JPH0967324A - Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material - Google Patents

Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material

Info

Publication number
JPH0967324A
JPH0967324A JP22227295A JP22227295A JPH0967324A JP H0967324 A JPH0967324 A JP H0967324A JP 22227295 A JP22227295 A JP 22227295A JP 22227295 A JP22227295 A JP 22227295A JP H0967324 A JPH0967324 A JP H0967324A
Authority
JP
Japan
Prior art keywords
group
electron
general formula
hydrogen atom
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22227295A
Other languages
Japanese (ja)
Inventor
Yutaka Nagase
裕 長瀬
Nagakatsu Nemoto
修克 根本
Fusae Miyata
房枝 宮田
Jiro Abe
二朗 阿部
Yasuo Shirai
靖男 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP22227295A priority Critical patent/JPH0967324A/en
Publication of JPH0967324A publication Critical patent/JPH0967324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new derivative having a specific substituent, capable of easily forming a single crystal having excellent nonlinear optical characteristics as a whole and a short absorption wavelength edge and giving a new low-molecular organic nonlinear optical material. SOLUTION: The objective derivative is expressed by formula I (X<1> and X<2> are each nitro or amino; Y<1> is a 1-12C hydrocarbon group; R<1> is H, a lower alkyl or together with Y<1> and bonding N atom form a ring; A<1> is H, an electron accepting group or a π-conjugated substituent containing an electron accepting group), e.g. 2-(N-methylanilino)ethyl 3,5-dinitrobenzoate. The objective derivative can be produced e.g. by the condensation reaction of a dinitrobenzoic acid or a dinitrobenzoyl halide of formula II (X is OH or a halogen) with an alcohol compound of formula III.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、良好な2次の非線
形光学効果を発現する低分子および高分子化合物とそれ
らからなる非線形光学材料およびそのモノマーに関す
る。より詳しくは、色素分子を有する新規な安息香酸誘
導体、該誘導体からなる低分子の非線形光学材料、該誘
導体をモノマーまたはその前駆体として合成され、色素
分子を繰り返し単位に2個以上高密度に含有する新規な
芳香族ポリアミド化合物、および該ポリアミド化合物か
らなる高分子の非線形光学材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low molecular weight compound and a high molecular weight compound exhibiting a good second-order nonlinear optical effect, a nonlinear optical material comprising them, and a monomer thereof. More specifically, a novel benzoic acid derivative having a dye molecule, a low-molecular nonlinear optical material comprising the derivative, and the derivative synthesized as a monomer or a precursor thereof, containing two or more dye molecules in high density in a repeating unit. The present invention relates to a novel aromatic polyamide compound and a polymer nonlinear optical material comprising the polyamide compound.

【0002】[0002]

【従来の技術】近年、光エレクトロニクス分野における
新素子として、非線形光学素子の実現を目指した材料の
探索研究が広く行なわれている。一般に、非線形光学材
料とは光の電界の二乗あるいはそれ以上の累乗に比例す
る非線形応答を示す材料であって、光高調波発生、光整
流、光混合、光パラメトリック増幅、ポッケルス効果な
ど様々な効果をもたらすことが知られている新素材であ
る。
2. Description of the Related Art In recent years, as a new element in the field of optoelectronics, a search for a material for realizing a nonlinear optical element has been widely researched. In general, a nonlinear optical material is a material that exhibits a nonlinear response proportional to the square of the electric field of light or a power higher than that, and has various effects such as optical harmonic generation, optical rectification, optical mixing, optical parametric amplification, and Pockels effect. It is a new material that is known to bring about.

【0003】従来、非線形光学材料としては、KH2PO4
NH4H2PO4、LiNbO3、KNbO3、LiIO3等の無機化合物の結晶
が用いられてきた。しかしながら、近年、尿素やp-ニト
ロアニリン、2-メチル-4-ニトロアニリン(MNA)、4
-(N,N-ジメチルアミノ)-4'-ニトロスチルベン(DAN
S)等の有機化合物(色素)が前述の無機化合物に比べ
優れた非線形光学特性を示すことが見出され、様々な有
機非線形光学材料の開発研究が活発に行なわれている。
これまでに知られている有機非線形光学材料の分子構造
上の特徴としては、ベンゼン環などのπ電子系分子の両
端に電子供与性基および電子受容性基を結合させた点に
ある。また、有機非線形光学材料は、非線形性の起源が
分子内π電子であるため、光応答に対して格子振動を伴
わず、従って、無機材料に比べて応答が速く、非線形光
学定数が大きいものや吸収波長の領域が異なるもの等を
合成することが可能である。(例えば、加藤政雄、中西
八郎編、「有機非線形光学材料」、シーエムシー(1985
年);日本化学会編、「非線形光学のための有機材
料」、学会出版センター(1992年);Seth R. Marder他
編、"Materials for Nonlinear Optics", ACS Symposiu
m Series 455, AmericanChemical Society,(1991年)
等参照)
Conventionally, nonlinear optical materials include KH 2 PO 4 ,
Crystals of inorganic compounds such as NH 4 H 2 PO 4 , LiNbO 3 , KNbO 3 , and LiIO 3 have been used. However, recently, urea, p-nitroaniline, 2-methyl-4-nitroaniline (MNA),
-(N, N-dimethylamino) -4'-nitrostilbene (DAN
It has been found that organic compounds (dye) such as S) exhibit excellent nonlinear optical characteristics as compared with the above-mentioned inorganic compounds, and various organic nonlinear optical materials have been actively researched and developed.
The feature of the molecular structure of the organic nonlinear optical material known so far is that an electron donating group and an electron accepting group are bonded to both ends of a π-electron molecule such as a benzene ring. In addition, organic nonlinear optical materials do not involve lattice vibration with respect to optical response because the origin of nonlinearity is π electrons in the molecule, and therefore have a faster response and a larger nonlinear optical constant than inorganic materials. It is possible to combine those having different absorption wavelength regions. (For example, edited by Masao Kato and Hachiro Nakanishi, "Organic Nonlinear Optical Materials", CMC (1985
Year); edited by The Chemical Society of Japan, "Organic Materials for Nonlinear Optics", Institute of Press (1992); Seth R. Marder et al., "Materials for Nonlinear Optics", ACS Symposiu
m Series 455, American Chemical Society, (1991)
Etc.)

【0004】一方、加工処理や大型化の点で有利な有機
高分子系の非線形光学材料が研究されている。すなわ
ち、大きな非線形光学特性を有する有機化合物(以下、
非線形分子と呼ぶ)を高分子材料中に混合分散させる
か、あるいは非線形分子を共有結合により高分子主鎖に
化学結合させることにより非線形分子が高分子マトリッ
クス中に均一に分散したフィルムを作製し、さらに電圧
を印加して電場配向処理(以下、ポーリングと呼ぶ)を
行い非線形分子を一方向に配向させ、全体として高い2
次の非線形光学特性を有する大型の材料を得る試みが行
われている。(例えば、D. M. Burland 他、"Second-Or
der Nonlinearity in Poled-Polymer Systems"、Chemic
al Reviews、第94巻、p.31-75(1994年)等参照)
On the other hand, organic polymer-based nonlinear optical materials which are advantageous in terms of processing and size increase have been studied. That is, an organic compound having a large nonlinear optical property (hereinafter,
(Called non-linear molecule) is mixed and dispersed in the polymer material, or the non-linear molecule is chemically bonded to the polymer main chain by covalent bond to prepare a film in which the non-linear molecule is uniformly dispersed in the polymer matrix, Further, a voltage is applied to perform an electric field orientation treatment (hereinafter referred to as "poling") to orient the non-linear molecules in one direction, resulting in a high overall 2
Attempts have been made to obtain large materials with the following non-linear optical properties. (For example, DM Burland et al., "Second-Or
der Nonlinearity in Poled-Polymer Systems ", Chemic
al Reviews, Volume 94, p.31-75 (1994) etc.)

【0005】[0005]

【発明が解決しようとする課題】しかしながら、大きな
非線形光学効果を発現させる目的で、π電子共役系を有
する有機化合物に強い電子供与性基および強い電子受容
性基を導入した有機化合物においては、結晶化が困難な
ことや、結晶ができても、基底状態での電気双極子の存
在により中心対称の構造を取りやすく、分子1個が示す
大きな非線形性が結晶全体としては相殺されやすいとい
う問題があった。また、π電子の共役長を延ばすことに
より非線形性は増大するが、分子自身の吸収波長帯が長
波長側へシフトし、その結果、基本波や発生する高調波
の吸収を引き起こし出力が低下するといった問題が生じ
た。
However, an organic compound having a strong electron-donating group and a strong electron-accepting group is introduced into an organic compound having a π-electron conjugated system for the purpose of exerting a large nonlinear optical effect. However, even if a crystal is formed, it is easy to have a centrosymmetric structure due to the existence of an electric dipole in the ground state, and the large non-linearity shown by one molecule is easily canceled out by the crystal as a whole. there were. The nonlinearity increases by increasing the conjugate length of the π electrons, but the absorption wavelength band of the molecule itself shifts to the longer wavelength side, and as a result, the output of the fundamental wave and the generated harmonics is reduced due to absorption. Such a problem occurred.

【0006】そこで、本発明の第一の目的は、単結晶の
形成が容易で結晶全体で優れた非線形光学特性を有し、
かつ吸収波長端の短い、すなわち基本波や発生した高調
波の吸収を引き起こしにくい新しい低分子の有機非線形
光学材料を提供することにある。
Therefore, a first object of the present invention is to easily form a single crystal and to have excellent non-linear optical characteristics in the entire crystal.
Another object of the present invention is to provide a new low molecular weight organic nonlinear optical material having a short absorption wavelength edge, that is, it is difficult to cause absorption of a fundamental wave and generated harmonics.

【0007】一方、上記の高分子系においては、非線形
分子の含有量に比例して非線形光学特性が増大する傾向
を示すことが知られているが、従来の分散型あるいは化
学結合型の高分子非線形光学材料において非線形分子を
高濃度に含有させると、フィルムの力学的強度が低下す
る、光の透過性が失われる、ポーリングによりすべての
非線形分子を配向させることが困難となるため結果とし
て高い非線形光学特性が発現しない等の問題点を生じ
た。また、ポーリング直後において非線形分子が配向し
高い非線形光学特性を発現しても、高分子材料のガラス
転移等に基づく配向緩和により非線形光学強度の低下を
まねき長期使用における安定性の点で問題があった。一
方、配向緩和を抑える目的で三次元架橋化による方法も
検討されているが、架橋を施すと溶媒に不溶化するため
成型加工性の点で不利である。
On the other hand, in the above-mentioned polymer system, it is known that the nonlinear optical characteristics tend to increase in proportion to the content of the nonlinear molecule. When a high concentration of non-linear molecules is contained in a non-linear optical material, the mechanical strength of the film is reduced, light transmission is lost, and it becomes difficult to orient all the non-linear molecules by poling, resulting in high non-linearity. There was a problem that the optical characteristics were not expressed. In addition, even if the nonlinear molecules are oriented immediately after poling to exhibit high nonlinear optical characteristics, there is a problem in terms of stability in long-term use because the nonlinear optical strength decreases due to orientation relaxation due to the glass transition of the polymer material. It was On the other hand, a method using three-dimensional cross-linking has been studied for the purpose of suppressing the relaxation of orientation, but when cross-linking is performed, it is insoluble in a solvent, which is disadvantageous in terms of moldability.

【0008】そこで、本発明の第二の目的は、非線形分
子をできる限り高密度かつ安定に化学結合し、溶媒に可
溶でしかもガラス転移温度が高い高分子化合物を創製す
ることにより、優れた非線形光学特性を有し、加工性に
優れかつ配向緩和による強度の低下を引き起こしにくい
高分子の非線形光学材料を提供することにある。
Therefore, the second object of the present invention is to create a polymer compound which chemically bonds non-linear molecules with high density and stability as much as possible, is soluble in a solvent, and has a high glass transition temperature. It is an object of the present invention to provide a polymer nonlinear optical material having nonlinear optical characteristics, excellent workability, and less likely to cause strength reduction due to orientation relaxation.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上述の特
性を有する低分子および高分子の非線形光学材料を得る
べく鋭意検討を加えた。その結果、特定の置換基を有す
る新規なジニトロ安息香酸エステル誘導体を合成するこ
とが可能であり、該ジニトロ安息香酸エステル誘導体の
一部が良好な非線形光学効果を示すとともに単結晶の形
成が容易で、かつ吸収波長端が短いこと、また、該ジニ
トロ安息香酸エステル誘導体を前駆体として新規なジア
ミノ安息香酸エステル誘導体を合成することが可能であ
り、該ジアミノ安息香酸エステル誘導体をモノマーとし
てコモノマーに非線形分子を1個ないしは複数個含有す
るフタル酸エステル誘導体を用いて重縮合を行なうこと
により繰り返し単位中に非線形分子を2個以上高密度に
含有し主鎖に芳香環を有するガラス転移温度が高いポリ
アミドが得られること、さらには該ポリアミドは溶媒に
可溶であり、得られるフィルムにポーリング処理を施す
ことにより高い2次の非線形光学効果を示し、しかも配
向緩和が起こりにくく長期安定性に優れていることを見
出し、本発明に到達した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have made extensive studies in order to obtain a low molecular weight and high molecular weight nonlinear optical material having the above-mentioned characteristics. As a result, it is possible to synthesize a novel dinitrobenzoic acid ester derivative having a specific substituent, and a part of the dinitrobenzoic acid ester derivative exhibits a good nonlinear optical effect and a single crystal can be easily formed. It is also possible to synthesize a novel diaminobenzoic acid ester derivative by using the dinitrobenzoic acid ester derivative as a precursor, and having a short absorption wavelength end. Polyamide having a high glass transition temperature which contains two or more non-linear molecules in a repeating unit at a high density and has an aromatic ring in the main chain by polycondensation using a phthalate derivative containing one or more of What is obtained is that the polyamide is soluble in a solvent, Process that the exhibited higher second-order nonlinear optical effect subjecting, moreover found that the orientation relaxation is excellent in hardly occurs long-term stability, have reached the present invention.

【0010】すなわち、本発明は下記一般式(I)That is, the present invention is represented by the following general formula (I)

【0011】[0011]

【化7】 [Chemical 7]

【0012】(式中、X1およびX2はニトロ基またはア
ミノ基、Y1は炭素数が1〜12の直鎖状または分岐状
の炭化水素鎖、R1は水素原子、低級アルキル基、また
はY1および結合する窒素原子と一体となって環を形成
していてもよく、A1は水素原子、電子受容性基、また
は電子受容性基を含むπ共役系置換基である。)で表さ
れる安息香酸エステル誘導体、下記一般式(II)
(Wherein X 1 and X 2 are nitro groups or amino groups, Y 1 is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 1 is a hydrogen atom, a lower alkyl group, Alternatively, Y 1 and the nitrogen atom to which it is bonded may together form a ring, and A 1 is a hydrogen atom, an electron-accepting group, or a π-conjugated system substituent containing an electron-accepting group. Benzoic acid ester derivative represented by the following general formula (II)

【0013】[0013]

【化8】 Embedded image

【0014】(式中、Y1は炭素数が1〜12の直鎖状
または分岐状の炭化水素鎖、R1は水素原子、低級アル
キル基、またはY1および結合する窒素原子と一体とな
って環を形成していてもよく、A1は水素原子、電子受
容性基、または電子受容性基を含むπ共役系置換基であ
る。)で表されるジニトロ安息香酸エステル誘導体から
なり、1064nmのレーザー光を基本入力波として尿素から
発生する第2次高調波強度を1とした時の同様な基本入
力波により発生する相対第2次高調波強度が10-3以上
である非線形光学材料、繰り返し単位が、下記一般式
(III)
(Wherein Y 1 is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 1 is a hydrogen atom, a lower alkyl group, or Y 1 and a nitrogen atom to be bonded together. A 1 is a hydrogen atom, an electron-accepting group, or a π-conjugated substituent containing an electron-accepting group, and is composed of a dinitrobenzoate derivative represented by Non-linear optical material whose relative second harmonic intensity generated by the same fundamental input wave is 10 -3 or more when the second harmonic intensity generated from urea is 1 with the laser light of 1 as the fundamental input wave, The repeating unit has the following general formula (III)

【0015】[0015]

【化9】 Embedded image

【0016】(式中、R2およびR3は同一または異なっ
てもよく水素原子または下記一般式(IV)
(In the formula, R 2 and R 3 may be the same or different, and a hydrogen atom or the following general formula (IV)

【0017】[0017]

【化10】 Embedded image

【0018】で表される置換基、mは0または1の整
数、Y1、Y2およびY3は同一または異なってもよく炭
素数が1〜12の直鎖状または分岐状の炭化水素鎖、R
1、R4およびR5は同一または異なってもよく水素原
子、低級アルキル基、または各々Y1、Y2あるいはY3
および結合する窒素原子と一体となって環を形成してい
てもよく、A2、A3およびA4は同一または異なっても
よく電子受容性基または電子受容性基を含むπ共役系置
換基である。)で表わされ、重量平均分子量が1,000以
上である芳香族ポリアミド、および、該芳香族ポリアミ
ドからなる高分子非線形光学材料に関するものである。
The substituent represented by the formula, m is an integer of 0 or 1, Y 1 , Y 2 and Y 3 may be the same or different, and a linear or branched hydrocarbon chain having 1 to 12 carbon atoms. , R
1 , R 4 and R 5 may be the same or different and each is a hydrogen atom, a lower alkyl group, or Y 1 , Y 2 or Y 3 respectively.
And a nitrogen atom to which it is bonded may together form a ring, and A 2 , A 3 and A 4 may be the same or different and are an electron-accepting group or a π-conjugated system substituent containing an electron-accepting group. Is. And an aromatic polyamide having a weight average molecular weight of 1,000 or more, and a polymer nonlinear optical material comprising the aromatic polyamide.

【0019】[0019]

【発明の実施の形態】前記一般式(I)〜(IV)中R
1、R4およびR5で表される低級アルキル基としては、
炭素数1〜6のアルキル基である、メチル基、エチル
基、プロピル基、イソプロピル基、ブチル基、sec-ブチ
ル基、tert-ブチル基、ペンチル基およびヘキシル基等
を例示できる。また、R1、R4およびR5が、各々Y1
2あるいはY3で表される炭化水素鎖および結合する窒
素原子と一体となって形成する環としては、アジリジン
環、アゼチジン環、ピロリジン環、ピロリン環およびピ
ペリジン環等を例示できる。
BEST MODE FOR CARRYING OUT THE INVENTION R in the general formulas (I) to (IV)
As the lower alkyl group represented by 1 , R 4 and R 5 ,
Examples thereof include an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. Further, R 1 , R 4 and R 5 are each Y 1 ,
Examples of the ring formed integrally with the hydrocarbon chain represented by Y 2 or Y 3 and the bonding nitrogen atom include an aziridine ring, an azetidine ring, a pyrrolidine ring, a pyrroline ring and a piperidine ring.

【0020】前記一般式(I)〜(IV)中A1、A2
3およびA4で表される電子受容性基としては、ハロゲ
ン原子、ニトロ基、シアノ基、アルコキシカルボニル
基、含ハロアルコキシカルボニル基、アルキルスルホニ
ル基、含ハロアルキルスルホニル基、アリールスルホニ
ル基、アルコキシスルホニル基、含ハロアルコキシスル
ホニル基、アルキルスルフィニル基、含ハロアルキルス
ルフィニル基、アリールスルフィニル基、アルコキシス
ルフィニル基、含ハロアルコキシスルフィニル基、ホル
ミル基、アシル基、含ハロアシル基、トリフルオロメチ
ル基等のペルフルオロアルキル基、2-シアノビニル基、
2,2-ジシアノビニル基、トリシアノビニル基、2-ニトロ
ビニル基、2,2-ジニトロビニル基、2,2-ジ(アルコキシ
カルボニル)ビニル基、2-シアノ-2-(アルコキシカル
ボニル)ビニル基、2-シアノ-2-(アルコキシスルホニ
ル)ビニル基および2-シアノ-2-(アルキルスルホニ
ル)ビニル基等を例示することができる。アシル基に
は、アルカノイル基およびアロイル基が包含され、前者
はハロゲン原子、特にフッ素原子で置換されていてもよ
い。また、上記のアリール基はハロゲン原子、ニトロ
基、シアノ基その他、上で例示した基で置換されていて
もよい。なお、一般に置換基としてのハロゲン原子とし
ては、安定性の点でフッ素原子が好ましい。また、同じ
くA1、A2、A3およびA4で表される電子受容性基を含
むπ共役系置換基としては、
In the general formulas (I) to (IV), A 1 , A 2 ,
Examples of the electron accepting group represented by A 3 and A 4 include a halogen atom, a nitro group, a cyano group, an alkoxycarbonyl group, a haloalkoxycarbonyl group, an alkylsulfonyl group, a haloalkylsulfonyl group, an arylsulfonyl group and an alkoxysulfonyl group. Group, haloalkoxysulfonyl group, alkylsulfinyl group, haloalkylsulfinyl group, arylsulfinyl group, alkoxysulfinyl group, haloalkoxysulfinyl group, formyl group, acyl group, haloacyl group, perfluoroalkyl group such as trifluoromethyl group , 2-cyanovinyl group,
2,2-dicyanovinyl group, tricyanovinyl group, 2-nitrovinyl group, 2,2-dinitrovinyl group, 2,2-di (alkoxycarbonyl) vinyl group, 2-cyano-2- (alkoxycarbonyl) vinyl group Examples thereof include a 2-cyano-2- (alkoxysulfonyl) vinyl group and a 2-cyano-2- (alkylsulfonyl) vinyl group. The acyl group includes an alkanoyl group and an aroyl group, and the former may be substituted with a halogen atom, particularly a fluorine atom. Further, the above aryl group may be substituted with a halogen atom, a nitro group, a cyano group, or any other group exemplified above. In addition, as a halogen atom as a substituent, a fluorine atom is generally preferable from the viewpoint of stability. Further, as the π-conjugated system substituent containing an electron-accepting group also represented by A 1 , A 2 , A 3 and A 4 ,

【0021】[0021]

【化11】 Embedded image

【0022】(式中、A5は電子受容性基である。)等
を例示することができる。ここで、A5で表される電子
受容性基としては、上で例示した置換基を挙げることが
できる。
(In the formula, A 5 is an electron-accepting group.) And the like. Here, examples of the electron-accepting group represented by A 5 include the substituents exemplified above.

