、固体推進剤5a,8aには、図に示すように、軸線
に沿った貫通孔がそれぞれ設けられている。推進用噴射
ノズル6は、2段目部分7の下部に設けられ、第1固体
推進剤5aの燃焼ガス(反応ガス)を下方に噴出し推力
を発生するようになっている。この推進用噴射ノズル6
は、噴出方向を調整して姿勢制御ができるようになって
いるのがよい。
The solid propellants 5a and 8a are solid propellants for solid rockets and may be homogeneous propellants made of a substance containing sufficient oxygen in the molecule to maintain combustion, or oxidizers. It may be a mixed propellant in which Further, as shown in the figure, the solid propellants 5a and 8a are respectively provided with through holes along the axis. The propulsion injection nozzle 6 is provided in the lower part of the second stage portion 7, and is configured to eject the combustion gas (reaction gas) of the first solid propellant 5a downward to generate thrust. This propulsion injection nozzle 6
It is good that the posture can be controlled by adjusting the ejection direction.

【0012】姿勢制御用噴射ノズル9は、第2燃焼室8
の上下に別れた複数の大噴射ノズル9aと複数の小噴射
ノズル9bからなる。各噴射ノズル9a,9bは、それ
ぞれ軸線に対して直交する方向に燃焼ガスを噴射する。
また、各噴射ノズル9a,9bには流量調節弁14aと
開閉弁付流量調節弁14bがそれぞれ取り付けられ、こ
の流量調節弁14a,14bにより各ノズルからの噴射
量を調節し、3段目部分10の姿勢制御を行うようにな
っている。かかる構成により、姿勢制御用噴射ノズル9
により推力を発生させることなく3段目部分10の姿勢
制御を行うことができる。
The attitude control injection nozzle 9 is provided in the second combustion chamber 8
It is composed of a plurality of large jet nozzles 9a and a plurality of small jet nozzles 9b which are separated from each other. Each of the injection nozzles 9a and 9b injects combustion gas in a direction orthogonal to the axis.
A flow rate adjusting valve 14a and a flow rate adjusting valve 14b with an on-off valve are attached to each of the injection nozzles 9a and 9b. The flow rate adjusting valves 14a and 14b are used to adjust the injection amount from each nozzle to adjust the third stage portion 10 Attitude control. With this configuration, the attitude control injection nozzle 9
Thus, the attitude control of the third stage portion 10 can be performed without generating thrust.

【0013】更に、第2固体推進剤8aの中央部に設け
られた貫通孔と、噴射ノズル9a,9bとを連通するガ
ス通路には、開閉弁12が設けられており、この開閉弁
12により、第2燃焼室8で発生した燃焼ガスの噴射ノ
ズル9a,9bへの供給の開閉できるようになってい
る。上述した構成により、第1固体推進剤5aの軸方向
反対側に推進用噴射ノズル6と放出ガス流路22を配置
することができ、かつ第2固体推進剤8aの軸方向に噴
射ノズル9a,9bを別々に配置することができる。
Further, an on-off valve 12 is provided in the gas passage that connects the through hole provided in the central portion of the second solid propellant 8a and the injection nozzles 9a and 9b. The supply of the combustion gas generated in the second combustion chamber 8 to the injection nozzles 9a and 9b can be opened and closed. With the configuration described above, the propulsion injection nozzle 6 and the discharge gas flow path 22 can be arranged on the axially opposite side of the first solid propellant 5a, and the injection nozzle 9a, 9a, 9b can be arranged separately.

【0014】本発明の推力制御装置20は、2段目の第
1燃焼室5から3段目の姿勢制御用噴射ノズル9まで燃
焼ガスを導く放出ガス流路22と、放出ガス流路22を
通るガス流量を調節する流量調節弁24と、第1燃焼室
5内の圧力を検出して流量調節弁24を制御する制御装
置26と、を備えている。
The thrust control device 20 of the present invention includes a discharge gas passage 22 for guiding combustion gas from the first combustion chamber 5 in the second stage to the injection nozzle 9 for posture control in the third stage, and a discharge gas passage 22. A flow rate control valve 24 that controls the flow rate of the gas passing through and a control device 26 that detects the pressure in the first combustion chamber 5 and controls the flow rate control valve 24 are provided.

