JPH0968208A - Pressure-resistance reducing structure - Google Patents

Pressure-resistance reducing structure

Info

Publication number
JPH0968208A
JPH0968208A JP24660995A JP24660995A JPH0968208A JP H0968208 A JPH0968208 A JP H0968208A JP 24660995 A JP24660995 A JP 24660995A JP 24660995 A JP24660995 A JP 24660995A JP H0968208 A JPH0968208 A JP H0968208A
Authority
JP
Japan
Prior art keywords
flow
small
pressure resistance
square
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24660995A
Other languages
Japanese (ja)
Inventor
Mitsuo Kurata
光雄 倉田
Zenzaburo Yasutomi
善三郎 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP24660995A priority Critical patent/JPH0968208A/en
Publication of JPH0968208A publication Critical patent/JPH0968208A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sufficiently reduce the pressure resistance of even an angular object by forming a small notch in the position of the flow-receiving object where fluid separates, or just in front of it. SOLUTION: An object 2 which receives flow has, e.g. a square cross-sectional shape, with a square notch 3 formed like a step at each of the front angles of this square shape. By setting the small notch 3 to an appropriate size, a separating line of flow F which has temporarily separated from the front edge 6 of the small notch 3 interferes with a rear edge 7 just near it, causing a part of the vortex of a shear layer to converge to the small notch 3 to gradually form a strong vortex G. Since the vortex has a lower pressure than an external stream H, the flow is curved in such a way that its radius of curvature is decreased by the balance between a pressure gradient in the radial direction of the flow and a centrifugal force, causing the separating line of flow F to come into contact with portions near the rear end 7 again. Therefore, the external stream H is also curved in such a way as to come close to the side 8 of the object 2 and to flow along the side 8. Therefore, the area of the backflow B of the object 2 is reduced appreciably, resulting in greatly decreased pressure resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は圧力抵抗減少構造体
に関する。
TECHNICAL FIELD The present invention relates to a pressure resistance reducing structure.

【0002】[0002]

【従来の技術】一般に飛行機・自動車・新幹線列車等の
高速乗物に於て、空気から受ける圧力抵抗を減少させる
には、凹凸のできるだけ少ない流線型が最も好ましいと
信じられてきた。
2. Description of the Related Art Generally, in high-speed vehicles such as airplanes, automobiles, and Shinkansen trains, it has been believed that the streamlined type with the least irregularities is most preferable in order to reduce the pressure resistance received from the air.

【0003】[0003]

【発明が解決しようとする課題】従来のように流線型に
物体を製作することは、曲面加工等の製作に困難を伴
い、製造コストも高くついていた。
The conventional streamlined manufacturing of an object is difficult to manufacture such as curved surface processing, and the manufacturing cost is high.

【0004】本発明者は上述の流れを受ける物体の形状
は流線型でなければならないという既成観念を打破し、
角張った物体であっても十分にその圧力抵抗を減少さ
せ、あるいは、流線型にあっては、さらにその圧力抵抗
を一層小さくすることを、本発明の目的とする。
The present inventor defeated the existing idea that the shape of an object that receives the above-mentioned flow must be streamlined,
It is an object of the present invention to sufficiently reduce the pressure resistance of an angular body, or to further reduce the pressure resistance of a streamlined body.

【0005】[0005]

【課題を解決するための手段】本発明に係る圧力抵抗減
少構造体は、流れを受ける物体に於ける流体はく離位置
乃至その直前位置に、切欠小凹部を形成した。あるい
は、はく離した外部流れを引き寄せる強い渦を生じさせ
るための切欠小凹部を形成した。
In the pressure resistance reducing structure according to the present invention, a small recess is formed at a position where a fluid is separated from a body receiving a flow or a position immediately before the position. Alternatively, a notched small recess is formed to generate a strong vortex that attracts the separated external flow.

【0006】また、流れを受ける物体が角張った立体形
状であって、該物体の前面側の稜に切欠小凹部を形成し
た。あるいは、物体の前面側の稜及び後面側の稜に、切
欠小凹部を形成した。
Further, the object that receives the flow has an angular three-dimensional shape, and a small recess is formed at the front edge of the object. Alternatively, a notched small recess is formed on the ridge on the front surface side and the ridge on the rear surface side of the object.

【0007】また、流れを受ける物体の横断面形状が矩
形であって、その前方両角部に矩形状の切欠小凹部を形
成した。あるいは、流れを受ける物体の横断面形状が正
方形であって、その前方両角部に正方形状の切欠小凹部
を形成した。
Further, the object which receives the flow has a rectangular cross-sectional shape, and rectangular cutout small recesses are formed at both front corners thereof. Alternatively, the object that receives the flow has a square cross-sectional shape, and square cutout small recesses are formed at both front corners.

