JPH0967448A - Material composition for formed material of fiber reinforced resin and production of formed material - Google Patents

Material composition for formed material of fiber reinforced resin and production of formed material

Info

Publication number
JPH0967448A
JPH0967448A JP7226142A JP22614295A JPH0967448A JP H0967448 A JPH0967448 A JP H0967448A JP 7226142 A JP7226142 A JP 7226142A JP 22614295 A JP22614295 A JP 22614295A JP H0967448 A JPH0967448 A JP H0967448A
Authority
JP
Japan
Prior art keywords
parts
fiber
glass fiber
reinforced resin
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7226142A
Other languages
Japanese (ja)
Inventor
Koji Tsukihara
浩司 月原
Masaru Harada
大 原田
Manabu Hashimoto
學 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7226142A priority Critical patent/JPH0967448A/en
Publication of JPH0967448A publication Critical patent/JPH0967448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composition capable of maintaining the specific gravity of a formed product low, excellent in impact resistance, preventing wavy stripes and a color irregularity and useful for an artificial marble, etc., by blending specific amounts of a specific filler and cut pieces of a glass fiber strand with a synthetic resin. SOLUTION: This material composition for the formed material of a fiber reinforced resin, is obtained by blending (B) 50-200 pts.wt. of an inorganic salt as a filler and (C) 20-30 pts.wt. cut pieces of a glass fiber strand bound with a binder of which solubility to a reactive diluent contained in a component (A) is 20-60wt.%, based on (A) 100 pts.wt. synthetic resin (e.g. an unsaturated polyester resin blended with the reactive diluent as a resin viscosity adjusting agent).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば浴槽等に使用さ
れる、繊維強化樹脂成形体を製造する原料としての、合
成樹脂、充填材及びガラス繊維ストランドの切断片等を
配合した繊維強化樹脂成形体用材料組成物、並びに、合
成樹脂、充填材及びガラス繊維ストランドの切断片等の
配合物を、混練後成形する繊維強化樹脂成形体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin containing a synthetic resin, a filler, and cut pieces of glass fiber strands as raw materials for producing a fiber reinforced resin molded product used in, for example, a bathtub. The present invention relates to a material composition for a molded body, and a method for producing a fiber-reinforced resin molded body in which a compound such as a synthetic resin, a filler and a cut piece of glass fiber strand is kneaded and then molded.

【0002】[0002]