【0023】本発明の前記一般式(I)で表される安息
香酸エステル誘導体は、例えば、以下に示す合成方法に
より製造することができる。すなわち、前記一般式
(I)で表される安息香酸エステル誘導体のうち置換基
1およびX2がニトロ基である化合物(前記一般式(I
I)で表される化合物に同じ)については、下記一般式
(V)
The benzoic acid ester derivative represented by the general formula (I) of the present invention can be produced, for example, by the following synthetic method. That is, in the benzoic acid ester derivative represented by the general formula (I), a compound in which the substituents X 1 and X 2 are nitro groups (the general formula (I
(Same as the compound represented by I)), the following general formula (V)

【0024】[0024]

【化12】 [Chemical 12]

【0025】(式中、Xは水酸基またはハロゲン原子で
ある。)で表されるジニトロ安息香酸またはジニトロ安
息香酸ハライドと、下記一般式(VI)
(Wherein, X is a hydroxyl group or a halogen atom) and dinitrobenzoic acid or a dinitrobenzoic acid halide represented by the following general formula (VI)

【0026】[0026]

【化13】 Embedded image

【0027】(式中、Y1は炭素数が1〜12の直鎖状
または分岐状の炭化水素鎖、R1は水素原子、低級アル
キル基、またはY1および結合する窒素原子と一体とな
って環を形成していてもよく、A1は水素原子、電子受
容性基、または電子受容性基を含むπ共役系置換基であ
る。)で表されるアルコール化合物との縮合反応により
容易に合成される。
(In the formula, Y 1 is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 1 is a hydrogen atom, a lower alkyl group, or Y 1 and a nitrogen atom to be bonded together. May form a ring, and A 1 is a hydrogen atom, an electron-accepting group, or a π-conjugated system substituent containing an electron-accepting group. Is synthesized.

【0028】本発明のジニトロ安息香酸エステル誘導体
を製造する際に用いられる前記一般式(V)で表される
ジニトロ安息香酸またはジニトロ安息香酸ハライドにお
いて、ジニトロ基の置換位置としてはベンゼン環上の
2,3位、2,4位、2,5位、2,6位、3,4位、3,5
位が挙げられるが、合成の容易さおよび原料の入手し易
さの点で3,5位が最も好ましい。また、前記一般式
(VI)で表されるアルコール化合物の一部は公知化合
物であり、対応する文献に記載されている方法により合
成することが可能である。(例えば、R. E. Parker、Ad
vances in Fluorine Chemistry、第3巻、p.63-91 (1963
年);J. Zyss 他、Journal of Chemical Physics、第81
巻、p.4160-4167 (1984年); D. R. Robello, Journal
of PolymerScience, Part A: Polymer Chemistry, 第28
巻, p.1 (1990);G. S'heeren 他、Die Makromolekular
e Chemie、第194巻、p.1733-1744 (1993年); 特開平3-
100008 号等参照)なお、前記一般式(VI)で表され
る化合物のうち文献記載の化合物でない場合でも、文献
記載の方法を参考にして、例えば後に参考例4〜8に示
す方法等により合成できる。
In the dinitrobenzoic acid or dinitrobenzoic acid halide represented by the general formula (V) used for producing the dinitrobenzoic acid ester derivative of the present invention, the substitution position of the dinitro group is 2 on the benzene ring. , 3rd, 2,4th, 2,5th, 2,6th, 3,4th, 3,5
Although the position is mentioned, the 3,5 position is most preferable from the viewpoint of easiness of synthesis and availability of raw materials. Further, a part of the alcohol compound represented by the general formula (VI) is a known compound, and can be synthesized by the method described in the corresponding literature. (Eg RE Parker, Ad
vances in Fluorine Chemistry, Volume 3, p.63-91 (1963
Year); J. Zyss et al., Journal of Chemical Physics, No. 81.
Volume, p. 4160-4167 (1984); DR Robello, Journal
of Polymer Science, Part A: Polymer Chemistry, No. 28
Volume, p.1 (1990); G. S'heeren et al., Die Makromolekular
e Chemie, Volume 194, p.1733-1744 (1993);
Even if the compound represented by the general formula (VI) is not the compound described in the literature, it is synthesized by the method described in the literature, for example, by the method shown in Reference Examples 4 to 8 later. it can.

【0029】また、前記一般式(II)で表される安息
香酸エステル誘導体のうち置換基A 1が電子受容性基ま
たは電子受容性基を含むπ共役系置換基であるものにつ
いては、前記一般式(II)で表される安息香酸エステ
ル誘導体のうち置換基A1が水素原子である化合物をま
ず合成し、そのフェニル基に公知の方法を用いて電子受
容性基または電子受容性基を含むπ共役系置換基を導入
することにより製造することができる(例えば、実施例
10〜13参照)。
The rest represented by the general formula (II)
Substituent A of fragrance ester derivatives 1Is an electron-accepting group
Or π-conjugated substituents containing electron-accepting groups
The benzoic acid ester represented by the general formula (II)
Substituent A in the derivative1A compound in which is a hydrogen atom
Without synthesizing the phenyl group, and using an known method to
Introducing a π-conjugated system substituent containing a capacitive or electron-accepting group
Can be manufactured by
10-13).

【0030】本発明の前記一般式(I)で表される安息
香酸エステル誘導体のうち置換基X 1およびX2がニトロ
基である化合物、すなわち前記一般式(II)で表わさ
れるジニトロ安息香酸エステル誘導体のうちある特定の
化合物は、後に実施例で述べるように、良好な2次の非
線形光学効果を発現し、しかも結晶性が良く単結晶の形
成が容易で吸収波長端が短いという特徴を有しており、
実用的な低分子の有機非線形光学材料として有用であ
る。
The rest represented by the general formula (I) of the present invention
Substituent X in fragrance ester derivatives 1And X2Is nitro
A compound which is a group represented by the general formula (II)
Of certain dinitrobenzoic acid ester derivatives
The compound has a good quadratic non-linearity, as will be described later in the Examples.
A single crystal form that exhibits a linear optical effect and has good crystallinity.
It has the characteristics that it is easy to produce and the absorption wavelength edge is short,
Useful as a practical low molecular weight organic nonlinear optical material
You.

【0031】一方、前記一般式(I)で表される安息香
酸エステル誘導体のうち置換基X1およびX2がアミノ基
である化合物は、例えば、上記の方法で合成される前記
一般式(II)で表される化合物のニトロ基を還元する
ことにより得られる。この還元反応は、ジボラン、水素
化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ア
ルミニウムリチウム、水素化アルミニウムナトリウム、
水素化ジアルコキシアルミニウムナトリウム、水素化ジ
エチルアルミニウムナトリウム等通常用いられる還元剤
と反応させることにより容易に進行する。なお、この場
合塩化錫などの触媒存在下で行うことにより反応は好適
に進行する。また、その他にも水素ガス雰囲気下ニッケ
ル、白金、パラジウム、ロジウムなどの金属を触媒とし
た接触還元を行なうことにより、前記一般式(II)で
表される前駆体から前記一般式(I)で表される安息香
酸エステル誘導体のうち置換基X1およびX2がアミノ基
である化合物を合成することも可能である。いずれの反
応も溶媒中で行なうことが望ましく、溶媒としては反応
に関与しないものであればいずれでもよく、アルコー
ル、テトラヒドロフラン、ジメトキシエタン、ジオキサ
ン、ベンゼン、トルエン等を例示することができる。反
応温度は−100℃〜150℃、好ましくは−50℃〜
100℃の範囲で行なうことができる。さらに、導入さ
れた非線形分子が上記の還元反応により分解または変成
するような場合には、アミノ基が保護されたジアミノ安
息香酸あるいはその誘導体と前記一般式(VI)で表さ
れるアルコール化合物とを公知の縮合反応に付した後、
脱保護することによっても前記一般式(I)で表される
安息香酸エステル誘導体のうち置換基X1およびX2がア
ミノ基である化合物を得ることができる。
On the other hand, among the benzoic acid ester derivatives represented by the general formula (I), the compounds in which the substituents X 1 and X 2 are amino groups are, for example, the general formula (II) synthesized by the above method. ) It is obtained by reducing the nitro group of the compound represented by. This reduction reaction includes diborane, lithium borohydride, sodium borohydride, lithium aluminum hydride, sodium aluminum hydride,
The reaction proceeds easily by reacting with a commonly used reducing agent such as sodium dialkoxy aluminum hydride and sodium diethyl aluminum hydride. In this case, the reaction suitably proceeds by performing the reaction in the presence of a catalyst such as tin chloride. Further, in addition to the above, by carrying out catalytic reduction using a metal such as nickel, platinum, palladium, or rhodium in a hydrogen gas atmosphere as a catalyst, the precursor represented by the general formula (II) can be converted to the general formula (I). Of the benzoic acid ester derivatives shown, it is also possible to synthesize a compound in which the substituents X 1 and X 2 are amino groups. It is desirable to carry out any reaction in a solvent, and any solvent may be used so long as it does not participate in the reaction, and examples thereof include alcohol, tetrahydrofuran, dimethoxyethane, dioxane, benzene and toluene. The reaction temperature is −100 ° C. to 150 ° C., preferably −50 ° C.
It can be performed in the range of 100 ° C. Further, when the introduced non-linear molecule is decomposed or modified by the above reduction reaction, diaminobenzoic acid having an amino group protected or a derivative thereof and an alcohol compound represented by the general formula (VI) are used. After subjecting to a known condensation reaction,
Also by deprotection, a compound in which the substituents X 1 and X 2 of the benzoic acid ester derivative represented by the general formula (I) are amino groups can be obtained.

【0032】上記の製造方法で得られる前記一般式
(I)で表される安息香酸エステル誘導体のうち置換基
1およびX2がアミノ基である化合物をモノマーとし
て、本発明の繰り返し単位が前記一般式(III)で表
される芳香族ポリアミドを製造することができる。すな
わち、前記一般式(I)で表される安息香酸エステル誘
導体のうち置換基X1およびX2がアミノ基である化合物
と、例えば、下記一般式(VII)
Among the benzoic acid ester derivatives represented by the general formula (I) obtained by the above-mentioned production method, a compound in which the substituents X 1 and X 2 are amino groups is used as a monomer, and the repeating unit of the present invention is The aromatic polyamide represented by the general formula (III) can be produced. That is, a compound of the benzoic acid ester derivative represented by the general formula (I) in which the substituents X 1 and X 2 are amino groups, and, for example, the following general formula (VII)

【0033】[0033]

【化14】 Embedded image

【0034】(式中、R2およびR3は同一または異なっ
てもよく水素原子または前記一般式(IV)で表される
置換基、mは0または1の整数、Y2は炭素数が1〜1
2の直鎖状または分岐状の炭化水素鎖、R4は水素原
子、低級アルキル基またはY2および結合する窒素原子
と一体となって環を形成していてもよく、A3は電子受
容性基または電子受容性基を含むπ共役系置換基であ
る。)で表されるフタル酸誘導体とを等モル量混合し、
重縮合反応を行うことにより合成することができる。重
縮合反応は縮合剤の存在下好適に進行するが、ここで用
いられる縮合剤としては、(PhO)3P、(PhO)PCl2、PhPOCl
2、(C3H7)3P(O)O、POCl3、SOCl2/Et3N、Ph3P/C2Cl6、Si
Cl4、Me2SiCl2などを例示することができる。また、こ
の反応は有機溶媒中で行うことが好ましく、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルホキ
シド、N-メチルピロリドンなどの非プロトン系極性溶
媒が好適に用いられる。この縮合反応における反応温度
は、モノマーの安定性の点から室温から250℃程度の
温度範囲が好ましい。
(In the formula, R 2 and R 3 may be the same or different and each is a hydrogen atom or a substituent represented by the general formula (IV), m is an integer of 0 or 1, and Y 2 is 1 having a carbon number. ~ 1
2 straight or branched hydrocarbon chain, R 4 may form a ring together with a hydrogen atom, a lower alkyl group or Y 2 and the nitrogen atom to which it is bonded, and A 3 represents an electron accepting group. A π-conjugated system substituent containing a group or an electron-accepting group. ) And a phthalic acid derivative represented by
It can be synthesized by carrying out a polycondensation reaction. The polycondensation reaction preferably proceeds in the presence of a condensing agent, and examples of the condensing agent used here include (PhO) 3 P, (PhO) PCl 2 , and PhPOCl.
2, (C 3 H 7) 3 P (O) O, POCl 3, SOCl 2 / Et 3 N, Ph 3 P / C 2 Cl 6, Si
Examples include Cl 4 , Me 2 SiCl 2, and the like. Further, this reaction is preferably carried out in an organic solvent, and an aprotic polar solvent such as dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone is preferably used. The reaction temperature in this condensation reaction is preferably from room temperature to about 250 ° C. from the viewpoint of the stability of the monomer.

【0035】本発明に用いられる前記一般式(VII)
で表されるフタル酸誘導体は以前本発明者等が見い出し
た化合物(第43回高分子討論会予稿集、p.2235-2236
(1994年)等参照)であり、例えば、以下に示す合成方
法により製造することができる。すなわち、下記一般式
(VIII)
The above-mentioned general formula (VII) used in the present invention
The phthalic acid derivative represented by is a compound previously found by the present inventors (Proceedings of the 43rd Symposium on Macromolecules, p. 2235-2236).
(1994), etc.) and can be produced, for example, by the synthetic method shown below. That is, the following general formula (VIII)

【0036】[0036]

【化15】 Embedded image

【0037】(式中、Rは低級アルキル基である。)で
表されるヒドロキシフタル酸ジエステルと、下記一般式
(IX)
A hydroxyphthalic acid diester represented by the formula (wherein R is a lower alkyl group) and the following general formula (IX)

【0038】[0038]

【化16】 Embedded image

【0039】(式中、Zは水酸基または脱離基、R2
よびR3は同一または異なってもよく水素原子または前
記一般式(IV)で表される置換基、mは0または1の
整数、Y 2は炭素数が1〜12の直鎖状または分岐状の
炭化水素鎖、R4は水素原子、低級アルキル基、または
2および結合する窒素原子と一体となって環を形成し
ていてもよく、A3は電子受容性基または電子受容性基
を含むπ共役系置換基である。)で表される化合物との
縮合反応により、下記一般式(X)
(In the formula, Z is a hydroxyl group or a leaving group, R is2Oh
And RThreeMay be the same or different, hydrogen atom or
A substituent represented by the general formula (IV), m is 0 or 1
Integer, Y 2Is a straight or branched chain having 1 to 12 carbon atoms
Hydrocarbon chain, RFourIs a hydrogen atom, a lower alkyl group, or
Y2And together with the bonding nitrogen atom form a ring
May be AThreeIs an electron-accepting group or an electron-accepting group
It is a π-conjugated system substituent containing. ) With a compound represented by
By the condensation reaction, the following general formula (X)

【0040】[0040]

【化17】 Embedded image

【0041】(式中、Rは低級アルキル基、R2および
3は同一または異なってもよく水素原子または前記一
般式(IV)で表される置換基、mは0または1の整
数、Y2は炭素数が1〜12の直鎖状または分岐状の炭
化水素鎖、R4は水素原子、低級アルキル基、またはY2
および結合する窒素原子と一体となって環を形成してい
てもよく、A3は電子受容性基または電子受容性基を含
むπ共役系置換基である。)で表されるフタル酸ジエス
テル誘導体を合成し、さらにこのフタル酸ジエステル誘
導体を、例えば、水酸化リチウム、水酸化カリウム、水
酸化ナトリウム、水酸化アルミニウム、炭酸カリウム、
炭酸ナトリウム、酢酸カリウム、酢酸ナトリウム、リン
酸ナトリウム等の塩基性物質共存下加水分解することに
より容易に得られる。なお、前記一般式(IX)で表さ
れる化合物中Zで表される脱離基としては、塩素原子、
臭素原子、沃素原子等のハロゲン原子、メタンスルホニ
ルオキシ基、p-トルエンスルホニルオキシ基等のスルホ
ニルオキシ基等が挙げられる。
(Wherein R is a lower alkyl group, R 2 and R 3 may be the same or different, a hydrogen atom or a substituent represented by the general formula (IV), m is an integer of 0 or 1, and Y is 2 is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 4 is a hydrogen atom, a lower alkyl group, or Y 2
And a nitrogen atom to be bonded may form a ring together with A 3 , and A 3 is an electron-accepting group or a π-conjugated system substituent containing an electron-accepting group. ) A phthalic acid diester derivative represented by the formula (1) is synthesized, and the phthalic acid diester derivative is further synthesized, for example, with lithium hydroxide, potassium hydroxide, sodium hydroxide, aluminum hydroxide, potassium carbonate,
It can be easily obtained by hydrolysis in the presence of a basic substance such as sodium carbonate, potassium acetate, sodium acetate or sodium phosphate. The leaving group represented by Z in the compound represented by the general formula (IX) is a chlorine atom,
Examples thereof include halogen atoms such as bromine atom and iodine atom, methanesulfonyloxy group, sulfonyloxy group such as p-toluenesulfonyloxy group and the like.

【0042】上記の縮合反応は適当な縮合剤の存在下好
適に反応が進行する。用いられる縮合剤は前記一般式
(IX)で表される化合物のZで表される置換基により
異なるが、Zが水酸基の場合には、ジエチルアゾジカル
ボキシレートおよびトリフェニルホスフィンを用いるこ
とにより反応が好適に進行することが知られている。
(例えば、O. Mitsunobu、Synthesis、第1981巻、p.1-2
8(1981年)等参照)一方、Zが脱離基の場合には、水
酸化リチウム、水酸化カリウム、水酸化ナトリウム、水
酸化アルミニウム、炭酸カリウム、炭酸ナトリウム、酢
酸カリウム、酢酸ナトリウム、リン酸ナトリウム、水素
化ナトリウム、水素化カルシウム、ピリジン、トリエチ
ルアミン、N,N-ジメチルアニリン等の塩基性物質が縮合
剤として好適に用いられるが、上記の塩基性物質のうち
弱塩基性物質を用いる方がより好ましい。なお、この反
応は有機溶媒中で行なうことが好ましく、用いられる溶
媒としては原料を溶解し反応に関与しないものであれば
何でもよく、例えば、ヘキサン、シクロヘキサン、クロ
ロホルム、ジクロロメタン、ジクロロエタン、ベンゼ
ン、トルエン、キシレン、アセトン、メチルエチルケト
ン、テトラヒドロフラン、ジメトキシエタン、ジオキサ
ン、アセトニトリル、ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルホキシド等を挙げることが
できる。反応温度は通常室温から100℃の温度範囲で
好適に反応が進行する。
The above condensation reaction preferably proceeds in the presence of a suitable condensing agent. The condensing agent used varies depending on the substituent represented by Z of the compound represented by the general formula (IX). However, when Z is a hydroxyl group, the reaction is performed by using diethylazodicarboxylate and triphenylphosphine. Is known to proceed favorably.
(For example, O. Mitsunobu, Synthesis, 1981, p.1-2.
8 (1981), etc.) On the other hand, when Z is a leaving group, lithium hydroxide, potassium hydroxide, sodium hydroxide, aluminum hydroxide, potassium carbonate, sodium carbonate, potassium acetate, sodium acetate, phosphoric acid Basic substances such as sodium, sodium hydride, calcium hydride, pyridine, triethylamine, N, N-dimethylaniline are preferably used as the condensing agent, but it is preferable to use a weak basic substance among the above basic substances. More preferable. This reaction is preferably performed in an organic solvent, and any solvent may be used as long as it dissolves the raw materials and does not participate in the reaction.For example, hexane, cyclohexane, chloroform, dichloromethane, dichloroethane, benzene, toluene, Examples thereof include xylene, acetone, methyl ethyl ketone, tetrahydrofuran, dimethoxyethane, dioxane, acetonitrile, dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like. The reaction proceeds normally preferably in a temperature range from room temperature to 100 ° C.