【0015】図2は、上述した高速飛翔体の推力制御を
示す模式図(図4のbの状態に相当する)であり、図3
は、図4のdにおける位置制御状態を示す模式図であ
る。上述したように、固体推進剤の燃焼速度rは、r=
a・pn (式1)の実験式で表すことができる(aは定
数、pは燃焼圧、nは推進剤による定数)ので、図2に
示すように、制御装置26により第1燃焼室5内の圧力
を検出して流量調節弁24を制御することにより、目標
の速度に達するまでは内圧を高めて加速時間を短縮し、
次いで所定の速度に達した後は、一定速度を保持するよ
うに内圧を制御することができる。また、流量調節弁2
4を通して姿勢制御用噴射ノズル9bに導かれた燃焼ガ
スは、複数の噴射ノズルから反対方向に同量噴射させれ
ば、姿勢に影響なく外部に放出することができ、或いは
複数の噴射ノズルの噴出量を調整すれば、2段目の燃焼
時にも姿勢制御に役立てることができ、2段目の方向制
御機構等を簡略化することができる。なお、図2に示す
状態において、開閉弁付流量調節弁14bは閉じてお
り、第2固体推進剤8aは未着火であることは勿論であ
る。
FIG. 2 is a schematic diagram (corresponding to the state of b in FIG. 4) showing the thrust control of the above-mentioned high-speed flying body, and FIG.
FIG. 5 is a schematic diagram showing a position control state in d of FIG. As described above, the burning velocity r of the solid propellant is r =
Since it can be expressed by an empirical formula of a · pn (Equation 1) (a is a constant, p is a combustion pressure, and n is a constant depending on a propellant), the control device 26 controls the first combustion chamber as shown in FIG. By detecting the pressure in 5 and controlling the flow control valve 24, the internal pressure is increased and the acceleration time is shortened until the target speed is reached.
Then, after reaching a predetermined speed, the internal pressure can be controlled so as to maintain a constant speed. Also, the flow control valve 2
The combustion gas guided to the attitude control injection nozzle 9b through 4 can be discharged to the outside without affecting the attitude by injecting the same amount in the opposite direction from the plurality of injection nozzles, or the ejection of the plurality of injection nozzles. If the amount is adjusted, it can be useful for posture control even during the second stage combustion, and the second stage direction control mechanism and the like can be simplified. In addition, in the state shown in FIG. 2, it goes without saying that the flow rate control valve with an on-off valve 14b is closed and the second solid propellant 8a has not been ignited.

【0016】次いで、図3(図4のdの状態)におい
て、流量調節弁24は閉じ、開閉弁付流量調節弁14b
が開き、第2固体推進剤8aの燃焼により、噴射ノズル
9a,9bを通して飛行方向に直交する方向に燃焼ガス
を噴射して、3段目部分の位置制御を行う。なお、この
状態では2段目は切り離されており、噴射ノズル9a,
9bでは推力を発生させず、慣性飛行を続ける。また、
噴射ノズル9a,9bの一部を斜め後方に向けて取り付
け、図3において推力を発生させて加速できるようにし
てもよい。
Next, in FIG. 3 (state of FIG. 4d), the flow rate control valve 24 is closed and the flow rate control valve 14b with an opening / closing valve is closed.
Opens, and the combustion gas of the second solid propellant 8a is injected to inject the combustion gas through the injection nozzles 9a and 9b in a direction orthogonal to the flight direction to control the position of the third stage. In this state, the second stage is separated, and the injection nozzle 9a,
At 9b, thrust is not generated and inertial flight continues. Also,
A part of the injection nozzles 9a and 9b may be attached obliquely rearward so as to generate thrust in FIG. 3 so as to be accelerated.

【0017】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々に変更でき
ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0018】[0018]

【発明の効果】上述したように、本発明の高速飛翔体の
推力制御装置は、短時間に所定の高速に達することがで
き、かつ燃料の残量による加速がなく、所定の速度をそ
のまま保持することができる、等の優れた効果を有す
る。
As described above, the thrust control device for a high-speed flying object of the present invention can reach a predetermined high speed in a short time and does not accelerate due to the remaining amount of fuel and keeps the predetermined speed as it is. It has an excellent effect such as being able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による推力制御装置を備えた高速飛翔体
の構成図である。
FIG. 1 is a configuration diagram of a high-speed flying object including a thrust control device according to the present invention.