【従来の技術】従来、例えば、人造大理石のような繊維
強化樹脂成形体を製造するのに、合成樹脂100重量部
に対し、充填材の200〜300重量部と、ガラス繊維
ストランドを1〜3mmに切断した切断片の10〜20
重量部とを配合し、さらに、混練物の凝集力を向上させ
る目的で、粒子径10〜100μm程度のガラス粉末を
上記配合物全量に対して60〜80重量%を配合した組
成物を用い、横型ニーダー、縦型プラネタリーミキサー
等で、ガラス繊維を配合する前に充分に混練した後、ガ
ラス繊維を配合し、約10分間以上混練した混練物を用
いて、繊維強化樹脂成形体を製造していた。
2. Description of the Related Art Conventionally, for manufacturing a fiber reinforced resin molding such as artificial marble, 200 to 300 parts by weight of a filler and 1 to 3 mm of a glass fiber strand are added to 100 parts by weight of a synthetic resin. 10 to 20 pieces cut into pieces
Parts by weight, and for the purpose of further improving the cohesive force of the kneaded product, a composition in which 60 to 80% by weight of glass powder having a particle diameter of about 10 to 100 μm is compounded with respect to the total amount of the above compound, Using a horizontal kneader, a vertical planetary mixer, etc., after sufficiently kneading the glass fibers before blending them, blending the glass fibers, and kneading for about 10 minutes or more to produce a fiber-reinforced resin molding Was there.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の繊
維強化樹脂成形体用の材料組成物を用いた場合には、混
練物の粘度は104 Pa・s以上のもので、混練物のマ
トリックス凝集力は維持されるものの、殆ど流動性を有
しないもので、成形性が悪く、従って、強化繊維の配合
量には限界があり、また、混練によって強化繊維が解繊
しやすく、さらに、混練物の凝集力向上のために添加し
てあるガラス粉末のために、製造した繊維強化樹脂成形
体(以下、単に製品という。)の比重が高くなり、重い
製品となるという問題があった。さらに、ガラス粉末は
高価な材料であり、製品の製造原価を引き上げるという
問題もあった。尚、発明者らは、従来不飽和ポリエステ
ル樹脂に樹脂粘度調整剤として反応性希釈剤を添加して
ある場合には、これの溶剤であるスチレンモノマーに対
するガラス繊維ストランドの従来のバインダーの溶解率
は高く、80%に達するという知見を得た。この比重の
問題を解決するために、ガラス粉末に代えて充填材に無
機塩類の粉末(例えば、炭酸カルシウム、水酸化アルミ
ニウム、硫酸バリウム)を用いると、BMCの比重を低
くすることはできるが、混練物のマトリックス凝集力が
低下し、これに伴い、製品の衝撃強度も低下し、これを
補うためにガラス繊維の配合量を増加すると、製品の表
面に波うち縞や色むら等の欠陥が発生するという問題が
新たに生ずる。この原因について鋭意調査研究を続けた
結果、上記新知見を得るに到り、さらに、このバインダ
ーの反応性希釈剤への溶解によるガラス繊維の解繊が前
記欠陥の原因に深く関わっていることが判明したのであ
る。このガラス繊維は、混練物の粘度が低いほど、ま
た、ガラス繊維の切断片の長さが短いほど解繊しにくい
のである。しかし、ガラス繊維の切断片の長さを短くし
すぎると製品の強化の効果は発揮されない。そこで、本
発明の目的は、上記の問題点を解決し、比重を低く抑
え、且つ、製品の衝撃強度を損なうことなく、上記製品
の欠陥を防止する繊維強化樹脂成形体用材料組成物、並
びに、繊維強化樹脂成形体の製造方法を提供するところ
にある。
However, when the above-mentioned conventional material composition for a fiber-reinforced resin molded product is used, the viscosity of the kneaded product is 10 4 Pa · s or more, and the matrix of the kneaded product is used. Although cohesive force is maintained, it has almost no fluidity and poor moldability. Therefore, there is a limit to the blending amount of reinforcing fibers, and the reinforcing fibers are easily defibrated by kneading. Due to the glass powder added to improve the cohesive strength of the product, the produced fiber-reinforced resin molded product (hereinafter, simply referred to as a product) has a high specific gravity, which causes a problem of a heavy product. Further, glass powder is an expensive material, and there is a problem that the manufacturing cost of the product is increased. In addition, when the reactive diluent is added to the unsaturated polyester resin as a resin viscosity modifier, the dissolution rate of the conventional binder of the glass fiber strand in the styrene monomer that is the solvent of the conventional polyester is It was found that it was high, reaching 80%. In order to solve the problem of the specific gravity, if powders of inorganic salts (for example, calcium carbonate, aluminum hydroxide, barium sulfate) are used as the filler instead of the glass powder, the specific gravity of BMC can be lowered, The matrix cohesive force of the kneaded product is reduced, and the impact strength of the product is also reduced accordingly.If the compounding amount of glass fiber is increased to compensate for this, defects such as wavy stripes and color unevenness appear on the surface of the product. A new problem arises. As a result of continuing intensive research into this cause, the above-mentioned new knowledge was obtained, and further, the defibration of the glass fiber due to the dissolution of the binder in the reactive diluent is deeply involved in the cause of the defect. It turned out. This glass fiber is more difficult to be defibrated as the viscosity of the kneaded product is lower and the length of the cut piece of the glass fiber is shorter. However, if the length of the cut piece of glass fiber is too short, the effect of strengthening the product is not exerted. Therefore, the object of the present invention is to solve the above problems, to suppress the specific gravity to a low level, and, without impairing the impact strength of the product, to prevent the defects of the product, a material composition for a fiber-reinforced resin molded body, and The present invention provides a method for producing a fiber-reinforced resin molded body.