【0043】原料として用いられる前記一般式(VII
I)で表されるヒドロキシフタル酸ジエステルとして
は、3-ヒドロキシフタル酸ジメチル、4-ヒドロキシフタ
ル酸ジメチル、3-ヒドロキシフタル酸ジエチル、4-ヒド
ロキシフタル酸ジエチル、4-ヒドロキシイソフタル酸ジ
メチル、5-ヒドロキシイソフタル酸ジメチル、4-ヒドロ
キシイソフタル酸ジエチル、5-ヒドロキシイソフタル酸
ジエチル、4-ヒドロキシイソフタル酸ジプロピル、5-ヒ
ドロキシイソフタル酸ジプロピル、2-ヒドロキシテレフ
タル酸ジメチル、2-ヒドロキシテレフタル酸ジエチル、
2-ヒドロキシテレフタル酸ジプロピル、2-ヒドロキシテ
レフタル酸ジブチル、2-ヒドロキシテレフタル酸ジペン
チル、2-ヒドロキシテレフタル酸ジヘキシル等を例示す
ることができる。
The above-mentioned general formula (VII) used as a raw material
Examples of the hydroxyphthalic acid diester represented by I) include dimethyl 3-hydroxyphthalate, dimethyl 4-hydroxyphthalate, diethyl 3-hydroxyphthalate, diethyl 4-hydroxyphthalate, dimethyl 4-hydroxyisophthalate and 5- Dimethyl hydroxyisophthalate, diethyl 4-hydroxyisophthalate, diethyl 5-hydroxyisophthalate, dipropyl 4-hydroxyisophthalate, dipropyl 5-hydroxyisophthalate, dimethyl 2-hydroxyterephthalate, diethyl 2-hydroxyterephthalate,
Examples thereof include dipropyl 2-hydroxyterephthalate, dibutyl 2-hydroxyterephthalate, dipentyl 2-hydroxyterephthalate, and dihexyl 2-hydroxyterephthalate.

【0044】また、前記一般式(IX)で表される化合
物の一部は公知化合物であり、対応する文献に記載され
ている方法により合成することが可能である。(例え
ば、R.E. Parker、Advances in Fluorine Chemistry、
第3巻、p.63-91 (1963年); J.Zyss 他、Journal of Ch
emical Physics、第81巻、p.4160-4167 (1984年); G.
S'heeren 他、Die Makromolekulare Chemie、第194巻、
p.1733-1744 (1993年); 特開平3-100008 号等参照)な
お、前記一般式(V)で表される化合物のうち文献記載
の化合物でない場合でも、文献記載の方法を参考にし
て、例えば後に参考例に示す方法等により合成できる。
Further, some of the compounds represented by the general formula (IX) are known compounds, and can be synthesized by the method described in the corresponding literature. (For example, RE Parker, Advances in Fluorine Chemistry,
Volume 3, p.63-91 (1963); J. Zyss et al., Journal of Ch.
emical Physics, Vol. 81, p. 4160-4167 (1984); G.
S'heeren et al., Die Makromolekulare Chemie, Volume 194,
p.1733-1744 (1993); see Japanese Patent Laid-Open No. 3-100008, etc.) Incidentally, even if the compound represented by the general formula (V) is not the compound described in the literature, the method described in the literature is referred to. For example, it can be synthesized by the method shown in Reference Example later.

【0045】以上述べた製造方法により得られる、繰り
返し単位が前記一般式(III)で表され芳香族ポリア
ミドの重量平均分子量は1,000以上であり、5,000以上で
あることが製膜性や非線形光学材料としての安定性の点
で好ましい。分子量は、ゲルパーミエーションクロマト
グラフィー、蒸気圧測定法、浸透圧法、光散乱法、粘度
法等の公知の方法により測定される。
The repeating unit obtained by the above-mentioned production method is represented by the general formula (III), and the aromatic polyamide has a weight average molecular weight of 1,000 or more, preferably 5,000 or more. Is preferable in terms of stability. The molecular weight is measured by a known method such as gel permeation chromatography, vapor pressure measuring method, osmotic pressure method, light scattering method, and viscosity method.

【0046】本発明の芳香族ポリアミドを高分子非線形
光学材料として用いる場合には、例えば、該ポリアミド
をクロロホルム、ジクロロメタン、ジクロロエタン、ベ
ンゼン、トルエン、キシレン、テトラヒドロフラン、ジ
メトキシエタン、ジオキサン、アセトニトリル、ジメチ
ルホルムアミド、ジメチルアセトアミド、ジメチルスル
ホキシド、N−メチルピロリドン等の有機溶媒に溶解
し、スピンコート法やキャスト法等の方法によりガラス
基板、ITO蒸着基板またはシリコンウェーハー等の基
板上に、膜厚が好ましくは0.1〜10μmになるよう
に製膜し、乾燥した後、該ポリアミドのガラス転移温度
近傍の温度に保持しつつ好ましくは1kV/cm以上の
電圧でポーリング処理を行ない側鎖の色素分子(非線形
分子)を配向させることにより目的とする材料が得られ
る。
When the aromatic polyamide of the present invention is used as a polymer nonlinear optical material, for example, the polyamide is used as chloroform, dichloromethane, dichloroethane, benzene, toluene, xylene, tetrahydrofuran, dimethoxyethane, dioxane, acetonitrile, dimethylformamide, Dissolved in an organic solvent such as dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, etc., the film thickness on the substrate such as a glass substrate, an ITO vapor deposition substrate or a silicon wafer by a method such as a spin coating method or a casting method is preferably 0. After being formed into a film having a thickness of 1 to 10 μm and dried, a poling treatment is preferably performed at a voltage of 1 kV / cm or more while maintaining the temperature near the glass transition temperature of the polyamide, and a side chain dye molecule (non-linear molecule). To orient Material to obtain the objective by.

【0047】本発明の高分子非線形光学材料は、主鎖骨
格が芳香族ポリアミドからなり溶媒に可溶で側鎖に高密
度に色素分子(非線形分子)を有していることから、良
好な成型加工性を有すると共に優れた2次の非線形光学
強度を示し、さらにガラス転移温度が高く配向緩和によ
る強度の低下が小さく安定性に優れている。また、ガラ
ス状(非晶質)のポリマーであるため、結晶性ポリマー
に見られる光散乱も少なく透明性に優れた材料である。
したがって、非線形光学効果を利用した波長変換素子、
導波路、光シャッター、光スイッチ、光偏光素子、位相
変調素子等の光制御デバイス、非線形光学デバイス、電
気光学デバイス等の材料として有用である。
The polymer nonlinear optical material of the present invention has a main chain skeleton made of an aromatic polyamide, is soluble in a solvent, and has a high density of dye molecules (nonlinear molecules) in its side chains. It has processability and excellent second-order nonlinear optical intensity, and has a high glass transition temperature and a small decrease in intensity due to orientational relaxation, and is excellent in stability. In addition, since it is a glassy (amorphous) polymer, it is a material excellent in transparency with less light scattering found in crystalline polymers.
Therefore, a wavelength conversion element utilizing the nonlinear optical effect,
It is useful as a material for optical control devices such as waveguides, optical shutters, optical switches, optical polarization elements, and phase modulation elements, nonlinear optical devices, and electro-optical devices.

【0048】以下、参考例および実施例により本発明を
さらに詳しく説明する。ただし、本発明がこれらに限定
されるものではないことはもちろんである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Examples. However, it goes without saying that the present invention is not limited to these.

【0049】[0049]

【実施例】【Example】

【0050】参考例1〜3Reference Examples 1 to 3

【0051】[0051]

【化18】 Embedded image

【0052】上記(1)、(2)および(3)で表され
る構造式のアルコール誘導体を、N-メチルアニリンと、
3-クロロプロパノール、4-クロロブタノールまたは6-ク
ロロヘキサノールとをそれぞれ原料として、文献記載の
方法(D. R. Robello, Journal of Polymer Science, P
art A: Polymer Chemistry, 第28巻, p.1 (1990年)参
照)により合成した。なお、生成物が上記の構造である
ことは以下に示す1H−NMRスペクトルから確認し
た。
The alcohol derivatives represented by the structural formulas (1), (2) and (3) are combined with N-methylaniline and
Using 3-chloropropanol, 4-chlorobutanol or 6-chlorohexanol as raw materials, the method described in the literature (DR Robello, Journal of Polymer Science, P
art A: Polymer Chemistry, Vol. 28, p.1 (1990)). In addition, it was confirmed from the 1 H-NMR spectrum shown below that the product had the above structure.

【0053】化合物(1):収率;70 %1 H-NMR, δ(CDCl3, ppm): 1.6-2.1 (m, 3H), 2.92 (s,
3H), 3.44 (t, J=6.0Hz,2H), 3.78 (t, J=6.0Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H).
Compound (1): Yield; 70% 1 H-NMR, δ (CDCl 3 , ppm): 1.6-2.1 (m, 3H), 2.92 (s,
3H), 3.44 (t, J = 6.0Hz, 2H), 3.78 (t, J = 6.0Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H).

【0054】化合物(2):収率;15 %1 H-NMR, δ(CDCl3, ppm): 1.5-1.9 (m, 5H), 2.88 (s,
3H), 3.28 (t, J=5.9Hz,2H), 3.57 (t, J=5.9Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H).
Compound (2): Yield; 15% 1 H-NMR, δ (CDCl 3 , ppm): 1.5-1.9 (m, 5H), 2.88 (s,
3H), 3.28 (t, J = 5.9Hz, 2H), 3.57 (t, J = 5.9Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H).

【0055】化合物(3):収率;83 %1 H-NMR, δ(CDCl3, ppm): 1.1-1.8 (m, 9H), 2.89 (s,
3H), 3.29 (t, J=5.9Hz,2H), 3.59 (t, J=5.9Hz, 2H),
6.5-6.8 (m, 3H), 7.1-7.4 (m, 2H).
Compound (3): Yield; 83% 1 H-NMR, δ (CDCl 3 , ppm): 1.1-1.8 (m, 9H), 2.89 (s,
3H), 3.29 (t, J = 5.9Hz, 2H), 3.59 (t, J = 5.9Hz, 2H),
6.5-6.8 (m, 3H), 7.1-7.4 (m, 2H).

【0056】参考例4〜6Reference Examples 4 to 6

【0057】[0057]

【化19】 Embedded image

【0058】N-メチルエタノールアミン0.520 g(6.92 m
mol)、既知の方法(A. E. Feiring,Journal of Fluorin
e Chemistry, 第24巻, p.191(1984年)およびJournal of
the American Chemical Society, 第112巻, p.7083(19
90年)参照)で合成された(4-フルオロフェニル)ペルフ
ルオロオクチルスルホン4.00 g(6.92 mmol)および無水
炭酸カリウム1.06 g(7.70 mmol)の混合物に3 mlの乾燥
DMSOを加え、100℃において12時間攪拌した。反応
混合物を300 mlの水中に注ぎ、生成した沈殿物をろ過に
より回収した。この粗生成物をメタノールから再結晶す
ることにより精製した。その結果、上記(4)で表わさ
れる構造式の2-[4-(ペルフルオロオクチルスルホニル)-
N-メチルアニリノ]エタノール3.92 g(収率:90 %)を白
色結晶として得た。なお、生成物が上記の構造であるこ
とは以下に示す1H−NMR、IRスペクトル、Mas
sスペクトルおよび元素分析から確認した。
N-methylethanolamine 0.520 g (6.92 m
mol), a known method (AE Feiring, Journal of Fluorin
e Chemistry, Volume 24, p.191 (1984) and Journal of
the American Chemical Society, Volume 112, p.7083 (19
(90)), and added (4 ml) of (4-fluorophenyl) perfluorooctylsulfone (4.00 g, 6.92 mmol) and anhydrous potassium carbonate (1.06 g, 7.70 mmol) to the mixture, and added 3 ml of dry DMSO for 12 hours at 100 ° C. It was stirred. The reaction mixture was poured into 300 ml of water, and the formed precipitate was collected by filtration. The crude product was purified by recrystallization from methanol. As a result, 2- [4- (perfluorooctylsulfonyl)-having the structural formula represented by the above (4) was obtained.
N-methylanilino] ethanol 3.92 g (yield: 90%) was obtained as white crystals. The fact that the product has the above structure shows that 1 H-NMR, IR spectrum, and Mas described below.
Confirmed from s-spectrum and elemental analysis.

【0059】1H-NMR, δ(CDCl3, ppm): 1.65 (t, J=5.1
Hz, 1H), 3.15 (s, 3H), 3.64 (t, J=5.3Hz, 2H), 3.87
(t, J=5.3Hz, 2H), 6.81 (d, J=9.2Hz, 2H), 7.77 (d,
J=9.2Hz, 2H). IR (cm-1): 3580 (-OH), 3430, 2950, 2900, 2875, 159
0, 1550, 1520, 1495, 1460, 1440, 1390, 1370, 1350,
1310, 1240, 1210, 1160, 1120, 1110, 1080, 1070, 9
90, 970, 940, 905, 860, 820, 805, 760, 740, 710, 6
80, 660, 620, 605, 580, 550, 505. Mass (m/e): 633 (M+), 214 (M+-(C8F17)), 169 (CF3(C
F2)2 +), 150 (M+-(SO2C8F17)), 119 (CF3CF2 +), 69 (CF
3 +). 元素分析 (C17H12NSO3F17, 分子量 633.3) 計算値 C: 32.24 %, H: 1.91 %, N: 2.21 %. 実測値 C: 32.18 %, H: 1.65 %, N: 1.99 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.65 (t, J = 5.1
Hz, 1H), 3.15 (s, 3H), 3.64 (t, J = 5.3Hz, 2H), 3.87
(t, J = 5.3Hz, 2H), 6.81 (d, J = 9.2Hz, 2H), 7.77 (d,
J = 9.2Hz, 2H). IR (cm -1 ): 3580 (-OH), 3430, 2950, 2900, 2875, 159
0, 1550, 1520, 1495, 1460, 1440, 1390, 1370, 1350,
1310, 1240, 1210, 1160, 1120, 1110, 1080, 1070, 9
90, 970, 940, 905, 860, 820, 805, 760, 740, 710, 6
80, 660, 620, 605, 580, 550, 505. Mass (m / e): 633 (M + ), 214 (M + -(C 8 F 17 )), 169 (CF 3 (C
F 2 ) 2 + ), 150 (M + -(SO 2 C 8 F 17 )), 119 (CF 3 CF 2 + ), 69 (CF
3 + ). Elemental analysis (C 17 H 12 NSO 3 F 17 , molecular weight 633.3) Calculated C: 32.24%, H: 1.91%, N: 2.21%. Found C: 32.18%, H: 1.65%, N: 1.99%.

【0060】この反応において(4-フルオロフェニル)ペ
ルフルオロオクチルスルホンの代わりに、市販の4-フル
オロベンゾニトリルおよび4-フルオロアセトフェノンを
用い、上記とまったく同様な操作を行い、上記構造式で
表わされる化合物(5)および(6)をそれぞれ合成し
た。得られた化合物の収率、スペクトル分析結果および
元素分析結果を以下に示す。
In this reaction, commercially available 4-fluorobenzonitrile and 4-fluoroacetophenone were used in place of (4-fluorophenyl) perfluorooctyl sulfone, and the same operation as above was carried out to obtain the compound represented by the above structural formula. (5) and (6) were synthesized respectively. The yield, spectral analysis result and elemental analysis result of the obtained compound are shown below.

【0061】化合物(5):収率:79 %1 H-NMR, δ(CDCl3, ppm): 1.60 (t, J=5.7Hz, 1H), 3.0
7 (s, 3H), 3.57 (t, J=5.2Hz, 2H), 3.82 (t, J=5.5H
z, 2H), 6.71 (d, J=9.0Hz, 2H), 7.45 (d, J=9.0Hz, 2
H). IR (cm-1): 3400, 2920, 2870, 2210 (-CN), 1610, 152
0, 1460, 1440, 1390, 1360, 1270, 1230, 1210, 1180,
1120, 1050, 820, 540. Mass (m/e): 176 (M+), 157, 145 (NC-Ph-N(CH3)CH2 +),
129, 116, 102 (+Ph-CN), 75, 51, 42, 31. 元素分析 (C10H12N2O, 分子量 176.2) 計算値 C: 68.16 %, H: 6.86 %, N: 15.90 %. 実測値 C: 68.34 %, H: 6.94 %, N: 15.98 %.
Compound (5): Yield: 79% 1 H-NMR, δ (CDCl 3 , ppm): 1.60 (t, J = 5.7Hz, 1H), 3.0
7 (s, 3H), 3.57 (t, J = 5.2Hz, 2H), 3.82 (t, J = 5.5H
z, 2H), 6.71 (d, J = 9.0Hz, 2H), 7.45 (d, J = 9.0Hz, 2
H). IR (cm -1 ): 3400, 2920, 2870, 2210 (-CN), 1610, 152
0, 1460, 1440, 1390, 1360, 1270, 1230, 1210, 1180,
1120, 1050, 820, 540. Mass (m / e): 176 (M + ), 157, 145 (NC-Ph-N (CH 3 ) CH 2 + ),
129, 116, 102 ( + Ph-CN), 75, 51, 42, 31. Elemental analysis (C 10 H 12 N 2 O, molecular weight 176.2) Calculated value C: 68.16%, H: 6.86%, N: 15.90% Actual value C: 68.34%, H: 6.94%, N: 15.98%.

【0062】化合物(6):収率:52 %1 H-NMR, δ(CDCl3, ppm): 1.74 (t, J=5.4Hz, 1H), 2.4
9 (s, 3H), 3.09 (s, 3H), 3.59 (t, J=5.1Hz, 2H), 3.
83 (t, J=5.3Hz, 2H), 6.71 (d, J=9.0Hz, 2H),7.85
(d, J=9.0Hz, 2H). IR (cm-1): 3360, 2930, 2880, 1640 (-C=O), 1550, 15
30, 1470, 1420, 1380,1330, 1300, 1230, 1200, 1080,
1050, 1000, 960, 820, 790, 660, 590, 580,540, 50
0. Mass (m/e): 193 (M+), 178 (M+-CH3), 162 (M+-(CH2O
H)), 119 (+PhCOCH3), 91, 77, 43 (CH3CO+). 元素分析 (C11H15NO2, 分子量 193.2) 計算値 C: 68.37 %, H: 7.82 %, N 7.25 %. 実測値 C: 68.34 %, H: 7.97 %, N 7.16 %.
Compound (6): Yield: 52% 1 H-NMR, δ (CDCl 3 , ppm): 1.74 (t, J = 5.4Hz, 1H), 2.4
9 (s, 3H), 3.09 (s, 3H), 3.59 (t, J = 5.1Hz, 2H), 3.
83 (t, J = 5.3Hz, 2H), 6.71 (d, J = 9.0Hz, 2H), 7.85
(d, J = 9.0Hz, 2H). IR (cm -1 ): 3360, 2930, 2880, 1640 (-C = O), 1550, 15
30, 1470, 1420, 1380,1330, 1300, 1230, 1200, 1080,
1050, 1000, 960, 820, 790, 660, 590, 580,540, 50
0. Mass (m / e): 193 (M + ), 178 (M + -CH 3 ), 162 (M + -(CH 2 O
H)), 119 ( + PhCOCH 3 ), 91, 77, 43 (CH 3 CO + ). Elemental analysis (C 11 H 15 NO 2 , molecular weight 193.2) Calculated C: 68.37%, H: 7.82%, N 7.25 Actual value C: 68.34%, H: 7.97%, N 7.16%.

【0063】参考例7、8Reference Examples 7 and 8

【0064】[0064]

【化20】 Embedded image

【0065】4-アミノベンゾニトリル10.0 g(84.7 mmo
l)を硫酸40mlと水120mlの混合物に氷冷下、溶解させ
た。この溶液に水10 mlに溶解させた亜硝酸ナトリウム
7.01 g (101.6 mmol)を30分かけて滴下した。この反応
溶液に2-(N-メチルアニリノ)エタノール9.22 g(127.1 m
mol)を氷冷下、30分かけて滴下した。さらに、この反応
溶液を室温において1時間攪拌した後、炭酸水素ナトリ
ウムにより中和すると赤褐色の沈殿が生成した。この沈
殿をろ過により回収し、水で洗浄した後、メタノールか
ら再結晶することにより精製した。その結果、上記
(7)で表わされる構造式の2-[4-(4-シアノフェニルア
ゾ)-N-メチルアニリノ]エタノール11.6 g(収率:49%)を
暗赤色結晶として得た。なお、生成物が上記の構造であ
ることは以下に示す1H−NMR、IRスペクトルおよ
び元素分析から確認した。
4-aminobenzonitrile 10.0 g (84.7 mmo
l) was dissolved in a mixture of 40 ml of sulfuric acid and 120 ml of water under ice cooling. Sodium nitrite dissolved in 10 ml of water was added to this solution.
7.01 g (101.6 mmol) was added dropwise over 30 minutes. 2- (N-methylanilino) ethanol 9.22 g (127.1 m
(mol) was added dropwise over 30 minutes under ice cooling. Further, this reaction solution was stirred at room temperature for 1 hour and then neutralized with sodium hydrogen carbonate to produce a reddish brown precipitate. This precipitate was collected by filtration, washed with water, and then purified by recrystallization from methanol. As a result, 11.6 g (yield: 49%) of 2- [4- (4-cyanophenylazo) -N-methylanilino] ethanol having the structural formula represented by the above (7) was obtained as dark red crystals. The structure of the product was confirmed by 1 H-NMR, IR spectrum and elemental analysis shown below.

