JPH096446A - Control method for self-exiting reactive power compensation device - Google Patents

Control method for self-exiting reactive power compensation device

Info

Publication number
JPH096446A
JPH096446A JP7150120A JP15012095A JPH096446A JP H096446 A JPH096446 A JP H096446A JP 7150120 A JP7150120 A JP 7150120A JP 15012095 A JP15012095 A JP 15012095A JP H096446 A JPH096446 A JP H096446A
Authority
JP
Japan
Prior art keywords
current
transformer
phase
reactive power
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7150120A
Other languages
Japanese (ja)
Inventor
Tomoshi Tada
知史 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP7150120A priority Critical patent/JPH096446A/en
Publication of JPH096446A publication Critical patent/JPH096446A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE: To provide a reactive power compensation effect even when a system linkage three-phase transformer employs different connection system for the primary and secondary windings in the self-exciting reactive power compensation device (SVC). CONSTITUTION: A load current IL of a three-phase three-wire system bus 2 is detected and a compensation object current ICREF of a reactive power component of the current is obtained by a compensation current arithmetic block, and the compensation object current ICREF is given to a phase conversion block, in which matrix arithmetic operation processing is conducted based on a connection system of a primary winding 6a and a secondary winding 6d of a transformer 6 and the ratio N of the number of turns to obtain an inverter output current command value IIREF. The inverter output current command value IIREF is used to control an inverter 5 to supply an inverter output current II to the secondary winding of the transformer 6, then a primary compensation current IC satisfies a relation of IC=-(compensation object component in load current IL) to compensate the reactive power of the system bus 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力系統の三相三線式
系統母線に負荷変動にて発生する無効電流を打ち消す補
償電流を生成するインバータ仕様の自励式無効電力補償
装置の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for a self-excited var compensator of an inverter type, which generates a compensating current for canceling a reactive current generated by load fluctuation in a three-phase three-wire system busbar of an electric power system.

【0002】[0002]

【従来の技術】変電所等の系統電源とアーク炉や電鉄負
荷等の変動負荷を有する三相三線式電力系統に設置され
る自励式無効電力補償装置に、三相式インバータと三相
式変圧器を備えたものがある。その主回路例を図5に示
し説明すると、三相交流の系統電源1を有する三相三線
式系統母線2に負荷3と自励式無効電力補償装置(以
下、自励式SVCと称する)4が設置される。自励式S
VC4は、三相式インバータ5とその出力側に設置した
連系用三相式変圧器6’で構成される。変圧器6’の一
次側が三相三線式系統母線2に接続され、二次側がイン
バータ5に接続される。
2. Description of the Related Art A self-excited reactive power compensator installed in a system power source such as a substation and a three-phase three-wire type power system having a fluctuating load such as an arc furnace or an electric railway load, a three-phase inverter and a three-phase transformer Some are equipped with vessels. An example of the main circuit is shown in FIG. 5 and explained. A load 3 and a self-excited reactive power compensator (hereinafter, referred to as self-excited SVC) 4 are installed on a three-phase three-wire system bus bar 2 having a three-phase AC system power supply 1. To be done. Self-excited S
The VC 4 is composed of a three-phase inverter 5 and an interconnection three-phase transformer 6'installed on the output side thereof. The primary side of the transformer 6 ′ is connected to the three-phase three-wire system bus bar 2, and the secondary side is connected to the inverter 5.

【0003】自励式SVC4の変圧器6は、一次結線
6’aと二次結線6’bが三角結線(デルタ結線)又は
星形結線かの同一結線方式の三相変圧器で、図5では三
角・三角結線方式のものが示してあるが、星形・星形結
線方式のものも使用される。自励式SVC4は、負荷変
動に伴い系統母線2に発生する三相各相の無効電力を打
ち消す補償電力を発生して、系統母線2の電圧変動を抑
制する。
The transformer 6 of the self-excited SVC 4 is a three-phase transformer of the same connection system, in which the primary connection 6'a and the secondary connection 6'b are triangular connection (delta connection) or star connection, and in FIG. Triangular / triangular connection method is shown, but star-shaped / star connection method is also used. The self-excited SVC 4 suppresses the voltage fluctuation of the system bus 2 by generating compensation power that cancels the reactive power of each of the three phases generated in the system bus 2 due to the load fluctuation.