【0004】[0004]

【課題を解決するための手段】上記の目的のための本発
明の繊維強化樹脂成形体用材料組成物の特徴構成は、合
成樹脂100部に対し、充填材として無機塩類50〜2
00重量部を配合するとともに、前記合成樹脂中に含有
する反応性希釈剤に対する溶解度が20〜60%である
バインダーにより結束したガラス繊維ストランドの切断
片20〜30重量部を配合してある点にある(請求項1
に対応)。尚、前記合成樹脂が、樹脂粘度調整剤として
の前記反応性希釈剤を配合した不飽和ポリエステル樹脂
であればなおよい(請求項2に対応)。また、上記目的
のための本発明の繊維強化樹脂成形体の製造方法として
の特徴手段は、合成樹脂100部に対し、充填材として
無機塩類50〜200重量部を配合して混合した後、前
記合成樹脂中に含有する反応性希釈剤に対する溶解度が
20〜60%であるバインダーにより結束した前記ガラ
ス繊維ストランドの切断片20〜30重量部を配合した
混合物を1〜10分間混練し、前記混練後の混練物をプ
レス成形する点にあり(請求項3に対応)、さらに、前
記混合物を1〜5分間混練するようにすればなおよい
(請求項4に対応)。
The characteristic composition of the material composition for a fiber-reinforced resin molding of the present invention for the above purpose is that 100 parts of the synthetic resin is mixed with 50 to 2 inorganic salts as a filler.
In addition to blending 00 parts by weight, 20 to 30 parts by weight of cut pieces of glass fiber strands bound by a binder having a solubility of 20 to 60% in a reactive diluent contained in the synthetic resin are blended. Yes (Claim 1
Corresponding to). It is more preferable that the synthetic resin is an unsaturated polyester resin containing the reactive diluent as a resin viscosity modifier (corresponding to claim 2). Further, the characteristic means as the method for producing the fiber-reinforced resin molded product of the present invention for the above-mentioned purpose is to mix 50 to 200 parts by weight of inorganic salts as a filler with 100 parts of the synthetic resin, and then mix the mixture. A mixture containing 20 to 30 parts by weight of cut pieces of the glass fiber strand bound by a binder having a solubility of 20 to 60% in a reactive diluent contained in a synthetic resin is kneaded for 1 to 10 minutes, and after the kneading The point is that the kneaded product of (1) is press-molded (corresponding to claim 3), and further, the mixture may be kneaded for 1 to 5 minutes (corresponding to claim 4).

【0005】[0005]

【作用】従って、本発明の特徴構成の繊維強化樹脂成形
体用材料組成物によれば、充填剤として、従来より少な
い無機塩類を用いて混練物の比重を低く保ち、ガラス繊
維の配合量を従来より多くしつつ、混練物のマトリック
ス凝集力の低下を防止しながら、同時に混練物の流動性
を改善し、且つ、バインダーを選択することによって、
ガラス繊維ストランドの切断片のバインダーの溶解を抑
制して解繊を防止できる。尚、前記請求項2に記載の構
成とすれば、上記本発明の特徴構成の特性を付与したB
MCを得ることができる。また、本発明の特徴手段の繊
維強化樹脂成形体の製造方法によれば、充填剤として、
従来より少ない無機塩類を用いて混練物の比重を低く保
ち、ガラス繊維の配合量を従来より多くしつつ、混練物
のマトリックス凝集力の低下を防止しながら、同時に混
練物の流動性を改善し、且つ、バインダーを選択すると
ともに、混練時間を短縮することによって、ガラス繊維
ストランドの切断片のバインダーの溶解を抑制して解繊
を防止できる。尚、前記請求項4に記載の手段を用いれ
ば、前記ガラス繊維の解繊をより確実に防止できる。
Therefore, according to the material composition for a fiber-reinforced resin molded product having the characteristic constitution of the present invention, the specific gravity of the kneaded product is kept low by using a smaller amount of inorganic salt than the conventional filler as a filler, and the blending amount of the glass fiber is adjusted. While increasing the amount more than before, while preventing the deterioration of the matrix cohesive force of the kneaded material, at the same time improve the fluidity of the kneaded material, and by selecting a binder,
Dissolution of the binder in the cut pieces of glass fiber strands can be suppressed to prevent defibration. In addition, according to the configuration described in claim 2, B having the characteristics of the characteristic configuration of the present invention is added.
MC can be obtained. Further, according to the method for producing a fiber-reinforced resin molded body of the characteristic means of the present invention, as a filler,
Keeping the specific gravity of the kneaded material low by using less inorganic salts than before, while increasing the blending amount of glass fiber while preventing the decrease in the matrix cohesive force of the kneaded material, at the same time improving the fluidity of the kneaded material. Further, by selecting the binder and shortening the kneading time, it is possible to suppress the dissolution of the binder in the cut pieces of the glass fiber strand and prevent the defibration. If the means described in claim 4 is used, defibration of the glass fiber can be prevented more reliably.