【図2】高速飛翔体の推力制御を示す模式図である。FIG. 2 is a schematic diagram showing thrust control of a high-speed flying object.

【図3】図4のdにおける位置制御状態を示す模式図で
ある。
FIG. 3 is a schematic diagram showing a position control state in d of FIG.

【図4】従来の迎撃システムの模式図である。FIG. 4 is a schematic view of a conventional interception system.

【符号の説明】[Explanation of symbols]

1 弾道ミサイル 1a 弾道部 2 高速飛翔体 3 慣性飛行曲線 4 制御軌跡 5 第1燃焼室 5a 第1固体推進剤 6 推進用噴射ノズル 7 2段目部分 8 第2燃焼室 8a 第2固体推進剤 9 姿勢制御用噴射ノズル 9a 大噴射ノズル 9b 小噴射ノズル 10 3段目部分 11 1段目部分 12 開閉弁 14a 流量調節弁 14b 開閉弁付流量調節弁 20 推力制御装置 22 放出ガス流路 24 流量調節弁 26 制御装置 1 Ballistic Missile 1a Ballistic Part 2 High-speed Flying Body 3 Inertial Flight Curve 4 Control Trajectory 5 1st Combustion Chamber 5a 1st Solid Propellant 6 Propulsion Injection Nozzle 7 2nd Stage 8 2nd Combustion Chamber 8a 2nd Solid Propellant 9 Posture control injection nozzle 9a Large injection nozzle 9b Small injection nozzle 10 Third stage part 11 First stage part 12 Open / close valve 14a Flow control valve 14b Flow control valve with open / close valve 20 Thrust control device 22 Emission gas flow path 24 Flow control valve 26 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1固体推進剤を内蔵する第1燃焼室と
推進用噴射ノズルを有する2段目と、第2固体推進剤を
内蔵する第2燃焼室と姿勢制御用噴射ノズルを有する3
段目と、を備えた高速飛翔体の推力制御装置において、 2段目の第1燃焼室から3段目の姿勢制御用噴射ノズル
まで燃焼ガスを導く放出ガス流路と、該放出ガス流路を
通るガス流量を調節する流量調節弁と、第1燃焼室内の
圧力を検出して流量調節弁を制御する制御装置と、を備
えたことを特徴とする高速飛翔体の推力制御装置。
1. A second stage having a first combustion chamber containing a first solid propellant and a propulsion injection nozzle, and a second stage having a second combustion chamber containing a second solid propellant and an attitude control injection nozzle.
In a thrust control device for a high-speed projectile including a stage, a discharge gas flow path for guiding combustion gas from a first combustion chamber in the second stage to an injection nozzle for attitude control in the third stage, and the discharge gas flow channel A thrust control device for a high-speed projectile, comprising: a flow rate control valve for controlling the flow rate of gas passing through the first combustion chamber; and a control device for detecting the pressure in the first combustion chamber to control the flow rate control valve.
【請求項2】 前記第1及び第2固体推進剤は、軸線に
沿った貫通孔をそれぞれ有する、ことを特徴とする請求
項1に記載の高速飛翔体の推力制御装置。
2. The thrust control device for a high-speed projectile according to claim 1, wherein the first and second solid propellants each have a through hole along an axis.
JP22764595A 1995-09-05 1995-09-05 Thrust controller for high-speed airframe Pending JPH0972700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22764595A JPH0972700A (en) 1995-09-05 1995-09-05 Thrust controller for high-speed airframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22764595A JPH0972700A (en) 1995-09-05 1995-09-05 Thrust controller for high-speed airframe

Publications (1)

Publication Number Publication Date
JPH0972700A true JPH0972700A (en) 1997-03-18

Family

ID=16864127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22764595A Pending JPH0972700A (en) 1995-09-05 1995-09-05 Thrust controller for high-speed airframe

Country Status (1)