【0004】即ち、自励式SVC4の制御ブロックを図
6に示し、これの従来の制御方法を説明する。負荷変動
時における系統母線2の負荷電流IL を検出して、その
中の無効電力成分を補償電流演算ブロック7で求める。
補償電流演算ブロック7で得られた制御信号(補償対象
電流)をインバータ出力電流指令値II REFとしてインバ
ータの制御部に与えてインバータ出力電流II を得る。
インバータ出力電流I I が変圧器6の二次側に流れて得
られる変圧器6の一次側の補償電流IC は、変圧器6の
一次と二次が三角・三角結線或いは星形・星形結線の同
一結線方式であるのでインバータ出力電流II と位相、
振幅が同一であり(巻線比が1の場合)、II =IC
成立する。その結果として、 IC =−(負荷電流IL 中の補償対象成分) が成立して、系統母線2における負荷変動に伴う無効電
力が補償される。
That is, a control block of the self-excited SVC 4 is shown.
6 and the conventional control method of this is demonstrated. Load fluctuation
Load current I of the system bus 2 atL Detect that
The reactive power component therein is calculated by the compensation current calculation block 7.
Control signal obtained by the compensation current calculation block 7 (compensation target
Current) is the inverter output current command value II REFAs INVA
The output current I of the inverterI Get.
Inverter output current I I Can flow to the secondary side of the transformer 6
Compensation current I on the primary side of the transformer 6C Of the transformer 6
Primary and secondary have the same triangle / triangle connection or star / star connection
Inverter output current I because it is a single connection systemI And phase,
Have the same amplitude (when the winding ratio is 1), II = IC But
To establish. As a result, IC =-(Load current IL The compensation target component in the
The force is compensated.

【0005】[0005]

【発明が解決しようとする課題】上記自励式SVC4に
よる系統母線2の無効電力補償効果は、連系用三相式変
圧器6の一次結線6’aと二次結線6’bが星形・星形
結線或いは三角・三角結線のように同一結線方式のもの
であって、II =IC が成立することで得られる。換言
すると、変圧器6の一次結線6’aと二次結線6’bが
星形・三角結線或いは三角・星形結線のように異なる結
線方式のものであると、インバータ出力電流II に対し
て補償電流IC の振幅・位相が異なり、II =IC が成
立しなくなり、無効電力の補償効果が得られない。
The reactive power compensation effect of the self-excited SVC 4 on the system bus 2 is that the primary connection 6'a and the secondary connection 6'b of the three-phase transformer 6 for interconnection are star-shaped. It is of the same connection type, such as a star connection or a triangle / triangle connection, and can be obtained by establishing I I = I C. In other words, if the primary connection 6'a and the secondary connection 6'b of the transformer 6 are of different connection systems such as star / triangle connection or triangle / star connection, the inverter output current I I Thus, the amplitude and phase of the compensation current I C differ, and I I = I C no longer holds, so that the reactive power compensation effect cannot be obtained.

【0006】そこで、従来の自励式SVCにおいては、
連系用三相式変圧器に一次結線と二次結線が同一結線方
式の機種を使用している。しかし、このような変圧器の
機種の限定、制約は、自励式SVCのユーザにとって不
利益を及ぼすことがあった。また、他の装置の都合など
により、自励式SVCに一次と二次の結線方式が異なる
変圧器を使用しなければならない事態が発生することも
あり、このような事態発生に対しては電力系統の主回路
側で対処することも可能であるが、この対処は設備投資
的に難しい問題があった。
Therefore, in the conventional self-excited SVC,
The three-phase transformer for interconnection uses a model in which the primary and secondary connections are the same. However, such limitations and restrictions on the model of the transformer may have a disadvantage for the user of the self-excited SVC. In addition, due to the circumstances of other devices, there may occur a situation in which a transformer having a different primary and secondary connection method must be used in the self-excited SVC, and such a situation may occur. Although it is possible to deal with it on the main circuit side, there was a problem in terms of capital investment.