【0006】[0006]

【発明の効果】以上の結果、本発明の請求項1記載の構
成の繊維強化樹脂成形体用材料組成物によって、製品と
しての繊維強化樹脂成形体の比重を低く保ちつつ、製品
の耐衝撃性を損なうことなく、波うち縞や色むらを抑止
した製品を提供できるようになった。尚、前記請求項2
記載の構成によって、良質な人造大理石を提供可能にな
った。また、本発明の請求項3記載の繊維強化樹脂成形
体の製造方法の特徴手段によれば、混練物の取扱いが容
易で、且つ、成形が容易となると同時に、製品の耐衝撃
性を損なうことなく、製品の波うち縞、色むらを防止で
きるようになった。尚、前記請求項4記載の手段によっ
て、製品の耐衝撃性を維持しながら、製品の波うち縞、
色むらをより確実に防止できるようになった。
As a result of the above, with the material composition for a fiber-reinforced resin molded product according to claim 1 of the present invention, the impact resistance of the product can be maintained while keeping the specific gravity of the fiber-reinforced resin molded product as a product low. It is now possible to provide products that suppress wavy streaks and color unevenness without compromising quality. Incidentally, the claim 2
The structure described makes it possible to provide high quality artificial marble. Further, according to the characteristic means of the method for producing a fiber-reinforced resin molded product according to claim 3 of the present invention, handling of the kneaded product is facilitated and molding is facilitated, and at the same time, the impact resistance of the product is impaired. It is now possible to prevent wavy streaks and uneven color on the product. By the means as set forth in claim 4, while maintaining the impact resistance of the product, the wavy stripes of the product,
Color unevenness can be prevented more reliably.

【0007】[0007]