【0066】1H-NMR, δ(CDCl3, ppm): 1.77 (t, J=5.5
Hz, 1H), 3.14 (s, 3H), 3.63 (t, J=5.2Hz, 2H), 3.85
(t, J=5.2Hz, 2H), 6.80 (d, J=9.2Hz, 2H), 7.6-8.2
(m, 6H). IR (cm-1): 3500, 2920, 2225 (-CN), 1600, 1555, 152
0, 1440, 1420, 1375, 1345, 1315, 1260, 1215, 1145,
1105, 1070, 1045, 975, 845, 830, 555, 510. 元素分析 (C16H16N4O, 分子量 280.3) 計算値 C: 68.55 %, H: 5.75 %, N 19.99 %. 実測値 C: 68.71 %, H: 5.78 %, N 20.07 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.77 (t, J = 5.5
Hz, 1H), 3.14 (s, 3H), 3.63 (t, J = 5.2Hz, 2H), 3.85
(t, J = 5.2Hz, 2H), 6.80 (d, J = 9.2Hz, 2H), 7.6-8.2
(m, 6H). IR (cm -1 ): 3500, 2920, 2225 (-CN), 1600, 1555, 152
0, 1440, 1420, 1375, 1345, 1315, 1260, 1215, 1145,
1105, 1070, 1045, 975, 845, 830, 555, 510. Elemental analysis (C 16 H 16 N 4O , molecular weight 280.3) Calculated C: 68.55%, H: 5.75%, N 19.99%. Found C: 68.71 %, H: 5.78%, N 20.07%.

【0067】この反応において2-(N-メチルアニリノ)エ
タノールの代わりに、参考例3で得られた6-(N-メチル
アニリノ)-1-ヘキサノールを用い、上記とまったく同
様な操作を行い、上記構造式(8)で表わされる6-[4-
(4-シアノフェニルアゾ)-N-メチルアニリノ]-1-ヘキサ
ノールを合成した。なお、生成物が上記の構造であるこ
とは以下に示す1H−NMR、IRスペクトルおよび元
素分析から確認した。
In this reaction, 6- (N-methylanilino) -1-hexanol obtained in Reference Example 3 was used in place of 2- (N-methylanilino) ethanol, and the same operation as above was carried out. 6- [4-represented by formula (8)
(4-Cyanophenylazo) -N-methylanilino] -1-hexanol was synthesized. The structure of the product was confirmed by 1 H-NMR, IR spectrum and elemental analysis shown below.

【0068】1H-NMR, δ(CDCl3, ppm): 1.2-1.9 (m, 9
H), 3.08 (s, 3H), 3.44 (t, J=6.0Hz,2H), 3.65 (t, J
=6.0Hz, 2H), 6.72 (d, J=9.2Hz, 2H), 7.6-8.2 (m, 6
H). IR (cm-1): 3455, 2925, 2220, 1600, 1560, 1520, 146
0, 1420, 1385, 1350, 1310, 1260, 1220, 1140, 1080,
1050, 965, 850, 825, 555. 元素分析 (C20H24N4O, 分子量 336.4) 計算値 C: 71.40 %, H: 7.19 %, N: 16.65 %. 実測値 C: 71.46 %, H: 7.18 %, N: 16.68 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.2-1.9 (m, 9
H), 3.08 (s, 3H), 3.44 (t, J = 6.0Hz, 2H), 3.65 (t, J
= 6.0Hz, 2H), 6.72 (d, J = 9.2Hz, 2H), 7.6-8.2 (m, 6
H). IR (cm -1 ): 3455, 2925, 2220, 1600, 1560, 1520, 146
0, 1420, 1385, 1350, 1310, 1260, 1220, 1140, 1080,
1050, 965, 850, 825, 555. Elemental analysis (C 20 H 24 N 4 O, molecular weight 336.4) Calculated value C: 71.40%, H: 7.19%, N: 16.65%. Measured value C: 71.46%, H: 7.18%, N: 16.68%.

【0069】実施例1、2Examples 1, 2

【0070】[0070]

【化21】 [Chemical 21]

【0071】3,5-ジニトロ安息香酸5.05 g(25.0 mmol)
および市販の2-(N-メチルアニリノ)エタノール11.34 g
(75.0.0 mmo)を40 mlの乾燥ジクロロメタンに溶解させ
た。この溶液に、4-(N,N-ジメチルアミノ)ピリジン0.25
g(2.0 mmol)および1,3-ジシクロヘキシルカルボジイミ
ド(DCC)5.70 g(27.5 mmol)を加え、室温において
12時間攪拌した。生成した固体をろ過により除去した
後、ジクロロメタンおよび飽和炭酸水素ナトリウム水溶
液を加え、有機層を分取した。有機層を無水硫酸ナトリ
ウムで脱水した後、溶媒を減圧下、留去した。残さをア
セトンから再結晶することにより精製した。その結果、
上記(9)で表わされる構造式の2-(N-メチルアニリノ)
エチル 3,5-ジニトロベンゾエート7.98 g(収率:97 %)
を褐色結晶として得た。なお、生成物が上記の構造であ
ることは以下に示す1H−NMR、IRスペクトル、M
assスペクトルおよび元素分析から確認した。
5.05 g (25.0 mmol) of 3,5-dinitrobenzoic acid
And commercially available 2- (N-methylanilino) ethanol 11.34 g
(75.0.0 mmo) was dissolved in 40 ml dry dichloromethane. In this solution, 4- (N, N-dimethylamino) pyridine 0.25
g (2.0 mmol) and 1,3-dicyclohexylcarbodiimide (DCC) 5.70 g (27.5 mmol) were added, and the mixture was stirred at room temperature for 12 hours. The produced solid was removed by filtration, dichloromethane and saturated aqueous sodium hydrogen carbonate solution were added, and the organic layer was separated. After the organic layer was dehydrated with anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was purified by recrystallization from acetone. as a result,
2- (N-methylanilino) represented by the structural formula (9) above
Ethyl 3,5-dinitrobenzoate 7.98 g (Yield: 97%)
Was obtained as brown crystals. In addition, the fact that the product has the above structure shows the following 1 H-NMR, IR spectrum, M
It was confirmed by an ass spectrum and elemental analysis.

【0072】1H-NMR, δ(CDCl3, ppm): 3.02 (s, 3H),
3.80 (t, J=5.7Hz, 2H), 4.64 (t, J=5.7Hz, 2H), 6.5-
6.9 (m, 3H), 7.0-7.3 (m, 2H), 8.98 (d, J=2.0Hz, 2
H), 9.15 (t, J=2.0Hz, 1H). IR (cm-1): 3110, 3080, 2965, 1740 (-C=O), 1630, 16
00, 1545 (asymmetric stretching of -NO2), 1505, 14
60, 1370, 1345 (symmetric stretching of -NO2), 127
5, 1220, 1195, 1165, 1150, 1075, 990, 925, 750, 72
0, 695. Mass (m/e): 345 (M+), 195 ((O2N)2PhCO+), 149, 120
(Ph-N(CH3)CH2 +), 105,77 (Ph+), 43, 28. 元素分析 (C16H15N3O6, 分子量 345.3) 計算値 C: 55.65 %, H: 4.38 %, N: 12.17 %. 実測値 C: 55.58 %, H: 4.40 %, N: 12.22 %.
1 H-NMR, δ (CDCl 3 , ppm): 3.02 (s, 3H),
3.80 (t, J = 5.7Hz, 2H), 4.64 (t, J = 5.7Hz, 2H), 6.5-
6.9 (m, 3H), 7.0-7.3 (m, 2H), 8.98 (d, J = 2.0Hz, 2
H), 9.15 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3110, 3080, 2965, 1740 (-C = O), 1630, 16
00, 1545 (asymmetric stretching of -NO 2 ), 1505, 14
60, 1370, 1345 (symmetric stretching of -NO 2 ), 127
5, 1220, 1195, 1165, 1150, 1075, 990, 925, 750, 72
0, 695. Mass (m / e): 345 (M + ), 195 ((O 2 N) 2 PhCO + ), 149, 120
(Ph-N (CH 3 ) CH 2 + ), 105,77 (Ph + ), 43, 28. Elemental analysis (C 16 H 15 N 3 O 6 , molecular weight 345.3) Calculated C: 55.65%, H: 4.38 %, N: 12.17% .Actual value C: 55.58%, H: 4.40%, N: 12.22%.

【0073】この反応において2-(N-メチルアニリノ)エ
タノールの代わりに、参考例3で得られた6-(N-メチル
アニリノ)-1-ヘキサノール(3)を用いて、上記とまっ
たく同様な操作を行い、上記(10)で表わされる構造
式の6-(N-メチルアニリノ)ヘキシル 3,5-ジニトロベン
ゾエートを褐色結晶として得た。なお、生成物が上記の
構造であることは以下に示す1H−NMR、IRスペク
トル、Massスペクトルおよび元素分析から確認し
た。(収率:85 %)
In this reaction, 6- (N-methylanilino) -1-hexanol (3) obtained in Reference Example 3 was used in place of 2- (N-methylanilino) ethanol, and the same operation as above was carried out. Then, 6- (N-methylanilino) hexyl 3,5-dinitrobenzoate represented by the structural formula (10) above was obtained as brown crystals. The product has the above structure was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below. (Yield: 85%)

【0074】1H-NMR, δ(CDCl3, ppm): 1.2-1.8 (m, 8
H), 2.91 (s, 3H), 3.31 (t, J=6.3Hz,2H), 4.45 (t, J
=6.5Hz, 2H), 6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.1
2 (d,J=2.0Hz, 2H), 9.19 (t, J=2.0Hz, 1H). IR (cm-1): 3110, 2930, 1730 (-C=O), 1630, 1595, 15
40 (asymmetric stretching of -NO2), 1505, 1460, 13
45 (symmetric stretching of -NO2), 1280, 1230, 116
5, 1075, 990, 920, 750, 720, 695. Mass (m/e): 401 (M+), 195 ((O2N)2PhCO+), 149, 120
(Ph-N(CH3)CH2 +), 105,77 (Ph+). 元素分析 (C20H23N3O6, 分子量 401.4) 計算値 C: 55.65 %, H: 4.38 %, N: 12.17 %. 実測値 C: 55.58 %, H: 4.40 %, N: 12.22 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.2-1.8 (m, 8
H), 2.91 (s, 3H), 3.31 (t, J = 6.3Hz, 2H), 4.45 (t, J
= 6.5Hz, 2H), 6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.1
2 (d, J = 2.0Hz, 2H), 9.19 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3110, 2930, 1730 (-C = O), 1630, 1595, 15
40 (asymmetric stretching of -NO 2 ), 1505, 1460, 13
45 (symmetric stretching of -NO 2 ), 1280, 1230, 116
5, 1075, 990, 920, 750, 720, 695. Mass (m / e): 401 (M + ), 195 ((O 2 N) 2 PhCO + ), 149, 120
(Ph-N (CH 3 ) CH 2 + ), 105,77 (Ph + ). Elemental analysis (C 20 H 23 N 3 O 6 , molecular weight 401.4) Calculated C: 55.65%, H: 4.38%, N: 12.17% .Actual value C: 55.58%, H: 4.40%, N: 12.22%.

【0075】実施例3〜9Examples 3 to 9

【0076】[0076]

【化22】 Embedded image

【0077】3,5-ジニトロ安息香酸8.08 g(40.0 mmol)
にアルゴン雰囲気下、20 mlの塩化チオニルを加え、終
夜還流した。冷却後、減圧下過剰の塩化チオニルを留去
し、残さに20 mlの乾燥THFを加えた。このTHF溶
液に50 mlの乾燥THFに溶解させた参考例1で得られ
た化合物(1)6.61 g(40.0 mmol)および乾燥トリエチ
ルアミン5.10 g(50.0 mmol)を加え、室温において3時
間攪拌した。次に、この反応混合物を300 mlの飽和炭酸
水素ナトリウム水溶液中に注いだ。この混合物をクロロ
ホルム(20 ml X 6)で抽出し、有機層を無水硫酸ナト
リウムで脱水した後、減圧下溶液を濃縮した。残さをク
ロロホルム溶液とした後、シリカゲルクロマトグラフィ
ーにより精製した。さらに、酢酸エチルから再結晶した
結果、上記(11)で表わされる構造式の3-(N-メチル
アニリノ)プロピル 3,5-ジニトロベンゾエート12.93 g
(収率:90 %)を褐色結晶として得た。なお、生成物が上
記の構造であることは以下に示す1H−NMR、IRス
ペクトル、Massスペクトルおよび元素分析から確認
した。
8.05 g (40.0 mmol) 3,5-dinitrobenzoic acid
Under argon atmosphere, 20 ml of thionyl chloride was added, and the mixture was refluxed overnight. After cooling, excess thionyl chloride was distilled off under reduced pressure, and 20 ml of dry THF was added to the residue. To this THF solution were added 6.61 g (40.0 mmol) of compound (1) obtained in Reference Example 1 dissolved in 50 ml of dry THF and 5.10 g (50.0 mmol) of dry triethylamine, and the mixture was stirred at room temperature for 3 hours. Then, the reaction mixture was poured into 300 ml of saturated aqueous sodium hydrogen carbonate solution. This mixture was extracted with chloroform (20 ml X 6), the organic layer was dried over anhydrous sodium sulfate, and the solution was concentrated under reduced pressure. The residue was made into a chloroform solution and then purified by silica gel chromatography. Furthermore, as a result of recrystallization from ethyl acetate, 12.93 g of 3- (N-methylanilino) propyl 3,5-dinitrobenzoate represented by the structural formula (11) above was obtained.
(Yield: 90%) was obtained as brown crystals. The product has the above structure was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below.

【0078】1H-NMR, δ(CDCl3, ppm): 2.1-2.3 (m, 2
H), 2.97 (s, 3H), 3.53 (t, J=6.8Hz,2H), 4.52 (t, J
=6.4Hz, 2H), 6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.1
2 (d,J=2.0Hz, 2H), 9.19 (t, J=2.0Hz, 1H). IR (cm-1): 3110, 2970, 2895, 2830, 1730 (-C=O), 16
30, 1600, 1545 (asymmetric stretching of -NO2), 15
05, 1460, 1375, 1340 (symmetric stretching of -N
O2), 1280, 1245, 1225, 1200, 1170, 1130, 1075, 103
0, 990, 945, 915,885, 830, 755, 720, 695, 635, 58
0, 515. Mass (m/e): 359 (M+), 195 ((O2N)2PhCO+), 149, 120
(Ph-N(CH3)CH2 +), 105,77 (Ph+), 43, 28. 元素分析 (C17H17N3O6, 分子量 359.3) 計算値 C: 56.82 %, H: 4.77 %, N: 11.69 %. 実測値 C: 56.67 %, H: 4.69 %, N: 11.58 %.
1 H-NMR, δ (CDCl 3 , ppm): 2.1-2.3 (m, 2
H), 2.97 (s, 3H), 3.53 (t, J = 6.8Hz, 2H), 4.52 (t, J
= 6.4Hz, 2H), 6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.1
2 (d, J = 2.0Hz, 2H), 9.19 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3110, 2970, 2895, 2830, 1730 (-C = O), 16
30, 1600, 1545 (asymmetric stretching of -NO 2 ), 15
05, 1460, 1375, 1340 (symmetric stretching of -N
O 2 ), 1280, 1245, 1225, 1200, 1170, 1130, 1075, 103
0, 990, 945, 915,885, 830, 755, 720, 695, 635, 58
0, 515. Mass (m / e): 359 (M + ), 195 ((O 2 N) 2 PhCO + ), 149, 120
(Ph-N (CH 3 ) CH 2 + ), 105,77 (Ph + ), 43, 28. Elemental analysis (C 17 H 17 N 3 O 6 , molecular weight 359.3) Calculated value C: 56.82%, H: 4.77 %, N: 11.69% .Actual value C: 56.67%, H: 4.69%, N: 11.58%.

【0079】また、この反応において化合物(1)の代
わりに、参考例3〜8で得られた化合物(3)、
(4)、(5)、(6)、(7)、および(8)を用い
て、上記とまったく同様な操作を行い、上記構造式(1
2)、(13)、(14)、(15)、(16)および
(17)で表わされる3,5-ジニトロ安息香酸エステル誘
導体をそれぞれ合成した。得られた化合物の収率、スペ
クトル分析結果および元素分析結果を以下に示す。
Further, instead of the compound (1) in this reaction, the compound (3) obtained in Reference Examples 3 to 8,
Using (4), (5), (6), (7), and (8), the same operation as described above is performed, and the above structural formula (1
The 3,5-dinitrobenzoic acid ester derivatives represented by 2), (13), (14), (15), (16) and (17) were respectively synthesized. The yield, spectral analysis result and elemental analysis result of the obtained compound are shown below.

【0080】化合物(12):収率:91 %1 H-NMR, δ(CDCl3, ppm): 1.6-2.1 (m, 4H), 2.95 (s,
3H), 3.40 (t, J=6.4Hz,2H), 4.48 (t, J=6.4Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.12 (d,J=2.0Hz,
2H), 9.21 (d, J=2.0Hz, 1H). IR (cm-1): 3115, 2995, 2965, 2945, 2925, 2830, 172
0 (-C=O), 1630, 1595,1545 (asymmetric stretching o
f -NO2), 1505, 1470, 1345 (symmetric stretching of
-NO2), 1290, 1275, 1250, 1210, 1190, 1165, 1115,
1095, 1070, 1035, 995, 965, 920, 885, 870, 845, 81
0, 755, 730, 720, 695, 635, 520, 505. Mass (m/e): 373 (M+), 195 ((O2N)2PhCO+), 149, 120
(Ph-N(CH3)CH2 +), 105,77 (Ph+), 43, 28. 元素分析 (C18H19N3O6, 分子量 373.4) 計算値 C: 57.91 %, H: 5.13 %, N: 11.25 %. 実測値 C: 58.01 %, H: 5.07 %, N: 11.13 %.
Compound (12): Yield: 91% 1 H-NMR, δ (CDCl 3 , ppm): 1.6-2.1 (m, 4H), 2.95 (s,
3H), 3.40 (t, J = 6.4Hz, 2H), 4.48 (t, J = 6.4Hz, 2H),
6.6-6.9 (m, 3H), 7.1-7.4 (m, 2H), 9.12 (d, J = 2.0Hz,
2H), 9.21 (d, J = 2.0Hz, 1H). IR (cm -1 ): 3115, 2995, 2965, 2945, 2925, 2830, 172
0 (-C = O), 1630, 1595,1545 (asymmetric stretching o
f -NO 2 ), 1505, 1470, 1345 (symmetric stretching of
-NO 2 ), 1290, 1275, 1250, 1210, 1190, 1165, 1115,
1095, 1070, 1035, 995, 965, 920, 885, 870, 845, 81
0, 755, 730, 720, 695, 635, 520, 505. Mass (m / e): 373 (M + ), 195 ((O 2 N) 2 PhCO + ), 149, 120
(Ph-N (CH 3 ) CH 2 + ), 105,77 (Ph + ), 43, 28. Elemental analysis (C 18 H 19 N 3 O 6 , molecular weight 373.4) Calculated value C: 57.91%, H: 5.13 %, N: 11.25% .Actual value C: 58.01%, H: 5.07%, N: 11.13%.

【0081】化合物(13):収率:86 %1 H-NMR, δ(CDCl3, ppm): 3.21 (s, 3H), 3.95 (t, J=
5.9Hz, 2H), 4.70 (t, J=5.9Hz, 2H), 6.87 (d, J=9.5H
z, 2H), 7.77 (d, J=9.5Hz, 2H), 9.05 (d, J=2.0Hz, 2
H), 9.21 (t, J=2.0Hz, 1H). IR (cm-1): 3105, 2970, 1735 (-C=O), 1630, 1595, 15
45 (asymmetric stretching of -NO2), 1520, 1460, 13
90, 1350 (symmetric stretching of -NO2), 1330, 128
0, 1240, 1205, 1155, 1115, 1085, 995, 930, 825, 77
5, 725, 685, 655, 605, 585, 550, 520. Mass (m/e): 827 (M+), 808 (M+-F), 602 (CF3(CF2)8SO
2Ph-N(CH3)CH2 +), 408 (M+-(C8F17)), 344 (M+-(SO2C8F
17)), 195 ((O2N)2PhCO+), 169 (CF3(CF2)2 +), 149, 13
1, 119 (CF3CF2 + or Ph-N(CH3)CH2 +), 105, 91, 75, 69
(CF3+), 42. 元素分析 (C24H14N3SO8F17, 分子量 827.4) 計算値 C: 34.84 %, H: 1.71 %, N: 5.08 %. 実測値 C: 34.76 %, H: 1.53 %, N: 4.87 %.
Compound (13): Yield: 86% 1 H-NMR, δ (CDCl 3 , ppm): 3.21 (s, 3H), 3.95 (t, J =
5.9Hz, 2H), 4.70 (t, J = 5.9Hz, 2H), 6.87 (d, J = 9.5H
z, 2H), 7.77 (d, J = 9.5Hz, 2H), 9.05 (d, J = 2.0Hz, 2
H), 9.21 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3105, 2970, 1735 (-C = O), 1630, 1595, 15
45 (asymmetric stretching of -NO 2 ), 1520, 1460, 13
90, 1350 (symmetric stretching of -NO 2 ), 1330, 128
0, 1240, 1205, 1155, 1115, 1085, 995, 930, 825, 77
5, 725, 685, 655, 605, 585, 550, 520. Mass (m / e): 827 (M + ), 808 (M + -F), 602 (CF 3 (CF 2 ) 8 SO
2 Ph-N (CH 3 ) CH 2 + ), 408 (M + -(C 8 F 17 )), 344 (M + -(SO 2 C 8 F)
17 )), 195 ((O 2 N) 2 PhCO + ), 169 (CF 3 (CF 2 ) 2 + ), 149, 13
1, 119 (CF 3 CF 2 + or Ph-N (CH 3 ) CH 2 + ), 105, 91, 75, 69
(CF3 + ), 42. Elemental analysis (C 24 H 14 N 3 SO 8 F 17 , molecular weight 827.4) Calculated C: 34.84%, H: 1.71%, N: 5.08%. Measured C: 34.76%, H: 1.53%, N: 4.87%.