【0007】本発明の目的は、自励式SVCにおける連
系用三相式変圧器が一次と二次の巻線方式が異なるもの
であっても、特に電力系統の主回路側で対処すること無
く無効電力補償効果が得られる自励式SVCの制御方法
を提供することにある。
The object of the present invention is not to deal with the main circuit side of the power system even if the three-phase transformer for interconnection in the self-excited SVC has different primary and secondary winding systems. It is an object of the present invention to provide a control method of a self-excited SVC capable of obtaining a reactive power compensation effect.

【0008】[0008]

【課題を解決するための手段】本発明は、三相三線式電
力系統の系統母線に流れる三相各相の負荷電流中の無効
電力の補償対象電流に対応したインバータ出力電流を三
相式変圧器の二次側に流して得られる同変圧器一次側の
補償電流で、系統母線の負荷変動で発生する無効電力を
補償する自励式無効電力補償装置の制御方法であって、
上記目的を達成するため、三相各相の負荷電流中の補償
対象電流を三相式変圧器の一次結線と二次結線の結線方
式と巻数比に基づく行列演算処理にて位相振幅変換して
インバータ出力電流指令値を求め、このインバータ出力
電流指令値に基づいたインバータ出力電流を変圧器の二
次側に流すようにしたことを特徴とする。
According to the present invention, an inverter output current corresponding to a current to be compensated for reactive power in a load current of each of the three phases flowing in a system bus of a three-phase three-wire power system is transformed into a three-phase transformer. A method of controlling a self-excited reactive power compensator for compensating reactive power generated by load fluctuation of a system bus with a compensation current of the primary side of the same transformer obtained by flowing to the secondary side of the transformer,
In order to achieve the above object, the phase-amplitude conversion is performed on the current to be compensated in the load current of each of the three-phase by matrix calculation processing based on the connection method of the primary connection and secondary connection of the three-phase transformer and the winding ratio. The inverter output current command value is obtained, and the inverter output current based on this inverter output current command value is made to flow to the secondary side of the transformer.

【0009】[0009]

【作用】三相各相の負荷電流中の補償対象電流を検出
し、この補償対象電流を三相式変圧器の一次結線と二次
結線の結線方式と巻数比に基づく行列演算処理にて位相
振幅変換して求めたインバータ出力電流指令値でインバ
ータを駆動制御し、そのインバータ出力電流を変圧器の
二次側に流すと、変圧器の一次側電流は、変圧器の一次
側と二次側の結線方式が同一或いは相違のいずれの場合
にも負荷電流中の補償対象電流を打ち消す位相、振幅の
補償電流となり、使用できる三相式変圧器の機種の範囲
が広がる。
[Function] The current to be compensated in the load current of each of the three phases is detected, and the current to be compensated is phased by matrix calculation processing based on the connection method of the primary connection and secondary connection of the three-phase transformer and the winding ratio. When the inverter output current command value obtained by amplitude conversion is used to drive and control the inverter, and the inverter output current is passed to the secondary side of the transformer, the primary side current of the transformer becomes the primary side and the secondary side of the transformer. When the wiring method is the same or different, the compensation current of the phase and amplitude cancels the current to be compensated in the load current, and the range of usable models of the three-phase transformer is expanded.

【0010】[0010]

【実施例】以下、本発明方法を図1乃至図4を参照して
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to FIGS.

【0011】図1に自励式SVC4を設置した電力系統
の主回路例を示すと、自励式SVC4は、三相式インバ
ータ5とその出力側に設置した連系用三相式変圧器6で
構成される。変圧器6は、一次結線6aと二次結線6b
が異なる結線方式のもので、例えば一次結線6aが三角
結線であり、二次結線6bが星形結線である。このよう
な変圧器6の二次側に図5と同様なインバータ出力電流
I を流すと、一次側の補償電流IC が一次と二次の結
線方式の相違でII ≠IC となり、結果的に IC ≠−(負荷電流IL 中の補償対象成分) となって、負荷変動に伴う系統母線2の三相各相の無効
電力補償ができなくなる。
FIG. 1 shows an example of a main circuit of a power system in which a self-excited SVC 4 is installed. The self-excited SVC 4 is composed of a three-phase inverter 5 and an interconnection three-phase transformer 6 installed on the output side thereof. To be done. The transformer 6 includes a primary connection 6a and a secondary connection 6b.
Are different connection methods, for example, the primary connection 6a is a triangular connection and the secondary connection 6b is a star connection. When an inverter output current I I similar to that shown in FIG. 5 is supplied to the secondary side of such a transformer 6, the compensating current I C on the primary side becomes I I ≠ I C due to the difference between the primary and secondary connection methods, As a result, I C ≠-(compensation target component in the load current I L ), and reactive power compensation for each of the three phases of the system bus 2 due to load fluctuation cannot be performed.