Country Link
JP (1) JPH0972700A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009257154A (en) * 2008-04-15 2009-11-05 Ihi Aerospace Co Ltd Side thruster of flying object
JP2010503794A (en) * 2006-09-13 2010-02-04 アエロジェット ジェネラル コーポレイション Pintle control propulsion system with external dynamic seal
CN101892925A (en) * 2010-06-23 2010-11-24 中北大学 Aircraft range-extending technique
JP2011236903A (en) * 2010-05-11 2011-11-24 Alliant Techsyst Inc Rockets, methods of rocket control and methods of rocket evaluation utilizing pressure compensation
JP2013007328A (en) * 2011-06-24 2013-01-10 Ihi Aerospace Co Ltd Pulse rocket motor and missile
JP2014517243A (en) * 2011-05-19 2014-07-17 エラクレス System for thrust steering and attitude control during flight of vehicle, and aircraft equipped with the system
WO2017072457A1 (en) * 2015-10-28 2017-05-04 Airbus Safran Launchers Sas More compact direct thrust flight control and attitude control system, and craft comprising such a system
CN113028453A (en) * 2021-04-09 2021-06-25 西北工业大学 Rotary detonation combustion chamber with adjustable combustion chamber width

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010503794A (en) * 2006-09-13 2010-02-04 アエロジェット ジェネラル コーポレイション Pintle control propulsion system with external dynamic seal
JP2009257154A (en) * 2008-04-15 2009-11-05 Ihi Aerospace Co Ltd Side thruster of flying object
JP2011236903A (en) * 2010-05-11 2011-11-24 Alliant Techsyst Inc Rockets, methods of rocket control and methods of rocket evaluation utilizing pressure compensation
CN101892925A (en) * 2010-06-23 2010-11-24 中北大学 Aircraft range-extending technique
JP2014517243A (en) * 2011-05-19 2014-07-17 エラクレス System for thrust steering and attitude control during flight of vehicle, and aircraft equipped with the system
JP2013007328A (en) * 2011-06-24 2013-01-10 Ihi Aerospace Co Ltd Pulse rocket motor and missile
WO2017072457A1 (en) * 2015-10-28 2017-05-04 Airbus Safran Launchers Sas More compact direct thrust flight control and attitude control system, and craft comprising such a system
FR3043067A1 (en) * 2015-10-28 2017-05-05 Herakles POWER STEERING AND ATTITUDE CONTROL SYSTEM WITH INCREASED COMPACITY AND FINALLY HAVING SUCH A SYSTEM
KR20180100307A (en) * 2015-10-28 2018-09-10 아리안그룹 에스아에스 A small lateral force steering and attitude control system, and a vehicle including the system
US10895443B2 (en) 2015-10-28 2021-01-19 Arianegroup Sas More compact side force steering and attitude control system, and a vehicle including such a system
CN113028453A (en) * 2021-04-09 2021-06-25 西北工业大学 Rotary detonation combustion chamber with adjustable combustion chamber width
CN113028453B (en) * 2021-04-09 2022-07-01 西北工业大学 Rotary detonation combustion chamber with adjustable combustion chamber width

Similar Documents

Publication Publication Date Title
US8056319B2 (en) Combined cycle missile engine system
US5578783A (en) RAM accelerator system and device
US8193476B2 (en) Solid-fuel pellet thrust and control actuation system to maneuver a flight vehicle
US4560121A (en) Stabilization of automotive vehicle
US4537371A (en) Small caliber guided projectile
EP0683376B1 (en) Airbreathing propulsion assisted gun-launched projectiles
JPH0972700A (en) Thrust controller for high-speed airframe
US9726115B1 (en) Selectable ramjet propulsion system
AU2006228511B2 (en) Steering system and method for a guided flying apparatus
JP3486344B2 (en) Thruster device
US4003531A (en) Reverse flow reaction control system
JPS63287698A (en) Multistage rocket system
US10030951B2 (en) Drag reduction system
AU2021268713A1 (en) Multi-mode propulsion system
RU2175726C1 (en) Solid-propellant engine boost unit
JP5777294B2 (en) Flying body
KR102323369B1 (en) Long Range Artillery Shell using Liquid Ramjet
JPH1038499A (en) High-speed airframe
JPH03160145A (en) Rocket with spike nozzle
JPH05180075A (en) Ram rocket
JPH03220097A (en) Rocket
GB2514791A (en) Drag reduction system