【0082】化合物(14):収率:93 %1 H-NMR, δ(CDCl3, ppm): 3.12 (s, 3H), 3.87 (t, J=
5.9Hz, 2H), 4.67 (t, J=5.8Hz, 2H), 6.76 (d, J=9.2H
z, 2H), 7.48 (d, J=9.2Hz, 2H), 9.04 (d, J=2.0Hz, 2
H), 9.22 (t, J=2.0Hz, 1H). IR (cm-1): 3080, 2980, 2920, 2220 (-CN), 1730 (-C=
O), 1630, 1610, 1540 (asymmetric stretching of -NO
2), 1520, 1460, 1390, 1340 (symmetric stretching o
f -NO2), 1280, 1220, 1170, 1150, 1100, 1080, 980,
960, 920, 900, 830, 770, 720, 680, 580. Mass (m/e): 370 (M+), 195 ((O2N)2PhCO+), 149, 145
(NC-Ph-N(CH3)CH2 +), 129, 102 (+Ph-CN), 91, 75, 42,
28. 元素分析 (C17H14N4O6, 分子量 370.3) 計算値 C: 55.14 %, H: 3.81 %, N: 15.13 %. 実測値 C: 55.36 %, H: 3.77 %, N: 15.22 %.
Compound (14): Yield: 93% 1 H-NMR, δ (CDCl 3 , ppm): 3.12 (s, 3H), 3.87 (t, J =
5.9Hz, 2H), 4.67 (t, J = 5.8Hz, 2H), 6.76 (d, J = 9.2H
z, 2H), 7.48 (d, J = 9.2Hz, 2H), 9.04 (d, J = 2.0Hz, 2
H), 9.22 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3080, 2980, 2920, 2220 (-CN), 1730 (-C =
O), 1630, 1610, 1540 (asymmetric stretching of -NO
2 ), 1520, 1460, 1390, 1340 (symmetric stretching o
f -NO 2 ), 1280, 1220, 1170, 1150, 1100, 1080, 980,
960, 920, 900, 830, 770, 720, 680, 580. Mass (m / e): 370 (M + ), 195 ((O 2 N) 2 PhCO + ), 149, 145
(NC-Ph-N (CH 3 ) CH 2 + ), 129, 102 ( + Ph-CN), 91, 75, 42,
28. Elemental analysis (C 17 H 14 N 4 O 6 , molecular weight 370.3) Calculated value C: 55.14%, H: 3.81%, N: 15.13%. Measured value C: 55.36%, H: 3.77%, N: 15.22% .

【0083】化合物(15):収率:95 %1 H-NMR, δ(CDCl3, ppm): 2.48 (s, 3H), 3.14 (s, 3
H), 3.90 (t, J=5.6Hz, 2H), 4.67 (t, J=5.4Hz, 2H),
6.76 (d, J=9.2Hz, 2H), 7.84 (d, J=9.2Hz, 2H),9.01
(d, J=2.0Hz, 2H), 9.18 (t, J=2.0Hz, 1H). IR (cm-1): 3060, 2960, 2860, 1730 (esteric -C=O),
1660 (-C=O), 1630, 1600, 1540 (asymmetric stretchi
ng of -NO2), 1500, 1460, 1430, 1380, 1340 (symmetr
ic stretching of -NO2), 1280, 1220, 1190, 1170, 11
00, 1080, 1000,980, 960, 920, 900, 830, 770, 720,
680, 560. Mass (m/e): 387 (M+), 372 (M+-(CH3)), 268 (M+-(PhC
OCH3)), 195 ((O2N)2PhCO+), 162 (CH3CO-Ph-N(CH3)CH2
+), 132, 119 (+PhCOCH3), 91, 75, 43 (CH3CO+). 元素分析 (C18H17N3O7, 分子量 387.3) 計算値 C: 55.81 %, H: 4.42 %, N: 10.85 %. 実測値 C: 55.67 %, H: 4.22 %, N: 10.78 %.
Compound (15): Yield: 95% 1 H-NMR, δ (CDCl 3 , ppm): 2.48 (s, 3H), 3.14 (s, 3)
H), 3.90 (t, J = 5.6Hz, 2H), 4.67 (t, J = 5.4Hz, 2H),
6.76 (d, J = 9.2Hz, 2H), 7.84 (d, J = 9.2Hz, 2H), 9.01
(d, J = 2.0Hz, 2H), 9.18 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3060, 2960, 2860, 1730 (esteric -C = O),
1660 (-C = O), 1630, 1600, 1540 (asymmetric stretchi
ng of -NO 2 ), 1500, 1460, 1430, 1380, 1340 (symmetr
ic stretching of -NO 2 ), 1280, 1220, 1190, 1170, 11
00, 1080, 1000, 980, 960, 920, 900, 830, 770, 720,
680, 560. Mass (m / e): 387 (M + ), 372 (M + -(CH 3 )), 268 (M + -(PhC
OCH 3 )), 195 ((O 2 N) 2 PhCO + ), 162 (CH 3 CO-Ph-N (CH 3 ) CH 2
+ ), 132, 119 ( + PhCOCH 3 ), 91, 75, 43 (CH 3 CO + ). Elemental analysis (C 18 H 17 N 3 O 7 , molecular weight 387.3) Calculated C: 55.81%, H: 4.42% , N: 10.85% .Actual value C: 55.67%, H: 4.22%, N: 10.78%.

【0084】化合物(16):収率:93%1 H-NMR, δ(CDCl3, ppm): 3.18 (s, 3H), 3.94 (t, J=
5.6Hz, 2H), 4.71 (t, J=5.6Hz, 2H), 6.84 (d, J=9.2H
z, 2H), 7.6-8.1 (m, 6H), 8.98 (d, J=2.0Hz, 2H), 9.
08 (t, J=2.0Hz, 1H). IR (cm-1): 3100, 2220 (-CN), 1730 (-C=O), 1600, 15
45 (asymmetric stretching of -NO2), 1520, 1460(w),
1420, 1380, 1345 (symmetric stretching of -NO2),
1310, 1275, 1200, 1160, 1135, 1075, 1000, 935, 84
5, 830, 770, 725,565. Mass (m/e): 474 (M+), 249 (M+-(CH2(CH3)NPhN=NPhC
N)), 195 ((O2N)2PhCO+),132, 119, 91, 75, 43. 元素分析 (C23H18N6O6, 分子量 474.4) 計算値 C: 58.23 %, H: 3.82 %, N: 17.71 %. 実測値 C: 58.30 %, H: 3.83 %, N: 17.52 %.
Compound (16): Yield: 93% 1 H-NMR, δ (CDCl 3 , ppm): 3.18 (s, 3H), 3.94 (t, J =
5.6Hz, 2H), 4.71 (t, J = 5.6Hz, 2H), 6.84 (d, J = 9.2H
z, 2H), 7.6-8.1 (m, 6H), 8.98 (d, J = 2.0Hz, 2H), 9.
08 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3100, 2220 (-CN), 1730 (-C = O), 1600, 15
45 (asymmetric stretching of -NO 2 ), 1520, 1460 (w),
1420, 1380, 1345 (symmetric stretching of -NO 2 ),
1310, 1275, 1200, 1160, 1135, 1075, 1000, 935, 84
5, 830, 770, 725, 565.Mass (m / e): 474 (M + ), 249 (M + -(CH 2 (CH 3 ) NPhN = NPhC
N)), 195 ((O 2 N) 2 PhCO + ), 132, 119, 91, 75, 43. Elemental analysis (C 23 H 18 N 6 O 6 , molecular weight 474.4) Calculated C: 58.23%, H: 3.82%, N: 17.71% .Actual value C: 58.30%, H: 3.83%, N: 17.52%.

【0085】化合物(17):収率:78 %1 H-NMR, δ(CDCl3, ppm): 1.2-2.0 (m, 8H), 3.09 (s,
3H), 3.47 (t, J=6.7Hz,2H), 4.45 (t, J=6.5Hz, 2H),
6.72 (d, J=9.2Hz, 2H), 7.6-8.1 (m, 6H), 9.12 (d, J
=2.0Hz, 2H), 9.17 (t, J=2.0Hz, 1H). IR (cm-1): 3100, 3065, 2940, 2225 (-CN), 1725 (-C=
O), 1600, 1545 (asymmetric stretching of -NO2), 15
20, 1460, 1420, 1380, 1345 (symmetric stretching o
f -NO2), 1295, 1280, 1195, 1160, 1140, 1080, 995,
965, 920, 845, 815, 775, 725, 555. Mass (m/e): 530 (M+), 249 (M+-(CH2(CH3)NPhN=NPhC
N)), 195 ((O2N)2PhCO+),119, 102, 91, 75, 41. 元素分析 (C27H26N6O6, 分子量 530.5) 計算値 C: 61.13 %, H: 4.94 %, N 15.84 %. 実測値 C: 61.46 %, H: 4.96 %, N 15.75 %.
Compound (17): Yield: 78% 1 H-NMR, δ (CDCl 3 , ppm): 1.2-2.0 (m, 8H), 3.09 (s,
3H), 3.47 (t, J = 6.7Hz, 2H), 4.45 (t, J = 6.5Hz, 2H),
6.72 (d, J = 9.2Hz, 2H), 7.6-8.1 (m, 6H), 9.12 (d, J
= 2.0Hz, 2H), 9.17 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3100, 3065, 2940, 2225 (-CN), 1725 (-C =
O), 1600, 1545 (asymmetric stretching of -NO 2 ), 15
20, 1460, 1420, 1380, 1345 (symmetric stretching o
f -NO 2 ), 1295, 1280, 1195, 1160, 1140, 1080, 995,
965, 920, 845, 815, 775, 725, 555. Mass (m / e): 530 (M + ), 249 (M + -(CH 2 (CH 3 ) NPhN = NPhC
N)), 195 ((O 2 N) 2 PhCO + ), 119, 102, 91, 75, 41. Elemental analysis (C 27 H 26 N 6 O 6 , molecular weight 530.5) Calculated C: 61.13%, H: 4.94%, N 15.84% .Actual value C: 61.46%, H: 4.96%, N 15.75%.

【0086】実施例10、11Examples 10 and 11

【0087】[0087]

【化23】 Embedded image

【0088】アルゴン雰囲気下、氷浴により冷却しなが
ら水素化カルシウム上で蒸留した10mlの乾燥DMFに塩
化ホスホリル3.37 g(22.0 mmol)を10分かけて滴下し、
さらに、氷冷下2時間攪拌した。次に100 mlの乾燥DM
Fに溶解させた実施例1で得られた化合物(9)6.90 g
(18.5 mmol)を滴下し、90℃において3時間攪拌した。
反応溶液を室温まで冷却した後、300 mlの飽和炭酸水素
ナトリウム水溶液中に注いだ。この溶液をジクロロメタ
ン(20 ml X 5)で抽出し、有機層を無水硫酸ナトリウ
ムにより脱水した後、減圧下、溶液を濃縮した。残さを
ジクロロメタンを流出溶媒とするシリカゲルカラムクロ
マトグラフィーにより精製した後、溶媒を減圧下、留去
した。残さをアセトンから再結晶することにより上記
(18)で表わされる構造式の2-(4-ホルミル-N-メチル
アニリノ)エチル 3,5-ジニトロベンゾエート5.68 g(収
率:76 %)を黄色結晶として得た。なお、生成物が上記
の構造であることは以下に示す1H−NMR、IRスペ
クトル、Massスペクトルおよび元素分析から確認し
た。
3.37 g (22.0 mmol) of phosphoryl chloride was added dropwise over 10 minutes to 10 ml of dry DMF distilled over calcium hydride under cooling with an ice bath under an argon atmosphere.
Furthermore, the mixture was stirred under ice cooling for 2 hours. Then 100 ml of dry DM
6.90 g of the compound (9) obtained in Example 1 dissolved in F
(18.5 mmol) was added dropwise, and the mixture was stirred at 90 ° C for 3 hours.
The reaction solution was cooled to room temperature and then poured into 300 ml of saturated aqueous sodium hydrogen carbonate solution. The solution was extracted with dichloromethane (20 ml X 5), the organic layer was dried over anhydrous sodium sulfate, and then the solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography using dichloromethane as an eluent, and the solvent was evaporated under reduced pressure. By recrystallizing the residue from acetone, 5.68 g (yield: 76%) of 2- (4-formyl-N-methylanilino) ethyl 3,5-dinitrobenzoate of the structural formula represented by the above (18) was obtained as yellow crystals. Obtained. The product has the above structure was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below.

【0089】1H-NMR, δ(CDCl3, ppm): 3.17 (s, 3H),
3.92 (t, J=5.7Hz, 2H), 4.68 (t, J=5.7Hz, 2H), 6.82
(d, J=8.8Hz, 2H), 7.72 (d, J=8.8Hz, 2H), 9.02 (d,
J=2.0Hz, 2H), 9.18 (t, J=2.0Hz, 1H), 9.72 (s, 1
H). IR (cm-1): 3105, 2900, 1730 (esteric -C=O), 1670
(aldehydic -C=O), 1595,1545 (asymmetric stretching
of -NO2), 1460, 1385, 1350 (symmetric stretching
of -NO2), 1280, 1245, 1170, 1080, 1005, 920, 820,
770, 720, 600, 515. Mass (m/e): 373 (M+), 195 ((O2N)2PhCO+), 161, 148
(OHC-Ph-N(CH3)CH2 +), 132, 75, 42. 元素分析 (C17H15N3O7, 分子量 373.3) 計算値 C: 54.69 %, H: 4.05 %, N: 11.26 %. 実測値 C: 54.94 %, H: 4.10 %, N: 11.41 %.
1 H-NMR, δ (CDCl 3 , ppm): 3.17 (s, 3H),
3.92 (t, J = 5.7Hz, 2H), 4.68 (t, J = 5.7Hz, 2H), 6.82
(d, J = 8.8Hz, 2H), 7.72 (d, J = 8.8Hz, 2H), 9.02 (d,
J = 2.0Hz, 2H), 9.18 (t, J = 2.0Hz, 1H), 9.72 (s, 1
H). IR (cm -1 ): 3105, 2900, 1730 (esteric -C = O), 1670
(aldehydic -C = O), 1595,1545 (asymmetric stretching
of -NO 2 ), 1460, 1385, 1350 (symmetric stretching
of -NO 2 ), 1280, 1245, 1170, 1080, 1005, 920, 820,
770, 720, 600, 515. Mass (m / e): 373 (M + ), 195 ((O 2 N) 2 PhCO + ), 161, 148
(OHC-Ph-N (CH 3 ) CH 2 + ), 132, 75, 42. Elemental analysis (C 17 H 15 N 3 O 7 , molecular weight 373.3) Calculated C: 54.69%, H: 4.05%, N: 11.26% .Actual value C: 54.94%, H: 4.10%, N: 11.41%.

【0090】また、この反応において化合物(9)の代
わりに、実施例2で得られた化合物(10)を用いて上
記とまったく同様な操作を行い、上記構造式(19)で
表わされる6-(4-ホルミル-N-メチルアニリノ)ヘキシル
3,5-ジニトロベンゾエートを黄色結晶として得た(収
率:54 %)。なお、生成物が上記の構造であることは以
下に示す1H−NMR、IRスペクトル、Massスペ
クトルおよび元素分析から確認した。
Further, in this reaction, the compound (10) obtained in Example 2 was used in place of the compound (9), and the completely same operation as the above was carried out to obtain 6- represented by the above structural formula (19). (4-formyl-N-methylanilino) hexyl
3,5-Dinitrobenzoate was obtained as yellow crystals (yield: 54%). The product has the above structure was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below.

【0091】1H-NMR, δ(CDCl3, ppm): 1.3-2.2 (m, 8
H), 3.06 (s, 3H), 3.92 (t, J=7.0Hz,2H), 4.46 (t, J
=6.5Hz, 2H), 6.67 (d, J=9.0Hz, 2H), 7.68 (d, J=9.0
Hz, 2H), 9.12 (d, J=2.0Hz, 2H), 9.19 (t, J=2.0Hz,
1H), 9.69 (s, 1H). IR (cm-1): 3110, 2940, 2860, 1730 (esteric -C=O),
1680 (aldehydic -C=O), 1595, 1540 (asymmetric str
etching of -NO2), 1460, 1385, 1340 (symmetric stre
tching of -NO2), 1290, 1250, 1170, 1070, 995, 920,
825, 770, 720,590, 515. Mass (m/e): 430 (M++1), 253, 195 ((O2N)2PhCO+), 14
8 (OHC-Ph-N(CH3)CH2 +),132, 77, 43. 元素分析 (C21H23N3O7, 分子量 429.4) 計算値 C: 58.74 %, H: 5.40 %, N 9.79 %. 実測値 C: 58.67 %, H: 5.52 %, N 9.63 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.3-2.2 (m, 8
H), 3.06 (s, 3H), 3.92 (t, J = 7.0Hz, 2H), 4.46 (t, J
= 6.5Hz, 2H), 6.67 (d, J = 9.0Hz, 2H), 7.68 (d, J = 9.0
Hz, 2H), 9.12 (d, J = 2.0Hz, 2H), 9.19 (t, J = 2.0Hz,
1H), 9.69 (s, 1H). IR (cm -1 ): 3110, 2940, 2860, 1730 (esteric -C = O),
1680 (aldehydic -C = O), 1595, 1540 (asymmetric str
etching of -NO 2 ), 1460, 1385, 1340 (symmetric stre
tching of -NO 2 ), 1290, 1250, 1170, 1070, 995, 920,
825, 770, 720,590, 515. Mass (m / e): 430 (M + +1), 253, 195 ((O 2 N) 2 PhCO + ), 14
8 (OHC-Ph-N (CH 3 ) CH 2 + ), 132, 77, 43. Elemental analysis (C 21 H 23 N 3 O 7 , molecular weight 429.4) Calculated C: 58.74%, H: 5.40%, N 9.79% .Actual value C: 58.67%, H: 5.52%, N 9.63%.

【0092】実施例12、13Examples 12 and 13

【0093】[0093]

【化24】 Embedded image

【0094】実施例10で得られた化合物(18)2.24
g(6.00 mmol)に40 mlのエタノール/THF(体積比
2/1)を加え、加熱還流させることにより均一溶液と
した。この反応溶液にマロノニトリル3.96 g(60.0 mmo
l)を加え、さらに触媒として0.1mol/L-水酸化ナトリウ
ム水溶液を数滴加えた。さらに、16時間加熱還流を行
うと、橙色固体が析出してきた。室温まで冷却した後、
この橙色固体をろ過により回収し、クロロホルムから再
結晶することにより上記(20)で表わされる構造式の
2-[4-(2,2-ジシアノビニル)-N-メチルアニリノ]エチル
3,5-ジニトロベンゾエート2.11 g(収率:84 %)を赤褐色
結晶として得た。なお、生成物が上記の構造であること
は以下に示す1H−NMR、IRスペクトル、Mass
スペクトルおよび元素分析から確認した。
Compound (18) 2.24 obtained in Example 10
40 ml of ethanol / THF (volume ratio to g (6.00 mmol))
2/1) was added and heated to reflux to form a uniform solution. Malononitrile 3.96 g (60.0 mmo)
l) was added, and a few drops of 0.1 mol / L-sodium hydroxide aqueous solution was added as a catalyst. Further, when heated and refluxed for 16 hours, an orange solid was precipitated. After cooling to room temperature,
The orange solid was collected by filtration and recrystallized from chloroform to obtain the compound of the structural formula (20) above.
2- [4- (2,2-dicyanovinyl) -N-methylanilino] ethyl
2.11 g (yield: 84%) of 3,5-dinitrobenzoate was obtained as reddish brown crystals. The fact that the product has the above-mentioned structure is shown below by 1 H-NMR, IR spectrum, Mass.
Confirmed by spectrum and elemental analysis.