【0008】そして、流れを受ける物体の横断面形状の
正方形の一辺長さをDとすると共に、切欠小凹部の横断
面形状の正方形の一辺長さをdとした場合、(D−2
d)/Dの値を、 0.6〜0.95に設定した。
When the length of one side of the square of the cross-sectional shape of the object that receives the flow is D and the length of one side of the square of the cross-sectional shape of the cutout small recess is d, (D-2
The value of d) / D was set to 0.6-0.95.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき詳説する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1は一様流中に、流れを受ける物体41と
して横断面形状が正方形の角柱を、設けた場合の流体の
流れ(流線)を示し、その前方(流れの上流側を言う)
の両角部A,Aを、はく離位置1,1として大きくはく
離する。Bは流れを受ける物体41の後流(wake)で
あり、後流領域B0 は大である。
FIG. 1 shows a fluid flow (streamline) in the case where a prism having a square cross-sectional shape is provided as an object 41 for receiving a flow in a uniform flow, and the front (the upstream side of the flow) is shown. )
Both corners A and A are largely separated as the peeling positions 1 and 1. B is the wake of the object 41 that receives the flow, and the wake region B 0 is large.

【0011】本発明の実施の一形態を図2(イ)に例示
する。即ち、流れを受ける物体2としてその横断面形状
が正方形であって、図1に示したはく離位置1,1に、
切欠小凹部3,3を形成する。つまり、正方形の前方両
角部A,Aに、正方形状の切欠小凹部3,3を段付き状
に形成する。さらに言い換えると、この流れを受ける物
体2は四角柱であり、その前面4側の稜に切欠小凹部3
を形成する。
An embodiment of the present invention is illustrated in FIG. That is, the object 2 that receives a flow has a square cross-sectional shape, and at the peeling positions 1 and 1 shown in FIG.
The small recesses 3 and 3 are formed. That is, the square small recesses 3, 3 are formed in a stepped shape at both front corners A, A of the square. In other words, the object 2 that receives this flow is a quadrangular prism, and the cutout small recess 3 is formed in the ridge on the front surface 4 side.
To form

【0012】また、図2(ロ)に示すように、後方両角
部C,Cにも横断面正方形の切欠小凹部3,3を形成し
ても良い。つまり、流れを受ける物体の前面4側の稜及
び後面5側の稜に、(合計4箇所に)切欠小凹部3…を
形成している。
Further, as shown in FIG. 2B, the rear corners C, C may be provided with small recesses 3, 3 having a square cross section. That is, the cutout small recesses 3 are formed (at a total of 4 places) at the ridge on the front surface 4 side and the ridge on the rear surface 5 side of the object that receives the flow.

【0013】図3と図4は、このような形状の物体を一
様流れの中へ配置した場合を示し、切欠小凹部3の大き
さを適切に設定すれば、切欠小凹部3の前縁部6から一
旦はく離した流れ───流線Fで示した───は後縁部
7に再付着する。つまり、前縁部6からはく離する流れ
はせん断層(shear layer) で、このはく離流線Fがすぐ
近くの後縁部7と干渉してせん断層の渦の一部が切欠小
凹部3に集まり、次第に強い渦Gを形成する。この渦部
は外部流れHに比べると大変圧力が低いため、流れの半
径方向の圧力勾配と遠心力との釣合により、流れの曲率
半径が小さくなるように曲げられ、はく離流線Fが後縁
部7付近に再付着する。従って、外部流れHも物体2の
側面8に近づくように曲げられ、切欠小凹部3のはく離
流線Fに引続いて、側面8に沿うように流れる。
FIG. 3 and FIG. 4 show the case where an object having such a shape is arranged in a uniform flow. If the size of the notch small recess 3 is set appropriately, the front edge of the notch small recess 3 will be described. The flow once separated from the portion 6--represented by the streamline F--reattaches to the trailing edge portion 7. In other words, the flow separated from the front edge portion 6 is a shear layer, and this separation streamline F interferes with the trailing edge portion 7 in the immediate vicinity, so that a part of the vortex of the shear layer gathers in the notch small recess 3. , Gradually forming a strong vortex G. Since this vortex portion has a much lower pressure than the external flow H, it is bent so that the radius of curvature of the flow becomes smaller due to the balance between the pressure gradient in the radial direction of the flow and the centrifugal force. It reattaches near the edge 7. Therefore, the external flow H is also bent so as to approach the side surface 8 of the object 2 and flows along the side surface 8 following the separation streamline F of the notch small recess 3.

【0014】なお、図5に示す如く流線Fの再付着点
は、後端線7よりも切欠小凹部3内側となったり、図6
に示す如く、少し側面8側にずれることもあるが、いず
れにせよ、はく離流線Fは流れを受ける物体に再付着す
る。
As shown in FIG. 5, the reattachment point of the streamline F is located inside the notched small recess 3 with respect to the rear end line 7, or as shown in FIG.
Although it may be slightly shifted to the side surface 8 side as shown in (1), in any case, the separation streamline F reattaches to the body that receives the flow.