【0012】そこで、本発明においては、図2の制御ブ
ロックに示すように、自励式SVC4を制御する。ま
ず、従来同様に負荷変動時における系統母線2の負荷電
流ILを検出して、その中の無効電力成分の補償対象電
流IC REFを補償電流演算ブロック7で求める。次に、補
償電流演算ブロック7で得られた補償対象電流IC REF
位相変換ブロック8で変圧器6の一次結線6aと二次結
線6bの結線方式と巻数比に基づいた行列演算処理をし
て、インバータ出力電流指令値II REFを求める。そし
て、このインバータ出力電流指令値II REFでインバータ
5を制御してインバータ出力電流II を変圧器6の二次
側に流すようにすると、一次側の補償電流I C は、 IC =−(負荷電流IL 中の補償対象成分) なる関係式を満たして、系統母線2の無効電力補償が可
能となる。
Therefore, in the present invention, the control block shown in FIG.
The self-excited SVC 4 is controlled as shown in the lock. Ma
Instead, the load voltage of the system bus 2 is changed when the load changes as before.
Flow ILIs detected and the power to be compensated for the reactive power component in it is detected.
Flow IC REFIs calculated by the compensation current calculation block 7. Next,
Compensation target current I obtained in compensation current calculation block 7C REFTo
The phase conversion block 8 connects the primary connection 6a of the transformer 6 to the secondary connection.
Performs matrix calculation processing based on the wiring method of the wire 6b and the winding ratio.
Inverter output current command value II REFAsk for. Soshi
This inverter output current command value II REFWith inverter
5 to control the inverter output current II Secondary of transformer 6
If it is made to flow to the side, the compensation current I on the primary side C Is IC =-(Load current IL Compensation target component in), and reactive power compensation of the system bus 2 is possible.
It works.

【0013】上記本発明方法の行列演算処理を、図3の
変圧器6の一次側と二次側の電流関係から説明する。三
角結線の一次結線6aの三相各相におけるU相電流
CU、V相電流ICV、W相電流ICWと、UV相間電流I
UV、VW相間電流IVW、WU相間電流IWUの間には次の
3式が成立する。
The matrix calculation processing of the above-described method of the present invention will be described from the current relationship between the primary side and the secondary side of the transformer 6 in FIG. U-phase current I CU , V-phase current I CV , W-phase current I CW , and UV-phase current I in each phase of the three-phase primary connection 6a of the triangular connection
The following three equations are established between the UV , VW interphase current I VW and the WU interphase current I WU .

【0014】IUV=IWU+ICUVW=IUV+ICVWU=IVW+ICW I UV = I WU + I CU I VW = I UV + I CV I WU = I VW + I CW

【0015】また、星形結線の二次結線6bの三相各相
におけるU相電流IIU、V相電流I IV、W相電流IIW
一次結線6aのUV相間電流IUV、VW相間電流IVW
WU相間電流IWUの間には次の3式が成立する。但し、
Nは、一次結線6aと二次結線6bの間の変圧器巻数比
である。
Further, each of the three phases of the secondary connection 6b of the star connection
Phase current I atIU, V-phase current I IV, W-phase current IIWWhen
UV interphase current I of primary connection 6aUV, VW Interphase current IVW,
WU interphase current IWUThe following three expressions are established between the two. However,
N is the transformer turns ratio between the primary connection 6a and the secondary connection 6b.
It is.