【0095】1H-NMR, δ(CDCl3, ppm): 3.21 (s, 3H),
3.95 (t, J=5.7Hz, 2H), 4.68 (t, J=5.7Hz, 2H), 6.83
(d, J=9.0Hz, 2H), 7.49 (s, 1H), 7.83 (d, J=9.0Hz,
2H),9.02 (d, J=2.0Hz, 2H), 9.21 (t, J=2.0 Hz, 1
H). IR (cm-1): 3105, 2920, 2220 (-CN), 1740 (-C=O), 16
10, 1565, 1540 (asymmetric stretching of -NO2), 15
20, 1460, 1440, 1395, 1345 (symmetric stretching o
f -NO2), 1270, 1195, 1165, 1140, 1080, 1010, 935,
815, 775, 725, 610, 575, 520. Mass (m/e): 422 (M++1), 373, 196 ((NC)2C=CH-Ph-N(C
H3)CH2 +), 195 ((O2N)2PhCO+), 161, 148, 132, 77, 4
7, 43, 35. 元素分析 (C20H15N5O6, 分子量 421.4) 計算値 C: 57.01 %, H: 3.59 %, N: 16.62 %. 実測値 C: 56.83 %, H: 3.46 %, N: 16.60 %.
1 H-NMR, δ (CDCl 3 , ppm): 3.21 (s, 3H),
3.95 (t, J = 5.7Hz, 2H), 4.68 (t, J = 5.7Hz, 2H), 6.83
(d, J = 9.0Hz, 2H), 7.49 (s, 1H), 7.83 (d, J = 9.0Hz,
2H), 9.02 (d, J = 2.0Hz, 2H), 9.21 (t, J = 2.0 Hz, 1
H). IR (cm -1 ): 3105, 2920, 2220 (-CN), 1740 (-C = O), 16
10, 1565, 1540 (asymmetric stretching of -NO 2 ), 15
20, 1460, 1440, 1395, 1345 (symmetric stretching o
f -NO 2 ), 1270, 1195, 1165, 1140, 1080, 1010, 935,
815, 775, 725, 610, 575, 520. Mass (m / e): 422 (M + +1), 373, 196 ((NC) 2 C = CH-Ph-N (C
H 3 ) CH 2 + ), 195 ((O 2 N) 2 PhCO + ), 161, 148, 132, 77, 4
7, 43, 35. Elemental analysis (C 20 H 15 N 5 O 6 , molecular weight 421.4) Calculated value C: 57.01%, H: 3.59%, N: 16.62%. Measured value C: 56.83%, H: 3.46%, N: 16.60%.

【0096】また、この反応において化合物(18)の
代わりに、実施例11で得られた化合物(19)を用い
て上記とまったく同様な操作を行い、上記構造式(2
1)で表わされる6-[4-(2,2-ジシアノビニル)-N-メチル
アニリノ]ヘキシル 3,5-ジニトロベンゾエートを赤褐色
結晶として得た(収率:81 %)。なお、生成物が上記の構
造であることは以下に示す1H−NMR、IRスペクト
ル、Massスペクトルおよび元素分析から確認した。
In this reaction, the compound (19) obtained in Example 11 was used in place of the compound (18), and the completely same operation as the above was carried out.
6- [4- (2,2-dicyanovinyl) -N-methylanilino] hexyl 3,5-dinitrobenzoate represented by 1) was obtained as reddish brown crystals (yield: 81%). The product has the above structure was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below.

【0097】1H-NMR, δ(CDCl3, ppm): 1.2-2.1 (m, 8
H), 3.10 (s, 3H), 3.47 (t, J=6.6Hz,2H), 4.46 (t, J
=6.6Hz, 2H), 6.68 (d, J=9.1Hz, 2H), 7.45 (s, 1H),
7.80 (d, J=9.1Hz, 2H), 9.14 (d, J=2.0Hz, 2H), 9.20
(t, J=2.0Hz, 1H). IR (cm-1): 3080, 2940, 2220 (-CN), 1725 (-C=O), 16
05, 1560, 1543 (asymmetric stretching of -NO2), 15
20, 1465, 1395, 1345 (symmetric stretching of -N
O2), 1280, 1185, 1165, 1080, 965, 920, 825, 775, 7
25, 605, 585, 530. Mass (m/e): 477 (M+), 429, 196 ((NC)2C=CH-Ph-N(C
H3)CH2 +), 195 ((O2N)2PhCO+), 148, 132, 75, 43. 元素分析 (C24H23N5O6, 分子量 477.5) 計算値 C: 60.37 %, H: 4.86 %, N: 14.67 %. 実測値 C: 60.48 %, H: 5.01 %, N: 14.41 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.2-2.1 (m, 8
H), 3.10 (s, 3H), 3.47 (t, J = 6.6Hz, 2H), 4.46 (t, J
= 6.6Hz, 2H), 6.68 (d, J = 9.1Hz, 2H), 7.45 (s, 1H),
7.80 (d, J = 9.1Hz, 2H), 9.14 (d, J = 2.0Hz, 2H), 9.20
(t, J = 2.0Hz, 1H). IR (cm -1 ): 3080, 2940, 2220 (-CN), 1725 (-C = O), 16
05, 1560, 1543 (asymmetric stretching of -NO 2 ), 15
20, 1465, 1395, 1345 (symmetric stretching of -N
O 2 ), 1280, 1185, 1165, 1080, 965, 920, 825, 775, 7
25, 605, 585, 530. Mass (m / e): 477 (M + ), 429, 196 ((NC) 2 C = CH-Ph-N (C
H 3 ) CH 2 + ), 195 ((O 2 N) 2 PhCO + ), 148, 132, 75, 43. Elemental analysis (C 24 H 23 N 5 O 6 , molecular weight 477.5) Calculated C: 60.37%, H: 4.86%, N: 14.67%. Actual value C: 60.48%, H: 5.01%, N: 14.41%.

【0098】実施例14 非線形光学測定Example 14 Nonlinear optical measurement

【0099】実施例1、4、9、12および13で得ら
れた3,5-ジニトロ安息香酸エステル誘導体(9)、(1
2)、(17)、(20)および(21)をそれぞれメ
ノウ乳鉢を用いて均一な粒子状態とし、スライドガラス
の間に挟み込んだ。これらの試料を用いて3,5-ジニトロ
安息香酸エステル誘導体から発生する第2次高調波(S
H波)を測定した。偏波面のそろったNd:YAG レーザー
(1064nm)を入射基本波として用い、発生した532nmの
SH波をレンズで集光した後、光ファイバーを通じて分
光器に導入し、フォトマルチプライヤーで検出したSH
波強度をボックスカーで積算した。標準試料としては均
一な粒子状態とした尿素を用い、尿素から発生するSH
波強度を1として相対SH波強度を求めた。その結果を
表1に示す。また、上記の化合物はいずれも結晶性が良
く、通常の再結晶法により容易に単結晶を形成すること
が可能であった。
3,5-Dinitrobenzoic acid ester derivatives (9) and (1 obtained in Examples 1, 4, 9, 12 and 13)
Each of 2), (17), (20) and (21) was made into a uniform particle state using an agate mortar and sandwiched between slide glasses. Using these samples, the 2nd harmonic (S) generated from 3,5-dinitrobenzoic acid ester derivative
H wave) was measured. Using an Nd: YAG laser (1064nm) with uniform polarization as the incident fundamental wave, the generated 532nm SH wave was collected by a lens, then introduced into a spectroscope through an optical fiber and detected by a photomultiplier.
Wave intensity was integrated with a box car. SH that is generated from urea is used as the standard sample.
The relative SH wave intensity was calculated with the wave intensity of 1. Table 1 shows the results. Further, all of the above compounds had good crystallinity, and it was possible to easily form a single crystal by an ordinary recrystallization method.

【0100】[0100]

【表1】 [Table 1]

【0101】一方、実施例2、3、8、10および11
で得られた3,5-ジニトロ安息香酸エステル誘導体(1
0)、(11)、(16)、(18)および(19)に
ついても、同様な測定を行い、尿素から発生するSH波
強度を1として相対SH波強度を求めたところ、いずれ
も10-3より小さい値であり、これらの化合物の2次非
線形光学効果は非常に小さいものであった。
On the other hand, Examples 2, 3, 8, 10 and 11
3,5-dinitrobenzoic acid ester derivative (1
0), (11), (16), (18) and (for 19) also performs the same measurements were determined relative SH wave intensity SH wave intensity generated from urea as 1, both 10 - The value was smaller than 3 , and the second-order nonlinear optical effect of these compounds was very small.

【0102】実施例15〜17Examples 15 to 17

【0103】[0103]

【化25】 Embedded image

【0104】実施例5で得られた化合物(13)3.31 g
(4.00 mmol)および SnCl2・2H2O 9.03 g(40.0 mmol)を50
mlのエタノールに溶解させた後、50 mlのエタノールに
溶解させた水素化ホウ素ナトリウム0.303 g(8.00 mmol)
を加え60 ℃において3時間攪拌した。溶媒を減圧下、留
去した後、残さに酢酸エチルおよび飽和炭酸水素ナトリ
ウム水溶液を加え、有機層を分取した。有機層を無水硫
酸ナトリウムで脱水した後、減圧下溶液を濃縮した。シ
リカゲルカラムクロマトグラフィーにより精製した後、
酢酸エチルから再結晶することにより精製し、上記(2
2)で表わされる構造式の2-[4-(ペルフルオロオクチル
スルホニル)-N-メチル-4-アニリノ]エチル 3,5-ジアミ
ノベンゾエート2.50 g(収率:81 %)を白色結晶として得
た。なお、生成物が上記の構造であることは以下に示す
1H−NMR、IRスペクトル、Massスペクトルお
よび元素分析から確認した。
3.31 g of the compound (13) obtained in Example 5
(4.00 mmol) and SnCl 2 · 2H 2 O 9.03 g of (40.0 mmol) 50
0.303 g (8.00 mmol) sodium borohydride in 50 ml ethanol
Was added and the mixture was stirred at 60 ° C. for 3 hours. After the solvent was distilled off under reduced pressure, ethyl acetate and saturated aqueous sodium hydrogen carbonate solution were added to the residue, and the organic layer was separated. After dehydrating the organic layer with anhydrous sodium sulfate, the solution was concentrated under reduced pressure. After purification by silica gel column chromatography,
Purified by recrystallization from ethyl acetate,
2.50 g (yield: 81%) of 2- [4- (perfluorooctylsulfonyl) -N-methyl-4-anilino] ethyl 3,5-diaminobenzoate of the structural formula represented by 2) was obtained as white crystals. The fact that the product has the above structure is shown below.
It was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis.

【0105】1H-NMR δ(CDCl3+DMSO-d6, ppm): 3.18
(s, 3H), 3.8-4.2 (m, 6H), 4.46 (t, J=5.7Hz, 2H),
6.22 (t, J=2.2Hz, 1H), 6.62 (d, J=2.2Hz, 2H), 6.89
(d, J=9.3Hz, 2H), 7.78 (d, J=9.3Hz, 2H). IR (cm-1): 3375 (-NH2), 2955, 1715 (-C=O), 1595, 1
535, 1520, 1465, 1390,1355, 1235, 1215, 1155, 112
0, 1085, 1030, 995, 955, 900, 855, 820, 770,745, 7
10, 650, 630, 585, 555, 530. Mass (m/e): 767 (M+), 602, 348 (M+-(C8F17)), 284
(M+-(SO2C8F17)), 196, 179, 169 (CF3(CF2)2 +), 152,
119 (CF3CF2 + or Ph-N(CH3)CH2 +), 107, 91, 69 (C
F3 +). 元素分析 (C24H18N3SO4F17, 分子量 767.5) 計算値 C: 37.56 %, H: 2.36 %, N: 5.48 %. 実測値 C: 37.58 %, H: 2.16 %, N: 5.41 %.
1 H-NMR δ (CDCl 3 + DMSO-d 6 , ppm): 3.18
(s, 3H), 3.8-4.2 (m, 6H), 4.46 (t, J = 5.7Hz, 2H),
6.22 (t, J = 2.2Hz, 1H), 6.62 (d, J = 2.2Hz, 2H), 6.89
(d, J = 9.3Hz, 2H), 7.78 (d, J = 9.3Hz, 2H). IR (cm -1 ): 3375 (-NH 2 ), 2955, 1715 (-C = O), 1595, 1
535, 1520, 1465, 1390, 1355, 1235, 1215, 1155, 112
0, 1085, 1030, 995, 955, 900, 855, 820, 770,745, 7
10, 650, 630, 585, 555, 530. Mass (m / e): 767 (M + ), 602, 348 (M + -(C 8 F 17 )), 284
(M + -(SO 2 C 8 F 17 )), 196, 179, 169 (CF 3 (CF 2 ) 2 + ), 152,
119 (CF 3 CF 2 + or Ph-N (CH 3 ) CH 2 + ), 107, 91, 69 (C
. F 3 +) Elemental analysis (C 24 H 18 N 3 SO 4 F 17, molecular weight 767.5) Calculated C: 37.56%, H: 2.36 %, N: 5.48% Found C:. 37.58%, H: 2.16% , N: 5.41%.

【0106】また、この反応において化合物(13)の
代わりに、実施例6および7で得られた化合物(14)
および(15)を用いて上記とまったく同様な操作を行
い、上記構造式(23)および(24)で表わされる3,
5-ジアミノ安息香酸エステル誘導体をそれぞれ合成し
た。得られた化合物の収率、スペクトル分析結果を以下
に示す。
Further, instead of the compound (13) in this reaction, the compound (14) obtained in Examples 6 and 7 was used.
Using (15) and (15), the same operation as described above is performed, and the structure represented by the above structural formulas (23) and (24)
5-Diaminobenzoic acid ester derivatives were synthesized respectively. The yield of the obtained compound and the spectrum analysis result are shown below.

【0107】化合物(23);収率:83 %1 H-NMR δ(CDCl3, ppm): 3.07 (s, 3H), 3.6-3.7 (m, 4
H), 3.75 (t, J=5.9Hz,2H), 4.43 (t, J=5.9Hz, 2H),
6.17 (t, J=2.1Hz, 1H), 6.63 (d, J=2.1Hz, 2H), 6.73
(d, J=9.2Hz, 2H), 7.47 (d, J=9.2Hz, 2H). IR (cm-1): 3470 (-NH2), 3435 (-NH2), 3370, 3220, 2
950, 2920, 2210 (-CN),1710 (-C=O), 1610, 1525, 146
5, 1435, 1390, 1350, 1235, 1200, 1180, 1135, 1115,
1075, 1050, 1030, 1005, 990, 950, 855, 815, 770,
680, 610, 545,520. Mass (m/e): 310 (M+), 158 (NC-Ph-N(CH3)CH=CH2 +), 1
52 ((NH2)2Ph-COOH+), 145 (NC-Ph-N(CH3)CH2 +), 129,
107, 102 (+Ph-CN), 80, 53, 42.
Compound (23); Yield: 83% 1 H-NMR δ (CDCl 3 , ppm): 3.07 (s, 3H), 3.6-3.7 (m, 4)
H), 3.75 (t, J = 5.9Hz, 2H), 4.43 (t, J = 5.9Hz, 2H),
6.17 (t, J = 2.1Hz, 1H), 6.63 (d, J = 2.1Hz, 2H), 6.73
(d, J = 9.2Hz, 2H), 7.47 (d, J = 9.2Hz, 2H). IR (cm -1 ): 3470 (-NH 2 ), 3435 (-NH 2 ), 3370, 3220, 2
950, 2920, 2210 (-CN), 1710 (-C = O), 1610, 1525, 146
5, 1435, 1390, 1350, 1235, 1200, 1180, 1135, 1115,
1075, 1050, 1030, 1005, 990, 950, 855, 815, 770,
680, 610, 545,520. Mass (m / e): 310 (M + ), 158 (NC-Ph-N (CH 3 ) CH = CH 2 + ), 1
52 ((NH 2 ) 2 Ph-COOH + ), 145 (NC-Ph-N (CH 3 ) CH 2 + ), 129,
107, 102 ( + Ph-CN), 80, 53, 42.

【0108】化合物(24);収率:74 %1 H-NMR δ(CDCl3+DMSO-d6, ppm): 2.48 (s, 3H), 3.12
(s, 3H), 3.81 (t, J=5.7Hz, 2H), 4.0-4.3 (m, 4H),
4.42 (t, J=5.7Hz, 2H), 6.17 (t, J=2.2Hz, 1H),6.57
(d, J=2.2Hz, 2H), 6.76 (d, J=9.0Hz, 2H), 7.84 (d,
J=9.0Hz, 2H). IR (cm-1): 3420 (-NH2), 3325 (-NH2), 2920, 1705 (-
C=O), 1645, 1600, 1550, 1525, 1460, 1430, 1380, 13
50, 1320, 1290, 1240, 1195, 1135, 1115, 1070, 103
2, 1005, 950, 850, 820, 770, 590, 520, 495. Mass (m/e): 327 (M+), 175 (CH3CO-Ph-N(CH3)CH=C
H2 +), 162 (CH3CO-Ph-N(CH3)CH2 +), 152 ((NH2)2Ph-COO
H+), 132, 119 (+Ph-COCH3), 107, 80, 42, 28.
Compound (24); Yield: 74% 1 H-NMR δ (CDCl 3 + DMSO-d 6 , ppm): 2.48 (s, 3H), 3.12
(s, 3H), 3.81 (t, J = 5.7Hz, 2H), 4.0-4.3 (m, 4H),
4.42 (t, J = 5.7Hz, 2H), 6.17 (t, J = 2.2Hz, 1H), 6.57
(d, J = 2.2Hz, 2H), 6.76 (d, J = 9.0Hz, 2H), 7.84 (d,
J = 9.0Hz, 2H). IR (cm -1 ): 3420 (-NH 2 ), 3325 (-NH 2 ), 2920, 1705 (-
C = O), 1645, 1600, 1550, 1525, 1460, 1430, 1380, 13
50, 1320, 1290, 1240, 1195, 1135, 1115, 1070, 103
2, 1005, 950, 850, 820, 770, 590, 520, 495. Mass (m / e): 327 (M + ), 175 (CH 3 CO-Ph-N (CH 3 ) CH = C
H 2 + ), 162 (CH 3 CO-Ph-N (CH 3 ) CH 2 + ), 152 ((NH 2 ) 2 Ph-COO
H + ), 132, 119 ( + Ph-COCH 3 ), 107, 80, 42, 28.

【0109】参考例9、10Reference Examples 9 and 10

【0110】[0110]

【化26】 [Chemical formula 26]

【0111】アルゴンガス雰囲気下、参考例4で得られ
た化合物(4)1.267 g(2.00 mmol)、5-ヒドロキシイソ
フタル酸ジメチル0.631 g(3.00 mmol)およびトリフェニ
ルホスフィン0.631 g(2.40 mmol)に乾燥テトラヒドロフ
ラン(THF)10 mlを加え、均一な溶液とした後、氷
冷した。氷冷下、乾燥THFに溶解したジエチルアゾジ
カルボキシレート(DEAD)0.51 g(3.0 mmol)を滴下
した。滴下終了後、室温において1時間攪拌を行った。
減圧下、溶媒を留去した後、シリカゲルクロマトグラフ
ィーにより精製し、さらにアセトン/メタノールから再
結晶することにより精製した。その結果、上記(25)
で表わされる構造式の5-{2-[4-(ペルフルオロオクチル
スルホニル)-N-メチルアニリノ]エトキシ}イソフタル酸
ジメチル1.53 g(収率:93 %)を白色結晶として得た。な
お、生成物が上記の構造であることは以下に示す1H−
NMR、IRおよびMassスペクトルおよび元素分析
から確認した。
The compound (4) obtained in Reference Example 4 (1.267 g, 2.00 mmol), dimethyl 5-hydroxyisophthalate (0.631 g, 3.00 mmol) and triphenylphosphine (0.631 g, 2.40 mmol) were dried under an argon gas atmosphere. Tetrahydrofuran (THF) (10 ml) was added to form a uniform solution, which was then cooled with ice. 0.51 g (3.0 mmol) of diethyl azodicarboxylate (DEAD) dissolved in dry THF was added dropwise under ice cooling. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour.
After evaporating the solvent under reduced pressure, the residue was purified by silica gel chromatography and further recrystallized from acetone / methanol. As a result, (25) above
1.53 g (yield: 93%) of dimethyl 5- {2- [4- (perfluorooctylsulfonyl) -N-methylanilino] ethoxy} isophthalate having the structural formula represented by was obtained as white crystals. Incidentally, the fact that the product has the above structure is shown by 1 H-
Confirmed from NMR, IR and Mass spectra and elemental analysis.