【0015】これによって、流れを受ける物体2の後流
Bの領域B4 ,B5 ,B6 は(図1に比べて)著しく減
少(縮小)し、圧力抵抗(抗力)は大幅に減少すると考
えられる。
As a result, the regions B 4 , B 5 , B 6 of the wake B of the body 2 receiving the flow are significantly reduced (compressed) (compared to FIG. 1), and the pressure resistance (drag) is significantly reduced. Conceivable.

【0016】さらに、図2(ロ)と図7に示すように、
流れを受ける物体2の前面4及び後面5側の稜に、4個
の切欠小凹部3…を形成すれば、同様に切欠小凹部3内
の渦G…によって外部流れHが引き寄せられ、後流Bの
領域B7 が一層縮小して抗力が減少する。
Further, as shown in FIGS. 2B and 7,
If four notch small recesses 3 are formed on the ridges on the front surface 4 and rear surface 5 sides of the object 2 that receives the flow, the external flow H is similarly attracted by the vortices G in the notch small recesses 3 and the wake The area B 7 of B is further reduced and the drag force is reduced.

【0017】上述の如く、本発明は流れを受ける物体2
の周りに流れのはく離を生成させることによって流れを
制御し、圧力抵抗を減少させる構造体であるといえる。
即ち、物体の周りに流れのはく離が生じたとき、多くの
場合、物体の抵抗は増加する。しかし、流れのはく離
を、図3〜図7の如く適切に生成させると、そのはく離
流れの流線Fによって、物体2の周りの流れを制御し、
後流(wake)の幅を縮小させて圧力抵抗を減少させ
ることができる。
As mentioned above, the present invention provides a flow receiving object 2
It can be said to be a structure that controls the flow by creating flow separation around and reduces the pressure resistance.
That is, when flow delamination occurs around an object, the resistance of the object often increases. However, when the flow separation is appropriately generated as shown in FIGS. 3 to 7, the flow around the object 2 is controlled by the flow line F of the separation flow,
The width of the wake can be reduced to reduce pressure resistance.

【0018】角柱に段付け───切欠小凹部3の形成─
──を行うことによる抵抗減少の風洞実験結果を、図8
に示す。図8(ハ)に本発明の実施品の流れを受ける物
体の横断面形状と寸法を示し、正方形の一辺をDとする
と共に、切欠小凹部(正方形)の一辺をdとした場合に
於ける(D−2d)/Dの値を、図8(イ)のグラフ図
の横軸にとる。
Stepping on a prism --- Formation of a small recess 3 of a notch-
Fig. 8 shows the results of the wind tunnel experiment showing the reduction in resistance due to
Shown in FIG. 8C shows the cross-sectional shape and dimensions of an object that receives the flow of the product of the present invention, where one side of the square is D and one side of the notch small recess (square) is d. The value of (D-2d) / D is plotted on the horizontal axis of the graph of FIG.

【0019】または、図8(ロ)は比較のために一辺が
Dなる正方形横断面の角部にアール(丸味)rを形成し
た場合に於ける(D−2r)/Dの値を、図8(イ)の
グラフ図の横軸にとっている。
Alternatively, FIG. 8B shows, for comparison, the value of (D-2r) / D in the case where a radius (roundness) r is formed at the corner of a square cross section having one side D. It is on the horizontal axis of the graph in 8 (a).

【0020】図8(イ)に於て、縦軸には、角部に切欠
小凹部もアールもとらない元の正方形横断面の場合の圧
力抵抗Cd0 に対する、図8(ハ)又は(ロ)の場合の
圧力抵抗Cdの値───「抵抗係数」と呼ぶ───をと
っている。そして、実線が図8(ハ)の場合の実測値で
あり、破線は図8(ロ)の場合であり、各々のレイレズ
ル数Reは、8×104 ,105 である。但し、図8(イ)
の破線は、「Hoerner,S.F., Fluid Dynamic Drag, p3-1
3, (1958), Published by the Author」のデータによっ
た。
In FIG. 8 (a), the vertical axis represents the pressure resistance Cd 0 in the case of the original square cross-section in which the cutout small recesses are not rounded at the corners, and FIG. 8 (c) or (b) The value of the pressure resistance Cd in the case of) is called the "resistance coefficient". Then, the solid line is the measured value in the case of FIG. 8C, the broken line is the case of FIG. 8B, and the respective ray-lezzle numbers Re are 8 × 10 4 and 10 5 . However, FIG. 8 (a)
The broken line is `` Hoerner, SF, Fluid Dynamic Drag, p3-1
3, (1958), Published by the Author ”.