【実施例】本発明の繊維強化樹脂成形体用材料組成物を
用いて、本発明の繊維強化樹脂成形体の製造方法によっ
て、繊維強化樹脂成形体(以下、単に製品という。)を
製造する実施例について説明する。合成樹脂としての低
収縮性付与剤(武田薬品工業株式会社製:商品名ポリマ
ール9965を配合。)を添加した不飽和ポリエステル
樹脂(武田薬品工業株式会社製:商品名ポリマール93
05Z。)100重量部に対し、充填材として炭酸カル
シウム(平均粒径:3.4μm)を150〜200重量
部に、成形時のハンドリング性を向上するための増粘剤
として酸化マグネシウムを1重量部、ポリエステル樹
脂、スチレンを硬化させるための硬化剤としてt−ブチ
ル−パーオキシ−イソプロピル−カーボネートを1重量
部、材料保管時の安定性を維持し、成形時の初期硬化反
応を遅延させるために、反応抑制剤としてパラベンゾキ
ノンを0.05重量部、成形時の脱型を容易とするため
の内部離型剤としてステアリン酸亜鉛を5重量部を夫々
添加して配合し、2軸プラネタリーミキサーによって充
分に混練した後、前記ガラス繊維ストランド(繊維径:
13μm、集束本数:約500本、バインダー:ポリ酢
酸ビニール)の切断片(繊維長:6mm)20〜25重
量部を配合した混合物を、同じく2軸プラネタリーミキ
サーによって1〜10分間混練(回転数:40rpm)
してBMCを形成した。尚、前記ポリ酢酸ビニールの前
記反応性希釈剤中のスチレンモノマーに対する溶解度
(以下、単にスチレン溶解性という。)は50%に調整
してある。前記バインダーのスチレン溶解性の調整は、
スチレンに可溶な樹脂骨格を有するポリ酢酸ビニルと、
スチレンに不溶な樹脂骨格を有するポリ酢酸ビニルを適
宜配合することにによって行った。このために、バイン
ダー樹脂を、ポリ酢酸ビニル、エポキシ樹脂、ウレタン
樹脂、塩化ビニル樹脂等の中から選択し、配合した。上
記のようにして形成したBMCを、45℃の温度下で2
4時間養生し、さらに、コア温度135℃、キャビティ
ー温度120℃の金型温度で、成形圧力100kg/c
2 下で10分間、加熱加圧成形して厚さ10mmの製
品を得た。この製品は、長さ450mm、幅350mm
深さ約180mmのミニバスタブ形状の実製品である。
上述の製品の評価結果は良好であった。従来の技術との
比較のために、前記ガラス繊維のバインダーのスチレン
溶解度を、従来のまま80%のものと、65%に調整し
たものを用いて、他の条件は上記実施例と同様にして製
品を得たものと比較した。これらの結果を下表に示す。
尚、衝撃値試験はJIS K7062 に基づき、フラットワイズ
衝撃によって行い、砂袋衝撃試験はJIS A5712 に基づ
き、欠陥の発生の有無について調べた。前記衝撃値試験
の試験片は、前記製品の底部から、試験片の長さ方向を
ミニバスタブの幅方向にとり、幅12.5mm、長さ5
5mmの寸法で必要数量切り出した。
EXAMPLE An example of producing a fiber-reinforced resin molded article (hereinafter simply referred to as a product) by the method for producing a fiber-reinforced resin molded article of the present invention using the material composition for a fiber-reinforced resin molded article of the present invention. An example will be described. Unsaturated polyester resin (manufactured by Takeda Pharmaceutical Co., Ltd .: trade name Polymerl 93) to which a low shrinkage imparting agent (manufactured by Takeda Chemical Industry Co., Ltd .: blended with trade name Polymer 9996) as a synthetic resin is added.
05Z. ) Calcium carbonate (average particle diameter: 3.4 μm) is used as a filler in an amount of 150 to 200 parts by weight, and magnesium oxide is used in an amount of 1 part by weight as a thickening agent for improving the handling property during molding. 1 part by weight of t-butyl-peroxy-isopropyl-carbonate as a curing agent for curing polyester resin and styrene, to maintain the stability during material storage and to delay the initial curing reaction during molding, thus suppressing the reaction. Add 0.05 parts by weight of parabenzoquinone as an agent and 5 parts by weight of zinc stearate as an internal mold release agent to facilitate demolding at the time of molding, and mix thoroughly with a twin-screw planetary mixer. After kneading, the glass fiber strand (fiber diameter:
13 μm, number of bundles: about 500, binder: polyvinyl acetate) cut pieces (fiber length: 6 mm) 20 to 25 parts by weight of a mixture was mixed for 1 to 10 minutes (rotation speed) with a twin-screw planetary mixer. : 40 rpm)
To form BMC. The solubility of the polyvinyl acetate with respect to the styrene monomer in the reactive diluent (hereinafter, simply referred to as styrene solubility) is adjusted to 50%. Adjustment of styrene solubility of the binder,
Polyvinyl acetate having a resin skeleton soluble in styrene,
It was carried out by appropriately blending polyvinyl acetate having a resin skeleton insoluble in styrene. For this purpose, the binder resin was selected and blended from polyvinyl acetate, epoxy resin, urethane resin, vinyl chloride resin and the like. The BMC formed as described above is subjected to 2
Cured for 4 hours, mold temperature of core temperature 135 ℃, cavity temperature 120 ℃, molding pressure 100 kg / c
The product was heated and pressed under m 2 for 10 minutes to obtain a product having a thickness of 10 mm. This product has a length of 450 mm and a width of 350 mm.
It is a mini bathtub-shaped actual product with a depth of about 180 mm.
The evaluation results of the above products were good. For comparison with the conventional technique, the styrene solubility of the binder of the glass fiber was adjusted to 80% as it was, and the styrene solubility was adjusted to 65%, and the other conditions were the same as those in the above-mentioned examples. Compared with what you got the product. The results are shown in the table below.
The impact value test was carried out by flatwise impact based on JIS K7062, and the sand bag impact test was conducted based on JIS A5712, and the presence or absence of defects was examined. The test piece for the impact value test has a width of 12.5 mm and a length of 5 with the length direction of the test piece taken from the bottom of the product in the width direction of the mini bathtub.
The required quantity was cut out with a size of 5 mm.