【0112】1H-NMR, δ(CDCl3, ppm): 3.22 (s, 3H),
3.8-4.1 (m, 2H), 3.93 (s, 6H), 4.2-4.4 (m, 2H), 6.
83 (d, J=9.2Hz, 2H), 7.71 (d, J=1.1Hz, 2H), 7.82
(d, J=9.2Hz, 2H), 8.29 (s, 1H). IR (cm-1): 2965, 2950, 2930, 1720 (-C=O), 1595, 15
20, 1510, 1480, 1455,1430, 1365, 1335, 1315, 1250,
1230, 1195, 1155, 1120, 1105, 1070, 1030,1015, 10
05, 990, 965, 900, 885, 860, 805, 780, 755, 720, 6
95, 670, 625,580, 495, 460. Mass (m/e): 825 (M+), 616 (+CH2CH2N(CH3)-Ph-SO2C8F
17), 406 (M+-(C8F17)),342 (M+-(SO2C8F17)), 179, 16
9 (CF3(CF2)2 +), 119 (CF3CF2 + or Ph-N(CH3)CH 2 +), 6
9 (CF3 +). 元素分析 (C27H20NSO7F17, 分子量 825.5) 計算値 C: 39.28 %, H: 2.44 %, N: 1.70 %. 実測値 C: 39.34 %, H: 2.26 %, N: 1.47 %.
[0112]1H-NMR, δ (CDClThree, ppm): 3.22 (s, 3H),
3.8-4.1 (m, 2H), 3.93 (s, 6H), 4.2-4.4 (m, 2H), 6.
83 (d, J = 9.2Hz, 2H), 7.71 (d, J = 1.1Hz, 2H), 7.82
(d, J = 9.2Hz, 2H), 8.29 (s, 1H). IR (cm-1): 2965, 2950, 2930, 1720 (-C = O), 1595, 15
20, 1510, 1480, 1455, 1430, 1365, 1335, 1315, 1250,
 1230, 1195, 1155, 1120, 1105, 1070, 1030,1015, 10
05, 990, 965, 900, 885, 860, 805, 780, 755, 720, 6
95, 670, 625,580, 495, 460. Mass (m / e): 825 (M+), 616 (+CH2CH2N (CHThree) -Ph-SO2C8F
17), 406 (M+-(C8F17)), 342 (M+-(SO2C8F17)), 179, 16
9 (CFThree(CF2)2 +), 119 (CFThreeCF2 + or Ph-N (CHThree) CH 2 +), 6
9 (CFThree +). Elemental analysis (C27H20NSO7F17, Molecular weight 825.5) Calculated value C: 39.28%, H: 2.44%, N: 1.70%. Actual value C: 39.34%, H: 2.26%, N: 1.47%.

【0113】ここで得られた化合物(25)1.00 g(1.2
1 mmol)および水酸化ナトリウム0.242 g(6.00 mmol)を
9 mlのメタノール/THF/水(体積比 1/1/1)
に溶解させ、3時間加熱還流を行った。反応混合物に塩
酸を加え、中和した後、析出した白色固体をろ過により
回収し、水で洗浄した。この白色固体をアセトン/水か
ら再結晶することにより精製した。その結果、上記(2
7)で表わされる構造式の5-{2-[4-(ペルフルオロオク
チルスルホニル)-N-メチルアニリノ]エトキシ}イソフタ
ル酸0.819 g(収率:85 %)を白色結晶として得た。な
お、生成物が上記の構造であることは以下に示す1H−
NMR、IRおよびMassスペクトルおよび元素分析
から確認した。
The compound (25) thus obtained was 1.00 g (1.2
1 mmol) and 0.242 g (6.00 mmol) of sodium hydroxide
9 ml of methanol / THF / water (volume ratio 1/1/1)
Was dissolved in the solution and heated under reflux for 3 hours. Hydrochloric acid was added to the reaction mixture for neutralization, and the precipitated white solid was collected by filtration and washed with water. The white solid was purified by recrystallization from acetone / water. As a result, the above (2
0.819 g (yield: 85%) of 5- {2- [4- (perfluorooctylsulfonyl) -N-methylanilino] ethoxy} isophthalic acid represented by the structural formula 7) was obtained as white crystals. Incidentally, the fact that the product has the above structure is shown by 1 H-
Confirmed from NMR, IR and Mass spectra and elemental analysis.

【0114】1H-NMR δ(CDCl3+DMSO-d6, ppm): 3.23
(s, 3H), 3.8-4.1 (m, 2H), 4.2-4.5 (m, 2H), 6.87
(d, J=9.2 Hz, 2H), 7.5-8.0 (m, 4H), 8.29 (s, 1H). IR (cm-1): 3445 (-OH), 3005, 2955, 1705 (-C=O), 15
95, 1550, 1520, 1465,1390, 1355, 1330, 1245, 1215,
1155, 1120, 1085, 1065, 995, 945, 910, 860, 825,
760, 745, 725, 789, 750, 695, 660, 630, 585, 555,
525. Mass (m/e): 797 (M+), 778 (M+-F), 602, 169 (CF3(CF
2)2 +), 119 (CF3CF2 +),105, 91, 69 (CF3 +). 元素分析 (C25H16NSO7F17, 分子量 797.4) 計算値 C: 37.66 %, H: 2.02 %, N: 1.77 %. 実測値 C: 37.42 %, H: 1.78 %, N: 1.68 %.
1 H-NMR δ (CDCl 3 + DMSO-d 6 , ppm): 3.23
(s, 3H), 3.8-4.1 (m, 2H), 4.2-4.5 (m, 2H), 6.87
(d, J = 9.2 Hz, 2H), 7.5-8.0 (m, 4H), 8.29 (s, 1H). IR (cm -1 ): 3445 (-OH), 3005, 2955, 1705 (-C = O ), 15
95, 1550, 1520, 1465, 1390, 1355, 1330, 1245, 1215,
1155, 1120, 1085, 1065, 995, 945, 910, 860, 825,
760, 745, 725, 789, 750, 695, 660, 630, 585, 555,
525. Mass (m / e): 797 (M + ), 778 (M + -F), 602, 169 (CF 3 (CF
2 ) 2 + ), 119 (CF 3 CF 2 + ), 105, 91, 69 (CF 3 + ). Elemental analysis (C 25 H 16 NSO 7 F 17 , molecular weight 797.4) Calculated C: 37.66%, H: 2.02%, N: 1.77% .Actual value C: 37.42%, H: 1.78%, N: 1.68%.

【0115】また、上記の反応において化合物(4)の
代わりに、参考例5で得られた化合物(5)を用いて上
記とまったく同様な操作を行い、上記構造式(26)で
表わされる5-[2-(4-シアノ-N-メチルアニリノ)エトキ
シ]イソフタル酸ジメチル(白色結晶、収率:84 %)を経
て、上記構造式(28)で表わされる5-[2-(4-シアノ-N
-メチルアニリノ)エトキシ]イソフタル酸を白色結晶と
して得た。(収率:100 %) なお、これらの生成物が上記
の構造であることは以下に示す1H−NMR、IRスペ
クトル、Massスペクトルおよび元素分析から確認し
た。
In the above reaction, the compound (5) obtained in Reference Example 5 was used in place of the compound (4), and the completely same operation as the above was carried out to obtain the compound represented by the structural formula (26). 5- [2- (4-Cyano-]-[2- (4-cyano-N-methylanilino) ethoxy] isophthalate dimethyl (white crystal, yield: 84%) represented by the above structural formula (28) N
-Methylanilino) ethoxy] isophthalic acid was obtained as white crystals. (Yield: 100%) It was confirmed by 1 H-NMR, IR spectrum, Mass spectrum and elemental analysis shown below that these products had the above structures.

【0116】化合物(26);1 H-NMR, δ(CDCl3, ppm): 3.13 (s, 3H), 3.83 (t, J=
5.1Hz, 2H), 3.93 (s, 6H), 4.24 (t, J=5.1Hz, 2H),
6.77 (d, J=9.2Hz, 2H), 7.49 (d, J=9.2Hz, 2H),7.70
(d, J=1.1Hz, 2H), 8.28 (s, 1H). IR (cm-1): 3065, 2950, 2850, 2210 (-CN), 1730 (-C=
O), 1605, 1525, 1435,1390, 1345, 1320, 1250, 1185,
1140, 1120, 1060, 1020, 1005, 935, 910, 885, 820,
785, 765, 720, 670, 650, 545, 510. Mass (m/e): 368 (M+), 337 (M+-OCH3), 238, 224, 210
((CH3OOC)2Ph-COOH+),179, 159 (NC-Ph-N(CH3)CH2C
H2 +), 151, 145 (NC-Ph-N(CH3)CH2 +), 129, 102 (+Ph-C
N), 83, 63, 43, 28. 元素分析 (C20H20N2O5, 分子量 368.4) 計算値 C: 65.19 %, H: 5.48 %, N: 7.61 %. 実測値 C: 64.95 %, H: 5.35 %, N: 7.55 %.
Compound (26); 1 H-NMR, δ (CDCl 3 , ppm): 3.13 (s, 3H), 3.83 (t, J =
5.1Hz, 2H), 3.93 (s, 6H), 4.24 (t, J = 5.1Hz, 2H),
6.77 (d, J = 9.2Hz, 2H), 7.49 (d, J = 9.2Hz, 2H), 7.70
(d, J = 1.1Hz, 2H), 8.28 (s, 1H). IR (cm -1 ): 3065, 2950, 2850, 2210 (-CN), 1730 (-C =
O), 1605, 1525, 1435, 1390, 1345, 1320, 1250, 1185,
1140, 1120, 1060, 1020, 1005, 935, 910, 885, 820,
785, 765, 720, 670, 650, 545, 510. Mass (m / e): 368 (M + ), 337 (M + -OCH 3 ), 238, 224, 210
((CH 3 OOC) 2 Ph-COOH + ), 179, 159 (NC-Ph-N (CH 3 ) CH 2 C
H 2 + ), 151, 145 (NC-Ph-N (CH 3 ) CH 2 + ), 129, 102 ( + Ph-C
N), 83, 63, 43, 28. Elemental analysis (C 20 H 20 N 2 O 5 , molecular weight 368.4) Calculated C: 65.19%, H: 5.48%, N: 7.61%. Measured C: 64.95%, H: 5.35%, N: 7.55%.

【0117】化合物(28);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 3.13 (s, 3H), 3.86
(t, J=5.2Hz, 2H), 4.25 (t, J=5.2Hz, 2H), 6.75 (d,
J=9.0Hz, 2H), 7.47 (d, J=9.0Hz, 2H), 7.67 (d, J=
1.1Hz, 2H), 8.27 (s, 1H). IR (cm-1): 3435, 2910, 2640, 2210 (-CN), 1700 (-C=
O), 1605, 1525, 1460,1435, 1385, 1360, 1330, 1310,
1275, 1205, 1180, 1130, 1105, 1060, 1020,995, 97
5, 910, 885, 815, 760, 740, 690, 665, 595, 545, 45
0. Mass (m/e): 340 (M+), 182 ((HOOC)2Ph-OH+), 158 (NC
-Ph-N(CH3)CH=CH2 +), 145 (NC-Ph-N(CH3)CH2 +), 129, 1
02 (+Ph-CN), 91, 42, 28. 元素分析 (C18H16N2O5, 分子量 340.3) 計算値 C: 63.52 %, H: 4.74 %, N: 8.23 %. 実測値 C: 63.56 %, H: 4.61 %, N: 8.14 %.
Compound (28); 1 H-NMR, δ (CDCl 3+ DMSO-d 6 , ppm): 3.13 (s, 3H), 3.86
(t, J = 5.2Hz, 2H), 4.25 (t, J = 5.2Hz, 2H), 6.75 (d,
J = 9.0Hz, 2H), 7.47 (d, J = 9.0Hz, 2H), 7.67 (d, J =
1.1Hz, 2H), 8.27 (s, 1H). IR (cm -1 ): 3435, 2910, 2640, 2210 (-CN), 1700 (-C =
O), 1605, 1525, 1460, 1435, 1385, 1360, 1330, 1310,
1275, 1205, 1180, 1130, 1105, 1060, 1020,995, 97
5, 910, 885, 815, 760, 740, 690, 665, 595, 545, 45
0. Mass (m / e): 340 (M + ), 182 ((HOOC) 2 Ph-OH + ), 158 (NC
-Ph-N (CH 3 ) CH = CH 2 + ), 145 (NC-Ph-N (CH 3 ) CH 2 + ), 129, 1
02 ( + Ph-CN), 91, 42, 28. Elemental analysis (C 18 H 16 N 2 O 5 , molecular weight 340.3) Calculated value C: 63.52%, H: 4.74%, N: 8.23%. Measured value C: 63.56%, H: 4.61%, N: 8.14%.

【0118】実施例18〜22Examples 18 to 22

【0119】[0119]

【化27】 Embedded image

【0120】実施例15〜17で得られた3,5-ジアミノ
安息香酸エステル誘導体と参考例9および10で得られ
たイソフタル酸誘導体をそれぞれ表2に記載の組み合わ
せで等モル量(2 mmol)になるように秤量した。秤量し
たイソフタル酸誘導体に3 mlの塩化チオニルを加え、3
時間加熱還流を行った。反応後、過剰の塩化チオニルを
減圧下留去し、2 mlの乾燥N-メチル-2-ピロリドン(N
MP)に溶解した。一方、アルゴンガス雰囲気下、秤量
した3,5-ジアミノ安息香酸エステル誘導体を2mlの乾燥
NMPに溶解した。この溶液を-78℃に保ちながら、先
に調製したイソフタル酸誘導体乾燥NMP溶液を加えた
後、60℃において1時間攪拌し縮重合反応を行った。次
に、反応溶液をメタノール400 mlに注ぎポリマーを沈殿
せしめた。最後に得られたポリマーを(P1)〜(P
3)の場合2 mlのTHFに、また、(P4)および(P
5)の場合2 mlのN,N-ジメチルホルムアミドに溶解し、
この溶液をろ過した後、メタノール400 mlに注ぎポリマ
ーを沈殿せしめた。最後に、得られたポリマーをろ別し
乾燥させた。その結果上記構造(P1)〜(P5)で表
されるポリアミドがそれぞれ得られた。なお、それらの
化学構造は以下に示す 1H−NMRおよびIRスペクト
ルより確認した。得られたポリアミドについて光散乱法
により重量平均分子量を求め、また、示差走査熱量計に
よりガラス転移温度を測定した。結果を表2に示す。そ
の結果、いずれのポリアミドも高いガラス転移温度を有
し、また、300℃まで安定な熱安定性に優れたポリマー
であることがわかった。
3,5-diamino obtained in Examples 15 to 17
Benzoic acid ester derivative and obtained in Reference Examples 9 and 10
Combinations of different isophthalic acid derivatives listed in Table 2
It was weighed to obtain an equimolar amount (2 mmol). Weighed
Add 3 ml of thionyl chloride to the isophthalic acid derivative and add 3
The mixture was heated under reflux for an hour. After the reaction, remove excess thionyl chloride.
Evaporate under reduced pressure and dry 2 ml of N-methyl-2-pyrrolidone (N
MP). On the other hand, under argon gas atmosphere, weigh
2 ml of dried 3,5-diaminobenzoate derivative
Dissolved in NMP. While keeping this solution at -78 ° C,
The dry NMP solution of isophthalic acid derivative prepared in
Thereafter, the polycondensation reaction was carried out by stirring at 60 ° C. for 1 hour. Next
Then, the reaction solution was poured into 400 ml of methanol to precipitate the polymer.
I'm sorry. The polymer obtained at the end is (P1)-(P
In the case of 3) 2 ml of THF, (P4) and (P4)
In the case of 5), it was dissolved in 2 ml of N, N-dimethylformamide,
After filtering this solution, pour it into 400 ml of methanol and
Was allowed to settle. Finally, the polymer obtained was filtered off.
Let dry. As a result, the above structures (P1) to (P5)
The respective polyamides obtained were obtained. Incidentally, those
The chemical structure is shown below 11 H-NMR and IR spectrum
I confirmed from Le. Light scattering method for the obtained polyamide
Determine the weight average molecular weight by using a differential scanning calorimeter
The glass transition temperature was measured. Table 2 shows the results. So
As a result, both polyamides have a high glass transition temperature.
And a polymer with excellent thermal stability that is stable up to 300 ° C
I found out.

【0121】ポリアミド(P1);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 3.1-3.4 (6H), 3.6-
4.0 (4H), 4.2-4.6 (4H), 6.8-7.0 (4H), 7.0-7.2 (2
H), 7.4-7.6 (2H), 7.6-7.8 (5H), 7.9-8.1 (1H),10.3-
10.7 (2H). IR (cm-1): 3100, 2960, 1720 (-C=O), 1675, 1595, 15
45, 1520, 1450, 1390,1360, 1340, 1250, 1225, 1160,
1130, 1110, 1085, 1060, 1040, 1000, 965, 885, 86
0, 820, 780, 740 710, 680, 650, 630, 580, 550, 53
0.
Polyamide (P1); 1 H-NMR, δ (CDCl 3 + DMSO-d 6 , ppm): 3.1-3.4 (6H), 3.6-
4.0 (4H), 4.2-4.6 (4H), 6.8-7.0 (4H), 7.0-7.2 (2
H), 7.4-7.6 (2H), 7.6-7.8 (5H), 7.9-8.1 (1H), 10.3-
10.7 (2H). IR (cm -1 ): 3100, 2960, 1720 (-C = O), 1675, 1595, 15
45, 1520, 1450, 1390, 1360, 1340, 1250, 1225, 1160,
1130, 1110, 1085, 1060, 1040, 1000, 965, 885, 86
0, 820, 780, 740 710, 680, 650, 630, 580, 550, 53
0.

【0122】ポリアミド(P2);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 3.0-3.4 (6H), 3.7-
4.1 (4H), 4.3-4.6 (4H), 6.7-6.9 (2H), 6.9-7.1 (2
H), 7.3-7.5 (2H), 7.6-7.9 (4H), 8.1-8.3 (2H),8.3-
8.4 (1H), 8.6-8.7 (1H), 10.3-10.7 (2H). IR (cm-1): 3120, 3960, 2925, 2215 (-CN), 1720 (-C=
O), 1670, 1605, 1595,1545, 1525, 1450, 1390, 1360,
1340, 1305, 1250, 1215, 1180, 1160, 1130,1110, 10
85, 1060, 1000, 970, 890, 820, 765, 745, 710, 685,
650, 630, 590, 550 530.
Polyamide (P2); 1 H-NMR, δ (CDCl 3 + DMSO-d 6 , ppm): 3.0-3.4 (6H), 3.7-
4.1 (4H), 4.3-4.6 (4H), 6.7-6.9 (2H), 6.9-7.1 (2
H), 7.3-7.5 (2H), 7.6-7.9 (4H), 8.1-8.3 (2H), 8.3-
8.4 (1H), 8.6-8.7 (1H), 10.3-10.7 (2H). IR (cm -1 ): 3120, 3960, 2925, 2215 (-CN), 1720 (-C =
O), 1670, 1605, 1595, 1545, 1525, 1450, 1390, 1360,
1340, 1305, 1250, 1215, 1180, 1160, 1130, 1110, 10
85, 1060, 1000, 970, 890, 820, 765, 745, 710, 685,
650, 630, 590, 550 530.

【0123】ポリアミド(P3);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 3.0-3.4 (6H), 3.7-
4.1 (4H), 4.2-4.7 (4H), 6.7-6.9 (2H), 6.9-7.1 (2
H), 7.4-7.5 (2H), 7.6-7.9 (4H), 8.1-8.4 (3H),8.6-
8.8 (1H), 10.3-10.7 (2H). IR (cm-1): 3130, 2970, 2940, 2215 (-CN), 1720 (-C=
O), 1675, 1610, 1595,1550, 1525, 1450, 1385, 1355,
1250, 1215, 1180, 1155, 1125, 1110, 1085,1055, 10
00, 970, 880, 820, 765, 745, 705, 690, 650, 630, 5
85, 550.
Polyamide (P3); 1 H-NMR, δ (CDCl 3 + DMSO-d 6 , ppm): 3.0-3.4 (6H), 3.7-
4.1 (4H), 4.2-4.7 (4H), 6.7-6.9 (2H), 6.9-7.1 (2
H), 7.4-7.5 (2H), 7.6-7.9 (4H), 8.1-8.4 (3H), 8.6-
8.8 (1H), 10.3-10.7 (2H). IR (cm -1 ): 3130, 2970, 2940, 2215 (-CN), 1720 (-C =
O), 1675, 1610, 1595,1550, 1525, 1450, 1385, 1355,
1250, 1215, 1180, 1155, 1125, 1110, 1085,1055, 10
00, 970, 880, 820, 765, 745, 705, 690, 650, 630, 5
85, 550.

【0124】ポリアミド(P4);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 3.0-3.4 (6H), 3.6-
4.0 (4H), 4.1-4.7 (4H), 6.8-7.0 (4H), 7.4-7.6 (4
H), 7.6-7.9 (2H), 8.0-8.4 (3H), 8.5-8.8 (1H),10.0-
10.7 (2H). IR (cm-1): 3110, 2925, 2215 (-CN), 1720 (-C=O), 16
75, 1605, 1545, 1525,1450, 1385, 1330, 1310, 1220,
1180, 1055, 1005, 880, 820, 765, 670, 545,430.
Polyamide (P4); 1 H-NMR, δ (CDCl 3 + DMSO-d 6 , ppm): 3.0-3.4 (6H), 3.6-
4.0 (4H), 4.1-4.7 (4H), 6.8-7.0 (4H), 7.4-7.6 (4
H), 7.6-7.9 (2H), 8.0-8.4 (3H), 8.5-8.8 (1H), 10.0-
10.7 (2H). IR (cm -1 ): 3110, 2925, 2215 (-CN), 1720 (-C = O), 16
75, 1605, 1545, 1525, 1450, 1385, 1330, 1310, 1220,
1180, 1055, 1005, 880, 820, 765, 670, 545,430.