【0021】この図8(イ)のグラフ図から、(D−2
d)/Dの値を、 0.6〜0.95に設定するのが好ましいこ
とが分かる。特に望ましい範囲は、 0.8〜 0.9の範囲で
あって、抵抗係数Cd/Cd0 が約 0.5となり、圧力抵
抗が半分となることが分かる。
From the graph of FIG. 8 (a), (D-2
It can be seen that it is preferable to set the value of d) / D to 0.6 to 0.95. It is understood that a particularly desirable range is 0.8 to 0.9, the resistance coefficient Cd / Cd 0 is about 0.5, and the pressure resistance is halved.

【0022】図8(ロ)の場合を示した図8(イ)中の
破線に於て、約 0.5の抵抗係数を達成するには、極めて
大きなアールrをとる必要がある(円柱とせねばならな
い)。即ち、本発明のように切欠小凹部を形成すると、
大きな丸味(アールr)の横断面形状のものに相等しい
小さな抵抗係数が、簡単に得られたことを示している。
In the broken line in FIG. 8 (a) showing the case of FIG. 8 (b), it is necessary to take an extremely large radius r in order to achieve a resistance coefficient of about 0.5 (it must be a cylinder. ). That is, when the notch small recess is formed as in the present invention,
It shows that a small coefficient of resistance equal to that of the large round (r r) cross-sectional shape was easily obtained.

【0023】この抵抗の減少は、角柱───流れを受け
る物体2───の後流幅(詳しくは運動量)の減少によ
るものと推定できるが、もっと直接的な表現として角柱
(流れを受ける物体2)の後面(背面)の圧力の変化で
説明することができる。
This decrease in resistance can be estimated to be due to a decrease in the wake width (more specifically, the momentum) of the prism 2—the body 2 that receives the flow. This can be explained by the change in the pressure on the rear surface (back surface) of the object 2).

【0024】即ち、流れの衝突する正面の圧力は正圧
(+)であまり変動しないと考えられる。他方、背面
(後面)の圧力は負圧であり、その負圧の値が、抵抗変
化に大きなウェイトを占める。
That is, it is considered that the pressure in front of the flow colliding is a positive pressure (+) and does not fluctuate much. On the other hand, the pressure on the back surface (rear surface) is a negative pressure, and the value of the negative pressure occupies a large weight in the resistance change.

【0025】図9(イ)の横軸は、(D−2d)/Dの
値(図9の(ロ)参照)を示しており、縦軸は平均背圧
係数Cpbを示している。この平均背圧係数Cpbは次の数
式1に示す。
The horizontal axis of FIG. 9A shows the value of (D-2d) / D (see (B) of FIG. 9), and the vertical axis shows the average back pressure coefficient Cpb. This average back pressure coefficient Cpb is shown in the following mathematical formula 1.

【0026】[0026]

【数1】 [Equation 1]

【0027】この図9から明らかなように、(D−2
d)/Dの値を、 0.8〜 0.9の範囲にとると、切欠小凹
部の無い角柱の場合(横軸の値が1の場合)に比較し
て、負圧が約半分にまで減少している。(この傾向は図
8(イ)に対応している。)
As is apparent from FIG. 9, (D-2
When the value of d) / D is set in the range of 0.8 to 0.9, the negative pressure is reduced to about half as compared with the case of a prism without a notch small recess (when the value of the horizontal axis is 1). There is. (This tendency corresponds to FIG. 8A).

【0028】次に、図10に於て、他の実施の形態を示
し、切欠小凹部───段付け───の縦横寸法を相違さ
せた場合(矩形の切欠小凹部とした場合)、抵抗は約4
割にまで減少できることを示している。このCd/Cd
0 の値が約 0.4ということは、円柱の場合(約 0.5)よ
りも小さい。このように断面形状が矩形の切欠小凹部を
形成することは、大きな圧力抵抗減少という優れた作用
効果を示す。
Next, referring to FIG. 10, another embodiment is shown, in which the vertical and horizontal dimensions of the cutout small recesses--steps--are made different (when rectangular cutout small recesses are used). Resistance is about 4
It shows that it can be reduced to a relatively small amount. This Cd / Cd
A value of 0 of about 0.4 is smaller than that of a cylinder (about 0.5). The formation of the cutout small concave portion having a rectangular cross-sectional shape as described above has an excellent effect of reducing a large pressure resistance.

【0029】図11(イ)は他の実施例を示し、流れを受
ける物体2の断面形状が台形の場合であってその前面4
側の角、及び、後面5側の角に、切欠小凹部3…を形成
している。また、図11(ロ)では、断面形状が円形の場
合であって、切欠小凹部3…が無いときの流体はく離位
置1乃至その直前位置に、切欠小凹部3,3を前面4側
に形成している。(かつ、後面5側にも切欠小凹部3,
3を形成している。) この切欠小凹部3は直角三角形状である。
FIG. 11A shows another embodiment in which the cross-sectional shape of the object 2 that receives a flow is trapezoidal and the front surface 4 thereof is
.. are formed in the corners on the side and the corners on the rear surface 5 side. Further, in FIG. 11B, when the cross-sectional shape is circular, the notch small recesses 3 are formed on the front surface 4 side at the fluid peeling position 1 to the position immediately before the position where there is no notch small recess 3 ... are doing. (And also on the rear surface 5 side, the small recesses 3,
3 is formed. ) The small recess 3 is in the shape of a right triangle.