【0008】[0008]

【表1】 注.注記しない値は重量部を示す。 *1: スチレン溶解性50%のバインダーのもの *2: スチレン溶解性65%のバインダーのもの *3: スチレン溶解性80%のバインダーのもの *4: ガラス繊維添加後の混練時間:単位分 *5: *4の混練後の粘度:単位104Pa-s *6: 衝撃値の単位はkJ/m2 以上のように、スチレン溶解性50%のバインダーを用
いたガラス繊維を従来より多く20〜25%配合したB
MCは、1分間の混練では良好な結果を示し、10分間
混練したものでは混練がやや過剰で、一部ガラス繊維の
解繊が見られなが、ほぼ良好な結果を示している。尚、
表示しないが、混練時間が1分より短かくなると、混練
不十分になり、ガラス繊維の解繊は防止できるものの、
他の結果が悪くなり、混練時間が10分を超えると、ガ
ラス繊維の解繊が進行し、悪い結果を招くことが判っ
た。また、充填材の配合量を少なくして混練物の粘度の
低下を図ってはいるものの、本実施例では、比較例に比
べてガラス繊維の配合量が多いにも拘わらず、混練物の
粘度は低く保たれている。表に見るように、ガラス繊維
のバインダーのスチレン溶解性が60%を超えると、総
合的に良い結果を得られていない。このように、ガラス
繊維のバインダーのスチレン溶解性を低くすれば良好な
結果が得られるのであるが、これを20%より低くする
と、ガラス繊維と合成樹脂との相溶性が低下し、成形品
の衝撃強度の低下をもたらす場合があり、また、表面か
らガラス繊維が見える等の外観上の不具合が生ずる。
[Table 1] note. Values not noted are parts by weight. * 1: Styrene-soluble 50% binder * 2: Styrene-soluble 65% binder * 3: Styrene-soluble 80% binder * 4: Kneading time after addition of glass fiber: Unit minutes * 5: Viscosity after kneading * 4: Unit 10 4 Pa-s * 6: The unit of impact value is kJ / m 2 or more, and more glass fiber with a styrene-soluble 50% binder than conventional 20 ~ 25% blended B
MC showed good results when kneading for 1 minute, and when kneading for 10 minutes, kneading was a little excessive and defibration of some glass fibers was not observed, but almost good results were shown. still,
Although not shown, when the kneading time is shorter than 1 minute, the kneading becomes insufficient and the defibration of the glass fibers can be prevented,
It was found that when the kneading time exceeded 10 minutes, the defibration of the glass fibers proceeded, resulting in bad results. Further, although the amount of the filler is reduced to reduce the viscosity of the kneaded product, in the present example, the viscosity of the kneaded product is high in spite of the large amount of the glass fiber compared to the comparative example. Is kept low. As shown in the table, when the styrene solubility of the glass fiber binder exceeds 60%, overall good results are not obtained. As described above, good results can be obtained by lowering the styrene solubility of the glass fiber binder, but if it is lower than 20%, the compatibility between the glass fiber and the synthetic resin is lowered and In some cases, the impact strength may be reduced, and inconvenience may occur in that the glass fibers are visible from the surface.