【0016】IUV=−N×IIUVW=−N×IIVWU=−N×IIW I UV = -N x I IU I VW = -N x I IV I WU = -N x I IW

【0017】ここで系統電源1の三相の系統電圧VU
V 、VW に対して三相の負荷電流ILU、ILV、I
LWが、図4のベクトルに示すように、各々遅れ90゜
(リアクトル負荷)の電流として、上記6式から電流成
分IUV、IVW、IWUを除去すると、次の行列式からイン
バータ出力電流II と補償電流IC の関係が求まる。
Here, the three-phase system voltage V U of the system power supply 1,
Three-phase load currents I LU , I LV , and I for V V and V W
As shown in the vector of FIG. 4, when LW is a current with a delay of 90 ° (reactor load) and the current components I UV , I VW , and I WU are removed from the above equation 6, the inverter output current is calculated from the following determinant. The relationship between I I and compensation current I C can be obtained.

【0018】[0018]

【数1】 [Equation 1]

【0019】従って、図2の補償電流演算ブロック7で
負荷電流IL 中の補償対象電流IC R EFを求め、これを上
記の行列式に当てはめてインバータ出力電流指令値II
REFを求める。即ち、
Therefore, the compensation current calculation block 7 in FIG. 2 finds the compensation target current I C R EF in the load current I L , and applies this to the above determinant to set the inverter output current command value I I.
Ask for REF . That is,

【0020】[0020]

【数2】 [Equation 2]

【0021】の行列式で三相各相の補償対象電流IC REF
から三相各相のインバータ出力電流指令値II REFを求
め、このインバータ出力電流指令値II REFに基づいてイ
ンバータ5を駆動制御すると、変圧器6の一次側補償電
流IC は、変圧器6の一次側と二次側の相違する結線方
式に対応して位相変換、振幅変換されて、 IC =−(負荷電流IL 中の補償対象成分) となり、無効電力補償が可能となる。
Compensation target current I C REF for each of the three phases by the determinant of
When the inverter output current command value I I REF for each of the three phases is obtained from the above, and the inverter 5 is drive-controlled based on this inverter output current command value I I REF , the primary side compensation current I C of the transformer 6 becomes Phase conversion and amplitude conversion are performed in accordance with the different connection methods of the primary side and the secondary side of No. 6, and I C = − (compensation target component in the load current I L ) and reactive power compensation becomes possible.

【0022】尚、上記実施例は変圧器6の一次結線6a
が三角結線、二次結線6bが星形結線の場合であるが、
一次結線が星形結線で二次結線が三角結線の変圧器であ
っても本発明は上記要領で適用可能である。また、一次
結線と二次結線が同一結線方式の変圧器の場合は、上記
行列演算処理する必要が無いが、本発明の適用は可能で
あり、変圧器の機種変更に備えたものが提供できる。
In the above embodiment, the primary connection 6a of the transformer 6 is used.
Is a triangle connection and the secondary connection 6b is a star connection,
The present invention can be applied in the above manner even if the transformer is a star-shaped primary connection and a triangular connection secondary connection. Further, in the case of a transformer in which the primary connection and the secondary connection are the same connection type, it is not necessary to perform the above matrix calculation processing, but the present invention can be applied, and a provision for changing the model of the transformer can be provided. .

【0023】[0023]