【0030】さらに、図11の(イ)では、断面楕円の場
合を示している。また、この場合、切欠小凹部3をV字
型としている。
Further, FIG. 11A shows a case of an elliptical cross section. Further, in this case, the small cutout recess 3 is V-shaped.

【0031】この図11の他にも、横断面形状は種々のも
のが考え得るが、要するに、切欠小凹部3が無いと仮定
したときの流れを受ける物体2に於ける流体はく離位置
乃至その直前に、切欠小凹部3,3を形成することが重
要である。なお、後面5側には、必要に応じて切欠小凹
部3,3を形成すればよい。
In addition to this FIG. 11, various cross-sectional shapes can be considered, but in short, it is assumed that there is no notch small recess 3 and the fluid separation position in the body 2 receiving the flow or immediately before that position. In addition, it is important to form the small recesses 3 and 3. It should be noted that the notch small recesses 3, 3 may be formed on the rear surface 5 side as necessary.

【0032】次に、図12は切欠小凹部3の形状を例示す
る要部断面図であって、(イ)〜(ヘ)は流れを受ける
物体2が角張った立体形状である場合を、(ト)〜
(オ)は流れを受ける物体2が流線型の(角張らない)
立体形状の場合を示している。
Next, FIG. 12 is a cross-sectional view of an essential part illustrating the shape of the small cutout recess 3, where (a) to (f) show the case where the object 2 receiving the flow has an angular solid shape. G) ~
In (e), the object 2 that receives the flow is streamlined (not square)
The case of a three-dimensional shape is shown.

【0033】また、図13に示す如く、流れを受ける物体
2としては、中空のもの───中空棒(管・筒)や殻状
体───であってもよい。応用例としては、自転車や自
動二輪車等のフレームやハンドル部に、図13(イ)
(ロ)(ハ)のような横断面の管(パイプ)が用い得
る。あるいは、水中翼船等の支柱部や、高速船のスクリ
ュー保持ケーシングや舵等にも用い得る。
Further, as shown in FIG. 13, the object 2 which receives the flow may be a hollow object--a hollow rod (tube / cylinder) or a shell-like object. As an application example, see Fig. 13 (a) for the frame and handle of bicycles and motorcycles.
A pipe having a cross section such as (b) and (c) may be used. Alternatively, it may be used for a supporting column of a hydrofoil or the like, a screw holding casing of a high-speed ship, a rudder, or the like.

【0034】図14は、トレーラ、貨物トラック、貨車、
電車等の箱型走行物の場合を例示しており、その前面4
側の稜に切欠小凹部3が切欠形成されている。なお、後
面5側にも切欠小凹部3を形成しても良い(同図参
照)。
FIG. 14 shows a trailer, a cargo truck, a freight car,
The case of a box-shaped moving object such as a train is shown as an example, and the front surface 4
A small cutout recess 3 is formed in the side edge. The cutout small recess 3 may be formed also on the rear surface 5 side (see the same drawing).

【0035】また、図15のように、貨物トラックのキャ
ブ上面に切欠小凹部3を有する抵抗減少装置9を付設す
るも好ましい。また、図16(イ)は新幹線等の列車の天
井に突設された集電装置10を側面図で示す。この集電装
置10のケーシング(カバー)11を本発明の流れを受ける
物体と考えて、切欠小凹部3…を形成することも有望で
ある。
Further, as shown in FIG. 15, it is also preferable to additionally provide a resistance reducing device 9 having a small recess 3 in the cab of the cargo truck. Further, FIG. 16A shows a side view of a current collector 10 projecting from the ceiling of a train such as a bullet train. It is also promising to consider the casing (cover) 11 of the current collector 10 as an object that receives the flow of the present invention and form the small recesses 3 ...

【0036】さらに、図17は自動車のサイドミラー12の
断面図であって、矢印のように風を受ける前面4側の周
縁に切欠小凹部3を形成している。この他、自動車や船
や飛行機等の乗物から飛出した部分に、本発明を応用す
ることもできる。
Further, FIG. 17 is a sectional view of a side mirror 12 of an automobile, in which a small cutout recess 3 is formed in the peripheral edge of the front surface 4 side which receives the wind as shown by the arrow. In addition, the present invention can be applied to a portion that has jumped out of a vehicle such as an automobile, a ship, or an airplane.