【0125】ポリアミド(P5);1 H-NMR, δ(CDCl3+DMSO-d6, ppm): 2.3-2.5 (3H), 3.0-
3.4 (6H), 3.7-4.1 (4H), 4.2-4.6 (4H), 6.6-7.0 (4
H), 7.6-7.9 (4H), 8.1-8.4 (3H), 8.6-8.8 (1H),10.0-
10.7 (2H). IR (cm-1): 3190, 2955, 1725 (-C=O), 1660, 1595, 15
50, 1525, 1450, 1385,1360, 1330, 1295, 1240, 1215,
1155, 1125, 1115, 1080, 1060, 1000, 960, 885, 82
0, 765, 745, 705, 680, 650, 555.
Polyamide (P5); 1 H-NMR, δ (CDCl 3 + DMSO-d 6 , ppm): 2.3-2.5 (3H), 3.0-
3.4 (6H), 3.7-4.1 (4H), 4.2-4.6 (4H), 6.6-7.0 (4
H), 7.6-7.9 (4H), 8.1-8.4 (3H), 8.6-8.8 (1H), 10.0-
10.7 (2H). IR (cm -1 ): 3190, 2955, 1725 (-C = O), 1660, 1595, 15
50, 1525, 1450, 1385, 1360, 1330, 1295, 1240, 1215,
1155, 1125, 1115, 1080, 1060, 1000, 960, 885, 82
0, 765, 745, 705, 680, 650, 555.

【0126】[0126]

【表2】[Table 2]

【0127】 ───────────────────────────────── 実施例 ポリアミドの 用いたイソ 用いた 重量平均 ガラス転移 番号 化合物番号 フタル酸 ジアミン 分子量 温度(℃) ───────────────────────────────── 18 (P1) (27) (22) 8.17x103 >300 19 (P2) (27) (23) 6.41x104 157 20 (P3) (28) (22) 2.83x104 165 21 (P4) (28) (23) 3.50x104 167 22 (P5) (27) (24) 2.21x104 157 ────────────────────────────────────────────────────────────────── Example The weight average glass transition number using the iso used in the polyamide Compound number Phthalic acid Diamine Molecular weight Temperature (℃) ───────────────────────────────── 18 (P1) (27) (22) 8.17x10 3 > 300 19 (P2) (27) (23) 6.41x10 4 157 20 (P3) (28) (22) 2.83x10 4 165 21 (P4) (28) (23) 3.50x10 4 167 22 (P5) (27) (24) 2.21x10 4 157 ──────────────────────────────────

【0128】実施例23 線形および非線形光学測定Example 23 Linear and nonlinear optical measurements

【0129】実施例19および20で得られたポリアミ
ド(P2)および(P3)をTHFに溶解して5重量%
溶液を作り、これを石英ガラス基板上に1分当たり2000
回転の回転速度でスピンコートすることによりポリアミ
ド薄膜をそれぞれ得た。次にこれらの基板を用いて、紫
外可視吸収スペクトルを測定することにより、これらの
ポリアミドの極大吸収波長および吸収端波長を求めた。
結果を表3に示す。表から判るように、これらのポリア
ミドは吸収端波長が短く、したがって可視光領域で透明
性の良い材料であることがわかった。
The polyamides (P2) and (P3) obtained in Examples 19 and 20 were dissolved in THF to give 5% by weight.
Make a solution and put it on a quartz glass substrate at 2000 per minute
Each polyamide thin film was obtained by spin coating at a rotation speed of rotation. Next, the ultraviolet absorption spectrum was measured using these substrates, and the maximum absorption wavelength and the absorption edge wavelength of these polyamides were obtained.
The results are shown in Table 3. As can be seen from the table, it was found that these polyamides have a short absorption edge wavelength and therefore are materials having good transparency in the visible light region.

【0130】また、ポリアミド(P2)および(P3)
をTHFに溶解して10重量%溶液を作り、これをガラス
基板上に1分当たり1000回転の回転速度でスピンコート
することによりポリアミド薄膜をそれぞれ得た。次に、
これらの基板をアルミニウム製のホットプレート上に置
き、各ポリアミドのガラス転移温度近傍まで昇温した。
各ポリアミドについての昇温温度(コロナ帯電温度)を
表3に示す。2.5 cm上方からタングステン針を用いて帯
電電圧10kVでコロナ帯電させた。この状態で20分以上保
持して側鎖部の色素部位を配向させ、その後コロナ帯電
を継続しながら冷却しポリアミドをガラス状態に至らせ
た。
Further, the polyamides (P2) and (P3)
Was dissolved in THF to prepare a 10 wt% solution, which was spin-coated on a glass substrate at a rotation speed of 1000 rotations per minute to obtain polyamide thin films. next,
These substrates were placed on a hot plate made of aluminum and heated to near the glass transition temperature of each polyamide.
Table 3 shows the temperature rise (corona charging temperature) for each polyamide. Corona charging was performed from above 2.5 cm using a tungsten needle at a charging voltage of 10 kV. This state was maintained for at least 20 minutes to orient the dye moiety in the side chain, and then cooled while continuing corona charging to bring the polyamide to a glassy state.

【0131】次に、メーカーフリンジ法(J. Jerphagno
n et al., Journal of Applied Physics, 第41巻, p.16
67 (1970年)参照)により電場配向処理を行ったポリア
ミド薄膜から発生する第2次高調波(SH波)を測定し
た。入射基本波は、偏波面のそろったNd:YAGレーザー
(1064nm)を用い、532nmのSH波を検出した。典型的
なメーカーフリンジパターンを図1に示す。また、膜厚
1mmのy- カット石英結晶についても同様にメーカーフリ
ンジ法により発生するSH波を検出した。これらの測定
結果から、y-カット石英結晶のd11値(0.5 pm/V)を基
準にして、最小二乗法を用いたカーブフィッティングに
よりそれぞれのポリアミドの2次非線形光学定数d33
を算出した。その結果を表3に示す。また、ここに示し
たd33値は、これらのポリアミド薄膜を室温にて 約一
ヶ月放置した後に測定してもまったく変化していないこ
とを確認した。
Next, the maker fringe method (J. Jerphagno
n et al., Journal of Applied Physics, Volume 41, p.16.
67 (1970)), the second harmonic (SH wave) generated from the polyamide thin film subjected to the electric field orientation treatment was measured. As the incident fundamental wave, a 532 nm SH wave was detected using an Nd: YAG laser (1064 nm) having a uniform polarization plane. A typical maker fringe pattern is shown in FIG. Also, the film thickness
SH waves generated by the maker fringe method were also detected for a 1 mm y-cut quartz crystal. From these measurement results, the second-order nonlinear optical constant d 33 value of each polyamide was calculated by curve fitting using the least-squares method with reference to the d 11 value (0.5 pm / V) of the y-cut quartz crystal. . Table 3 shows the results. Further, it was confirmed that the d 33 value shown here was not changed at all even when these polyamide thin films were allowed to stand at room temperature for about 1 month and then measured.

【0132】[0132]

【表3】 ────────────────────────────────── ポリアミドの 極大吸収波長 吸収端波長 コロナ帯電温度 d33値 化合物番号 (nm) (nm) (℃) (pm/V) ────────────────────────────────── (P2) 306 372 190 8 (P3) 305 443 200 14 ──────────────────────────────────[Table 3] ────────────────────────────────── polyamide maximum absorption wavelength absorption edge wavelength corona charging temperature d 33 value Compound number (nm) (nm) (℃) (pm / V) ──────────────────────────────── ── (P2) 306 372 1908 (P3) 305 443 200 14 ─────────────────────────────────────

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例20で得られたポリアミドから作製した
薄膜のメーカーフリンジパターンを示すグラフである。
1 is a graph showing a maker fringe pattern of a thin film produced from the polyamide obtained in Example 20. FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月4日[Submission date] June 4, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0066[Correction target item name] 0066

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0066】1H-NMR, δ(CDCl3, ppm): 1.77 (t, J=5.5
Hz, 1H), 3.14 (s, 3H), 3.63 (t, J=5.2Hz, 2H), 3.85
(t, J=5.2Hz, 2H), 6.80 (d, J=9.2Hz, 2H), 7.6-8.2
(m, 6H). IR (cm-1): 3500, 2920, 2225 (-CN), 1600, 1555, 152
0, 1440, 1420, 1375, 1345, 1315, 1260, 1215, 1145,
1105, 1070, 1045, 975, 845, 830, 555, 510. 元素分析 (C16H16N 2O, 分子量 280.3) 計算値 C: 68.55 %, H: 5.75 %, N 19.99 %. 実測値 C: 68.71 %, H: 5.78 %, N 20.07 %.
1 H-NMR, δ (CDCl 3 , ppm): 1.77 (t, J = 5.5
Hz, 1H), 3.14 (s, 3H), 3.63 (t, J = 5.2Hz, 2H), 3.85
(t, J = 5.2Hz, 2H), 6.80 (d, J = 9.2Hz, 2H), 7.6-8.2
(m, 6H). IR (cm -1 ): 3500, 2920, 2225 (-CN), 1600, 1555, 152
0, 1440, 1420, 1375, 1345, 1315, 1260, 1215, 1145,
1105, 1070, 1045, 975, 845, 830, 555, 510. Elemental analysis (C 16 H 16 N 2 O , molecular weight 280.3) Calculated C: 68.55%, H: 5.75%, N 19.99%. Measured C: 68.71%, H: 5.78%, N 20.07%.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0081[Correction target item name] 0081

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0081】化合物(13):収率:86 %1 H-NMR, δ(CDCl3, ppm): 3.21 (s, 3H), 3.95 (t, J=
5.9Hz, 2H), 4.70 (t, J=5.9Hz, 2H), 6.87 (d, J=9.5H
z, 2H), 7.77 (d, J=9.5Hz, 2H), 9.05 (d, J=2.0Hz, 2
H), 9.21 (t, J=2.0Hz, 1H). IR (cm-1): 3105, 2970, 1735 (-C=O), 1630, 1595, 15
45 (asymmetric stretching of -NO2), 1520, 1460, 13
90, 1350 (symmetric stretching of -NO2), 1330, 128
0, 1240, 1205, 1155, 1115, 1085, 995, 930, 825, 77
5, 725, 685, 655, 605, 585, 550, 520. Mass (m/e): 827 (M+), 808 (M+-F), 602 (CF3(CF2) 7 SO
2Ph-N(CH3)CH2 +), 408 (M+-(C8F17)), 344 (M+-(SO2C8F
17)), 195 ((O2N)2PhCO+), 169 (CF3(CF2)2 +), 149, 13
1, 119 (CF3CF2 + or Ph-N(CH3)CH2 +), 105, 91, 75, 69
(CF3+), 42. 元素分析 (C24H14N3SO8F17, 分子量 827.4) 計算値 C: 34.84 %, H: 1.71 %, N: 5.08 %. 実測値 C: 34.76 %, H: 1.53 %, N: 4.87 %.
Compound (13): Yield: 86% 1 H-NMR, δ (CDCl 3 , ppm): 3.21 (s, 3H), 3.95 (t, J =
5.9Hz, 2H), 4.70 (t, J = 5.9Hz, 2H), 6.87 (d, J = 9.5H
z, 2H), 7.77 (d, J = 9.5Hz, 2H), 9.05 (d, J = 2.0Hz, 2
H), 9.21 (t, J = 2.0Hz, 1H). IR (cm -1 ): 3105, 2970, 1735 (-C = O), 1630, 1595, 15
45 (asymmetric stretching of -NO 2 ), 1520, 1460, 13
90, 1350 (symmetric stretching of -NO 2 ), 1330, 128
0, 1240, 1205, 1155, 1115, 1085, 995, 930, 825, 77
5, 725, 685, 655, 605, 585, 550, 520. Mass (m / e): 827 (M + ), 808 (M + -F), 602 (CF 3 (CF 2 ) 7 SO
2 Ph-N (CH 3 ) CH 2 + ), 408 (M + -(C 8 F 17 )), 344 (M + -(SO 2 C 8 F)
17 )), 195 ((O 2 N) 2 PhCO + ), 169 (CF 3 (CF 2 ) 2 + ), 149, 13
1, 119 (CF 3 CF 2 + or Ph-N (CH 3 ) CH 2 + ), 105, 91, 75, 69
(CF3 + ), 42. Elemental analysis (C 24 H 14 N 3 SO 8 F 17 , molecular weight 827.4) Calculated C: 34.84%, H: 1.71%, N: 5.08%. Measured C: 34.76%, H: 1.53%, N: 4.87%.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I) 【化1】 (式中、X1およびX2はニトロ基またはアミノ基、Y1
は炭素数が1〜12の直鎖状または分岐状の炭化水素
鎖、R1は水素原子、低級アルキル基、またはY1および
結合する窒素原子と一体となって環を形成していてもよ
く、A1は水素原子、電子受容性基、または電子受容性
基を含むπ共役系置換基である。)で表される安息香酸
エステル誘導体。
1. A compound represented by the following general formula (I) (In the formula, X 1 and X 2 are a nitro group or an amino group, Y 1
Is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 1 may be a hydrogen atom, a lower alkyl group, or Y 1 and a nitrogen atom to be bonded to form a ring. , A 1 is a hydrogen atom, an electron-accepting group, or a π-conjugated system substituent containing an electron-accepting group. ) A benzoic acid ester derivative represented by:
【請求項2】 下記一般式(II) 【化2】 (式中、Y1は炭素数が1〜12の直鎖状または分岐状
の炭化水素鎖、R1は水素原子、低級アルキル基、また
はY1および結合する窒素原子と一体となって環を形成
していてもよく、A1は水素原子、電子受容性基、また
は電子受容性基を含むπ共役系置換基である。)で表さ
れるジニトロ安息香酸エステル誘導体からなり、1064nm
のレーザー光を基本入力波として尿素から発生する第2
次高調波強度を1とした時の同様な基本入力波により発
生する相対第2次高調波強度が10-3以上である非線形
光学材料。
2. The following general formula (II): (In the formula, Y 1 is a linear or branched hydrocarbon chain having 1 to 12 carbon atoms, R 1 is a hydrogen atom, a lower alkyl group, or Y 1 and a nitrogen atom to be bonded together form a ring. A 1 is a hydrogen atom, an electron-accepting group, or a π-conjugated substituent containing an electron-accepting group, and is composed of a dinitrobenzoate derivative represented by
Generated from urea using the laser beam of
A non-linear optical material in which the relative second harmonic intensity generated by the same fundamental input wave when the intensity of the second harmonic is 1 is 10 −3 or more.
【請求項3】 繰り返し単位が、下記一般式(III) 【化3】 (式中、R2およびR3は同一または異なってもよく水素
原子または下記一般式(IV) 【化4】 で表される置換基、mは0または1の整数、Y1、Y2
よびY3は同一または異なってもよく炭素数が1〜12
の直鎖状または分岐状の炭化水素鎖、R1、R4およびR
5は同一または異なってもよく水素原子、低級アルキル
基、または各々Y1、Y2あるいはY3および結合する窒
素原子と一体となって環を形成していてもよく、A2
3およびA4は同一または異なってもよく電子受容性基
または電子受容性基を含むπ共役系置換基である。)で
表わされ、重量平均分子量が1,000以上である芳香族ポ
リアミド。
3. The repeating unit has the following general formula (III): (In the formula, R 2 and R 3 may be the same or different and each is a hydrogen atom or the following general formula (IV): And m is an integer of 0 or 1, Y 1 , Y 2 and Y 3 may be the same or different and have 1 to 12 carbon atoms.
A straight or branched hydrocarbon chain of R 1 , R 4 and R
5 may be the same or different, and may form a ring together with a hydrogen atom, a lower alkyl group, or Y 1 , Y 2 or Y 3 and the nitrogen atom to which they are bonded, A 2 ,
A 3 and A 4 may be the same or different and each is an electron-accepting group or a π-conjugated substituent containing an electron-accepting group. ) And having a weight average molecular weight of 1,000 or more.
【請求項4】繰り返し単位が、下記一般式(III) 【化5】 (式中、R2およびR3は同一または異なってもよく水素
原子または下記一般式(IV) 【化6】 で表される置換基、mは0または1の整数、Y1、Y2
よびY3は同一または異なってもよく炭素数が1〜12
の直鎖状または分岐状の炭化水素鎖、R1、R4およびR
5は同一または異なってもよく水素原子、低級アルキル
基、または各々Y1、Y2あるいはY3および結合する窒
素原子と一体となって環を形成していてもよく、A2
3およびA4は同一または異なってもよく電子受容性基
または電子受容性基を含むπ共役系置換基である。)で
表わされ、重量平均分子量が1,000以上である芳香族ポ
リアミドからなる高分子非線形光学材料。
4. The repeating unit has the following general formula (III): (In the formula, R 2 and R 3 may be the same or different and each is a hydrogen atom or the following general formula (IV): And m is an integer of 0 or 1, Y 1 , Y 2 and Y 3 may be the same or different and have 1 to 12 carbon atoms.
A straight or branched hydrocarbon chain of R 1 , R 4 and R
5 may be the same or different, and may form a ring together with a hydrogen atom, a lower alkyl group, or Y 1 , Y 2 or Y 3 and the nitrogen atom to which they are bonded, A 2 ,
A 3 and A 4 may be the same or different and each is an electron-accepting group or a π-conjugated substituent containing an electron-accepting group. ), And a polymer nonlinear optical material composed of an aromatic polyamide having a weight average molecular weight of 1,000 or more.
JP22227295A 1995-08-30 1995-08-30 Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material Pending JPH0967324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22227295A JPH0967324A (en) 1995-08-30 1995-08-30 Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22227295A JPH0967324A (en) 1995-08-30 1995-08-30 Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH0967324A true JPH0967324A (en) 1997-03-11

Family

ID=16779786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22227295A Pending JPH0967324A (en) 1995-08-30 1995-08-30 Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH0967324A (en)

Similar Documents

Publication Publication Date Title
Alain et al. Elongated push–pull diphenylpolyenes for nonlinear optics: molecular engineering of quadratic and cubic optical nonlinearities via tuning of intramolecular charge transfer
JP2700475B2 (en) Nonlinear optical materials and elements
US20030100681A1 (en) Crosslinkable monomers for novel nonlinear optical polymers
Anandhan et al. Synthesis, crystal structure, spectroscopic investigations, physicochemical properties of third-order NLO single crystal for optical applications
Kumar et al. Structural characteristics and second harmonic generation in L-threonine crystals
US20040132960A1 (en) Polymers having pendant nonlinear optical chromophores and electro-optic devices therefrom
US9023248B2 (en) Diels-Alder crosslinkable dendritic nonlinear optic chromophores and polymer composites
Ramesh et al. Synthesis, physico-chemical characterization and quantum chemical studies of 2, 3-dimethyl quinoxalinium-5-sulphosalicylate crystal
JPH0967324A (en) Benzoic acid ester derivative, aromatic polyamide and nonlinear optical material
JPH026486A (en) Organosilicon compound, and electrooptical material and device containing the same
Wang et al. Preparation, crystal growth, characterization, thermal and third-order nonlinear optical properties of ethyltriphenylphosphonium bis (2-thioxo-1, 3-dithiole-4, 5-dithiolato) aurate (III) for all-optical switching
JP2836485B2 (en) Cyclobutenedione derivative, method for producing the same, and nonlinear optical element using the same
Deepa et al. Theoretical and experimental study of new nonlinear optical material nicotinohydrazide
JPH09222624A (en) Novel diamine compound, polyamide and high molucular nonlinear optical material
JPH08127646A (en) Phthalic acid derivative, polyester and polymeric nonlinear optical material
JPH07309819A (en) Cyclobutene dione derivative, production thereof and nonlinear optical element using the same
JPH1036338A (en) Aromatic dicarboxylic acid and diamine
Issam et al. Synthesis, characterization and optical properties of novel nonlinear polysilylether
Cui et al. Synthesis and NLO properties of hybrid inorganic–organic films containing thiophene ring
JPH11326965A (en) Nonlinear optical material, new betaine compound and compound having pyridyl group
Saranya et al. Studies on the Growth, Spectral and Optical Characteristics of Isobutylammonium Hydrogen Oxalate Hemihydrate Single Crystals
KR20030010863A (en) 1,3,5-Tricyano-2,4,6-tris(vinyl)benzene Derivatives and Method for Preparing the Same
Chen et al. Preparation and nonlinear optical properties of hybrid sol–gel films doped with triphenylamino-substituted chromophores
JPH10253998A (en) Betaine compound and stilbazole compound having solfone residue, and nonlinear optical material consisting of those compounds
Kato et al. Synthesis and structural study of a novel nonlinear opticalmaterial: the tolane derivative ethyl2-(4-benzyloxyphenylethynyl)-5-nitrobenzene-1-carbamate