【0009】〔別実施例〕 〈1〉実施例では合成樹脂として不飽和ポリエステル樹
脂を用いてBMCを形成したが、メタメチルアクリレー
トを反応性希釈剤として含有するアクリル樹脂を用いて
もよく、実施例と同様な製品を製造することができる。 〈2〉実施例では充填剤に炭酸カルシウムを用いたが、
硫酸バリウム、耐薬品性のクレー、水酸化アルミニウム
等が使用可能であり、大理石模様を発現させるには水酸
化アルミニウムが好適である。 〈3〉充填剤の配合量は50〜150部でもよく、50
部未満では、配合量に不足し、混練度の粘度不足を来た
し、ガラス繊維と樹脂の分離、ガラス繊維の沈降をもた
らし、200部を超えると、配合量が過剰になり、混練
時の粘度が過大となり、ガラス繊維の解繊が多くなり、
乾燥後のシワの発生をもたらすほか、ミキサーからの取
り出し効率の低下を招く。
[Other Example] <1> In the example, BMC was formed by using an unsaturated polyester resin as a synthetic resin, but an acrylic resin containing methamethyl acrylate as a reactive diluent may be used. A product similar to the example can be manufactured. <2> Although calcium carbonate was used as the filler in the examples,
Barium sulfate, chemical resistant clay, aluminum hydroxide and the like can be used, and aluminum hydroxide is suitable for developing a marble pattern. <3> The compounding amount of the filler may be 50 to 150 parts,
If it is less than 100 parts by weight, the blending amount becomes insufficient, and the viscosity of the kneading degree becomes insufficient, resulting in the separation of the glass fiber and the resin and the settling of the glass fiber. It becomes too large, the defibration of glass fiber increases,
In addition to causing wrinkles after drying, the efficiency of taking out from the mixer is reduced.

【0010】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the structures of the accompanying drawings by the entry.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 101/00 7310−4F B29C 67/14 W // B29K 67:00 105:06 309:08 503:04 C08L 67:06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 101/00 7310-4F B29C 67/14 W // B29K 67:00 105: 06 309: 08 503 : 04 C08L 67:06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂、充填材及びガラス繊維ストラ
ンドの切断片等を配合した繊維強化樹脂成形体用材料組
成物であって、 前記合成樹脂100部に対し、前記充填材として無機塩
類50〜200重量部を配合するとともに、前記合成樹
脂中に含有する反応性希釈剤に対する溶解度が20〜6
0%であるバインダーにより結束した前記ガラス繊維ス
トランドの切断片20〜30重量部を配合してある繊維
強化樹脂成形体用材料組成物。
1. A material composition for a fiber-reinforced resin molded product, which comprises a synthetic resin, a filler, a cut piece of glass fiber strand, and the like, wherein 50 parts of the inorganic salt as the filler is added to 100 parts of the synthetic resin. 200 parts by weight is blended, and the solubility in the reactive diluent contained in the synthetic resin is 20 to 6
A material composition for a fiber-reinforced resin molded product, containing 20 to 30 parts by weight of cut pieces of the glass fiber strands bound by a binder of 0%.
【請求項2】 前記合成樹脂が、樹脂粘度調整剤として
の前記反応性希釈剤を配合した不飽和ポリエステル樹脂
である請求項1記載の繊維強化樹脂成形体用材料組成
物。
2. The material composition for a fiber-reinforced resin molded product according to claim 1, wherein the synthetic resin is an unsaturated polyester resin containing the reactive diluent as a resin viscosity modifier.
【請求項3】 合成樹脂、充填材及びガラス繊維ストラ
ンドの切断片等を配合した繊維強化樹脂成形体の製造方
法であって、 前記合成樹脂100部に対し、前記充填材として無機塩
類50〜200重量部を配合して混合した後、 前記合成樹脂中に含有する反応性希釈剤に対する溶解度
が20〜60%であるバインダーにより結束した前記ガ
ラス繊維ストランドの切断片20〜30重量部を配合し
た混合物を1〜10分間混練し、 前記混練後の混練物をプレス成形する繊維強化樹脂成形
体の製造方法。
3. A method for producing a fiber-reinforced resin molded product, which comprises a synthetic resin, a filler, cut pieces of glass fiber strands, etc., wherein 50 parts to 200 parts of an inorganic salt as the filler is added to 100 parts of the synthetic resin. A mixture in which 20 to 30 parts by weight of cut pieces of the glass fiber strands bound by a binder having a solubility of 20 to 60% in a reactive diluent contained in the synthetic resin is blended after mixing and mixing parts by weight. Is kneaded for 1 to 10 minutes, and the kneaded product after kneading is press-molded to produce a fiber-reinforced resin molded product.
【請求項4】 前記混合物を1〜5分間混練する請求項
3記載の繊維強化樹脂成形体の製造方法。
4. The method for producing a fiber-reinforced resin molded product according to claim 3, wherein the mixture is kneaded for 1 to 5 minutes.
JP7226142A 1995-09-04 1995-09-04 Material composition for formed material of fiber reinforced resin and production of formed material Pending JPH0967448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7226142A JPH0967448A (en) 1995-09-04 1995-09-04 Material composition for formed material of fiber reinforced resin and production of formed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7226142A JPH0967448A (en) 1995-09-04 1995-09-04 Material composition for formed material of fiber reinforced resin and production of formed material