【0037】また、図18(イ)に示す煙突13、同図
(ロ)の塔(タワー)14、あるいは同図(ハ)のような
橋脚15等、又は、建物の柱等であって、強風時の抵抗を
低減したり、海流や河川流の抵抗を減少したい箇所に、
本発明を応用するも好ましい。
Further, the chimney 13 shown in FIG. 18 (a), the tower 14 shown in FIG. 18 (b), or the bridge pier 15 shown in FIG. 18 (c), or the pillars of a building, For locations where you want to reduce the resistance during strong winds or reduce the resistance of ocean currents and river currents,
It is also preferable to apply the present invention.

【0038】また、図19(イ)に示すように小径管路16
から大径管路17に急拡大する部位18に、切欠小凹部3を
形成して、流れの抵抗を減少させるも好ましい。若しく
は、図19(ロ)のように、大径管路17から小径管路16に
急縮小する部位19に切欠小凹部3を形成するも、好まし
い。即ち、本発明を、内部流れに適用することもでき
る。
Further, as shown in FIG. 19A, the small diameter conduit 16
It is also preferable to form a small cutout 3 in the portion 18 that suddenly expands to the large diameter conduit 17 to reduce the flow resistance. Alternatively, as shown in FIG. 19B, it is preferable to form the cutout small recess 3 in the portion 19 where the large diameter conduit 17 is rapidly reduced to the small diameter conduit 16. That is, the present invention can be applied to the internal flow.

【0039】次に、図20は、(内部流れと外部流れの中
間的な場合であって、)ダクト20内の格子21を示し、そ
の断面形状を上述の図2〜図7、図13等のようにしても
良い。あるいは、空気取入れ口や空気吹出し口の格子に
適用するも好ましい。
Next, FIG. 20 shows a grid 21 in the duct 20 (in the case of an intermediate flow between the internal flow and the external flow), the cross-sectional shape of which is shown in FIGS. You may do like this. Alternatively, it is also preferably applied to a lattice of an air intake port or an air outlet port.

【0040】さらに、図21(イ)に示す熱交換器22に適
用して、そのパイプ横断面形状を、図21(ロ)や(ハ)
のように切欠小凹部3…を有する十字型パイプとしても
好ましい。
Further, by applying it to the heat exchanger 22 shown in FIG. 21 (a), the cross-sectional shape of the pipe is changed to that shown in FIG. 21 (b) or (c).
It is also preferable to use a cross pipe having the small cutouts 3 ...

【0041】[0041]

【発明の効果】本発明は上述の構成により次のような著
大な効果を有する。
The present invention has the following significant effects due to the above-mentioned configuration.

【0042】 (請求項1によれば、)切欠小凹部3
によって流れのはく離を積極的に生じさせ、そのはく離
流れによって流れを受ける物体の周りの流れを制御し、
圧力抵抗を減少させることができる。この凹部3は小さ
くて済み、製造(加工)も容易である。また、はく離位
置が安定するので、騒音又は振動を生じない利点もあ
る。
Notch small recess 3 (according to claim 1)
Positively causes flow separation, and controls the flow around an object receiving the flow by the separation flow.
The pressure resistance can be reduced. This recess 3 can be small, and is easy to manufacture (process). Further, since the peeling position is stable, there is an advantage that noise or vibration is not generated.

【0043】 (請求項2によれば、)請求項1と同
様の効果の他に、さらに、切欠小凹部3内の渦Gによっ
て、一旦はく離させた流れを物体側へ引き寄せて、後流
の幅(後流領域B)を減少させて、圧力抵抗を減少させ
得る。
In addition to the same effect as in claim 1, (according to claim 2), the flow separated once by the vortex G in the notch small recess 3 is drawn toward the object side, and The width (wake area B) may be reduced to reduce pressure resistance.

【0044】 (請求項3によれば、)角張った物体
の稜にアール(丸味)を取る加工は困難又は高価につく
場合が多いが、これに代わって、小さな切欠小凹部3を
加工することは容易であり、安価である。そして、上述
の請求項1と同様の効果が得られる。
(According to claim 3) It is often difficult or expensive to process the ridges of a square object, but instead of this, it is necessary to process a small cutout small recess 3. Is easy and cheap. Then, the same effect as that of the above-mentioned claim 1 is obtained.

【0045】 (請求項4によれば、)上記請求項3
と同様の効果が得られると共に、一層、後流領域を小さ
くできる。
Claim 3 (according to claim 4)
It is possible to obtain the same effect as described above and further reduce the wake region.

【0046】 (請求項5又は6によれば、)最も加
工が容易なシンプルな形状をもって圧力抵抗を減少でき
る。
(According to claim 5 or 6) It is possible to reduce the pressure resistance with a simple shape that is the easiest to process.

【0047】 (請求項7によれば、)(D−2d)
/Dの値が 0.6よりも小さいと、切欠小凹部3の加工が
面倒となり、アール(丸味)を加工する場合の手間と変
わらなくなってしまう。逆に、0.95を越えると、切欠小
凹部3が余りに小さくて、後流領域Bを小さくする作用
が小さく、圧力抵抗の減少効果が余り期待できなくな
る。従って、 0.6〜0.95が圧力抵抗低減効果が大きくか
つ切欠加工が少しで済むというという利点が得られて好
都合である。
(According to claim 7) (D-2d)
If the value of / D is smaller than 0.6, the machining of the small cutout concave portion 3 becomes troublesome, and the labor is the same as when processing a round (roundness). On the other hand, when it exceeds 0.95, the notch small recess 3 is too small, the effect of reducing the wake region B is small, and the effect of reducing the pressure resistance cannot be expected so much. Therefore, 0.6 to 0.95 is advantageous because it has a large effect of reducing the pressure resistance and requires a small amount of notching.

【図面の簡単な説明】[Brief description of drawings]

【図1】作用説明図である。FIG. 1 is an operation explanatory view.

【図2】本発明の簡略説明断面図である。FIG. 2 is a simplified explanatory sectional view of the present invention.

【図3】要部拡大断面図である。FIG. 3 is an enlarged sectional view of a main part.

【図4】流れ説明図である。FIG. 4 is a flow chart.

【図5】他の流れ説明図である。FIG. 5 is another flow explanatory diagram.

【図6】別の流れ説明図である。FIG. 6 is another flow explanatory diagram.

【図7】変形例とその流れ説明図である。FIG. 7 is a diagram illustrating a modified example and its flow.

【図8】風洞実験(実測)結果を示すグラフ図と説明図
である。
8A and 8B are a graph and an explanatory diagram showing a result of a wind tunnel experiment (actual measurement).

【図9】平均背圧係数の実測結果のグラフ図と説明図で
ある。
9A and 9B are a graph and an explanatory diagram of a measurement result of an average back pressure coefficient.

【図10】切欠小凹部の形状を変えた場合の抵抗係数を示
すグラフ図と説明図である。
10A and 10B are a graph and an explanatory diagram showing a resistance coefficient when the shape of the notched small recess is changed.

【図11】種々の他の実施例を示す説明図である。FIG. 11 is an explanatory diagram showing various other embodiments.

【図12】さらに別の種々の実施例を示す要部説明図であ
る。
FIG. 12 is an explanatory view of a main part showing still another various embodiments.

【図13】他の実施の形態を示す断面図である。FIG. 13 is a cross-sectional view showing another embodiment.

【図14】適用例を示す斜視図である。FIG. 14 is a perspective view showing an application example.

【図15】他の適用例を示す側面図である。FIG. 15 is a side view showing another application example.

【図16】別の適用例の説明図である。FIG. 16 is an explanatory diagram of another application example.

【図17】さらに別の適用例の断面図である。FIG. 17 is a cross-sectional view of yet another application example.

【図18】他の応用例を示す説明図である。FIG. 18 is an explanatory diagram showing another application example.

【図19】別の応用例を示す説明図である。FIG. 19 is an explanatory diagram showing another application example.

【図20】さらに別の応用例を示す説明図である。[Fig. 20] Fig. 20 is an explanatory diagram showing still another application example.

【図21】他の応用例の説明図である。FIG. 21 is an explanatory diagram of another application example.

【符号の説明】[Explanation of symbols]

1 はく離位置 2 流れを受ける物体 3 切欠小凹部 4 前面 5 後面 A 角部 D 一辺長さ d 一辺長さ 1 Peeling position 2 Object receiving flow 3 Notch small recess 4 Front surface 5 Rear surface A Corner D One side length d One side length