Publications (1)

Publication Number Publication Date
JPH0967448A true JPH0967448A (en) 1997-03-11

Family

ID=16840521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7226142A Pending JPH0967448A (en) 1995-09-04 1995-09-04 Material composition for formed material of fiber reinforced resin and production of formed material

Country Status (1)

Country Link
JP (1) JPH0967448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031720A (en) * 2000-10-23 2002-05-03 이계안 Low density thermosetting resin composition for outer panel of automobile
JP2006199972A (en) * 2001-10-23 2006-08-03 Fiber Glass Japan Co Ltd Chopped strands and molded product of unsaturated polyester resin bmc employing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020031720A (en) * 2000-10-23 2002-05-03 이계안 Low density thermosetting resin composition for outer panel of automobile
JP2006199972A (en) * 2001-10-23 2006-08-03 Fiber Glass Japan Co Ltd Chopped strands and molded product of unsaturated polyester resin bmc employing them

Similar Documents

Publication Publication Date Title
Burns Polyester molding compounds
EP0211657B1 (en) Curable composition, method for manufacture thereof and articles made therefrom
CA2155980C (en) Curable casting compositions
JPH0967448A (en) Material composition for formed material of fiber reinforced resin and production of formed material
JP3482287B2 (en) Compression molding material and resin molding using the same
JPH09254156A (en) Building board
JP4956499B2 (en) Manufacturing method of artificial marble with excellent design
KR910008607B1 (en) Curing composition
JP4395226B2 (en) Manufacturing method of natural stone-like artificial marble
JPH0551507A (en) Thermosetting acrylate composition
JP3534035B2 (en) Manufacturing method of artificial marble
JPH0912823A (en) Synthetic resin molding material and production of molding from the same
JP2002103343A (en) Method for manufacturing artificial marble
JP3877974B2 (en) Manufacturing method of artificial marble
JP3027749B1 (en) Manufacturing method of artificial marble
JPH0762214A (en) Unsaturated polyester resin composition
JPH0661814B2 (en) Method of manufacturing artificial marble by extrusion
JP5635951B2 (en) Sheet molding compound, method for producing the same, and method for producing artificial marble
JPH068196B2 (en) Artificial marble
JPH0959399A (en) Composition for sheet molding compound
JP2000108149A (en) Manufacture of heat-curable resin molded product with surface pattern
JPH08295794A (en) Unsaturated polyester resin composition
JPH10310458A (en) Acrylic resin composition, acrylic premix, acrylic smc or bmc and-production of acrylic artificial marble
JPS62182140A (en) Hydraulic inorganic composition
JP2002127158A (en) Method for manufacturing artificial marble