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 流れを受ける物体2に於ける流体はく離
位置1乃至その直前位置に、切欠小凹部3を形成したこ
とを特徴とする圧力抵抗減少構造体。
1. A pressure resistance reducing structure characterized in that a cutout small recess (3) is formed at a fluid peeling position (1) or a position immediately before it in an object (2) receiving a flow.
【請求項2】 流れを受ける物体2に於ける流体はく離
位置1乃至その直前位置に、はく離した外部流れHを引
き寄せる強い渦Gを生じさせるための切欠小凹部3を形
成したことを特徴とする圧力抵抗減少構造体。
2. A cutout small recess 3 for forming a strong vortex G attracting the separated external flow H is formed at a fluid separation position 1 or a position immediately before it in an object 2 receiving a flow. Pressure resistance reduction structure.
【請求項3】 流れを受ける物体2が角張った立体形状
であって、該物体2の前面4側の稜に切欠小凹部3を形
成したことを特徴とする圧力抵抗減少構造体。
3. A pressure resistance reducing structure characterized in that an object 2 that receives a flow has an angular three-dimensional shape, and a small recess 3 is formed in a ridge on the front surface 4 side of the object 2.
【請求項4】 流れを受ける物体2が角張った立体形状
であって、該物体2の前面4側の稜及び後面5側の稜
に、切欠小凹部3…を形成したことを特徴とする圧力抵
抗減少構造体。
4. A pressure characterized in that an object 2 receiving a flow has an angular three-dimensional shape, and cutout small recesses 3 ... Are formed at the ridge on the front surface 4 side and the ridge on the rear surface 5 side of the object 2. Drag reduction structure.
【請求項5】 流れを受ける物体2の横断面形状が矩形
であって、その前方両角部A,Aに矩形状の切欠小凹部
3を形成したことを特徴とする圧力抵抗減少構造体。
5. A pressure resistance reducing structure characterized in that the object 2 that receives a flow has a rectangular cross-sectional shape, and rectangular cutout small recesses 3 are formed at both front corners A, A.
【請求項6】 流れを受ける物体2の横断面形状が正方
形であって、その前方両角部A,Aに正方形状の切欠小
凹部3,3を形成したことを特徴とする圧力抵抗減少構
造体。
6. A pressure resistance reducing structure characterized in that the body 2 receiving a flow has a square cross-sectional shape, and square notch recesses 3, 3 are formed at both front corners A, A. .
【請求項7】 流れを受ける物体2の横断面形状の正方
形の一辺長さをDとすると共に、切欠小凹部3の横断面
形状の正方形の一辺長さをdとした場合、(D−2d)
/Dの値を、 0.6〜0.95に設定した請求項6記載の圧力
抵抗減少構造体。
7. When one side length of a square of the cross-sectional shape of the object 2 which receives a flow is D and one side length of the square of the cross-sectional shape of the notch small recess 3 is d, (D-2d )
The pressure resistance reducing structure according to claim 6, wherein the value of / D is set to 0.6 to 0.95.
JP24660995A 1995-08-30 1995-08-30 Pressure-resistance reducing structure Pending JPH0968208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24660995A JPH0968208A (en) 1995-08-30 1995-08-30 Pressure-resistance reducing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24660995A JPH0968208A (en) 1995-08-30 1995-08-30 Pressure-resistance reducing structure

Publications (1)

Publication Number Publication Date
JPH0968208A true JPH0968208A (en) 1997-03-11

Family

ID=17150958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24660995A Pending JPH0968208A (en) 1995-08-30 1995-08-30 Pressure-resistance reducing structure

Country Status (1)

Country Link
JP (1) JPH0968208A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057182A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Air conditioner
JP2015143543A (en) * 2014-01-31 2015-08-06 株式会社鷺宮製作所 control valve
JP2017075723A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Indoor unit of air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057182A (en) * 2005-08-26 2007-03-08 Mitsubishi Electric Corp Air conditioner
JP4553812B2 (en) * 2005-08-26 2010-09-29 三菱電機株式会社 Air conditioner
JP2015143543A (en) * 2014-01-31 2015-08-06 株式会社鷺宮製作所 control valve
JP2017075723A (en) * 2015-10-14 2017-04-20 パナソニックIpマネジメント株式会社 Indoor unit of air conditioner

Similar Documents

Publication Publication Date Title
JP3235772B2 (en) Ship with stern duct
US6986544B2 (en) Cross flow vortex trap device and method for reducing the aerodynamic drag of ground vehicles
JPS63170195A (en) Aerofoil
KR20180095460A (en) A rib arrangement in a wing tip device
JPS63173794A (en) Article, base validity of which is reduced
JP2009090681A (en) Vehicle substructure
EP0466826A1 (en) Low drag vortex generators
EP3098158A1 (en) Stern duct, stern attachment, method of designing stern duct, and ship equipped with stern duct
JPH0968208A (en) Pressure-resistance reducing structure
JP2000128088A (en) Method to reduce wave resistance of an airplane
US5909782A (en) Cylindrical member with reduced air flow resistance
Landström et al. Effects of ground simulation on the aerodynamic coefficients of a production car in yaw conditions
Marchman Effectiveness of leading-edge vortex flaps on 60 and 75 degree delta wings
JPH0712094A (en) Blade shape for compressor blade cascade
Vedrtnam et al. Variation of drag coefficient, wall static pressure and secondary flow over passenger car
WO2011043431A1 (en) Wing structure and fairing device
US5752865A (en) Ship
Lounsberry et al. Laminar flow whistle on a vehicle side mirror
JP3394393B2 (en) Roof spoiler
Chauhan et al. Designing Rear View Mirror of Car Using CFD and Reverse Engineering
JPH10157658A (en) Aerodynamic structure of rear part of automobile and designing method thereof
HU192821B (en) Device for decreasing the flow resistance of bodies set in flow
JP2846218B2 (en) Sound insulation device
JP2002173093A (en) Wing tip device of aircraft
JP2760196B2 (en) Movable damping device for bridge-like structures