【発明の効果】本発明によれば、三相各相の負荷電流中
の補償対象電流を三相式変圧器の一次結線と二次結線の
結線方式と変圧器巻数比に基づく行列演算処理にて位相
振幅変換して求めたインバータ出力電流指令値でインバ
ータを駆動制御したので、インバータ出力電流による変
圧器の一次側電流は、変圧器の一次側と二次側の結線方
式が同一或いは相違のいずれの場合にも負荷電流中の補
償対象電流を打ち消す位相、振幅の補償電流となって、
無効電力補償が可能となる。その結果、一次側と二次側
の結線方式の異なる機種の三相式変圧器が自励式無効電
力補償装置に使用でき、変圧器の機種の選択範囲が広が
る。また、三相式変圧器に一次側と二次側の結線方式の
異なる機種を使用した場合に、電力系統の主回路側を無
効電力補償のための特別な対策を施すこと無く、インバ
ータの駆動制御系の演算処理対策を施すだけで、従っ
て、設備投資的に有利に無効電力補償対策が可能とな
る。
According to the present invention, the current to be compensated for in the load current of each of the three phases is subjected to matrix calculation processing based on the primary and secondary connection methods of the three-phase transformer and the transformer turns ratio. Since the inverter drive current was controlled by the inverter output current command value obtained by converting the phase and amplitude, the primary side current of the transformer due to the inverter output current is the same or different between the primary side and secondary side of the transformer. In any case, it becomes the compensation current of the phase and amplitude that cancels the compensation target current in the load current,
Reactive power compensation becomes possible. As a result, a three-phase transformer of a model having a different connection method on the primary side and the secondary side can be used for the self-excited var compensator, and the selection range of the model of the transformer is expanded. In addition, when a model with different primary and secondary wiring is used for the three-phase transformer, the main circuit side of the power system is driven by the inverter without any special measures for reactive power compensation. Only by taking countermeasures for arithmetic processing of the control system, therefore, reactive power compensation countermeasures can be advantageously performed in terms of capital investment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を説明するための三相電力系統の主
回路の等価回路図
FIG. 1 is an equivalent circuit diagram of a main circuit of a three-phase power system for explaining the method of the present invention.

【図2】図1の主回路の本発明方法による制御ブロック
FIG. 2 is a control block diagram of the main circuit of FIG. 1 according to the method of the present invention.

【図3】図1の主回路の自励式無効電力補償装置におけ
る三相式変圧器の一例と電流関係を示す等価回路図
FIG. 3 is an equivalent circuit diagram showing an example of a three-phase transformer and current relationship in the self-excited reactive power compensator for the main circuit of FIG.

【図4】図1の主回路における三相各相の電圧と電流の
ベクトル図
FIG. 4 is a vector diagram of voltage and current of each of the three phases in the main circuit of FIG.

【図5】従来仕様による三相電力系統の主回路の等価回
路図
[Fig. 5] Equivalent circuit diagram of main circuit of three-phase power system according to conventional specifications

【図6】図5の主回路の従来制御方法による制御ブロッ
ク図
FIG. 6 is a control block diagram of the main circuit of FIG. 5 according to a conventional control method.

【符号の説明】[Explanation of symbols]

2 系統母線 3 負荷 4 自励式無効電力補償装置 5 インバータ 6 変圧器 6a 一次結線 6b 二次結線 IL 負荷電流 IC 補償電流 IC REF 補償対象電流 II インバータ出力電流 II REF インバータ出力電流指令値2 System bus 3 Load 4 Self-excited reactive power compensator 5 Inverter 6 Transformer 6a Primary connection 6b Secondary connection I L Load current I C compensation current I C REF Compensation target current I I Inverter output current I I REF Inverter output current command value

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 三相三線式電力系統の系統母線に流れる
三相各相の負荷電流中の無効電力の補償対象電流に対応
したインバータ出力電流を三相式変圧器の二次側に流し
て得られる同変圧器一次側の補償電流で、系統母線の負
荷変動で発生する無効電力を補償する自励式無効電力補
償装置の制御方法であって、 三相各相の負荷電流中の補償対象電流を三相式変圧器の
一次結線と二次結線の結線方式と巻数比に基づく行列演
算処理にて位相振幅変換してインバータ出力電流指令値
を求め、このインバータ出力電流指令値に基づいたイン
バータ出力電流を変圧器の二次側に流すようにしたこと
を特徴とする自励式無効電力補償装置の制御方法。
1. An inverter output current corresponding to a reactive power compensation current in a load current of each of the three phases flowing through a system bus of a three-phase three-wire power system is supplied to a secondary side of the three-phase transformer. This is a control method for a self-excited reactive power compensator that compensates the reactive power generated by the load fluctuation of the system bus with the obtained compensation current on the primary side of the same transformer. Of the three-phase transformer primary connection and secondary connection method and the phase-amplitude conversion by matrix calculation processing based on the winding ratio to obtain the inverter output current command value, and the inverter output based on this inverter output current command value A method of controlling a self-excited var compensator, characterized in that a current is caused to flow to the secondary side of a transformer.
JP7150120A 1995-06-16 1995-06-16 Control method for self-exiting reactive power compensation device Pending JPH096446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7150120A JPH096446A (en) 1995-06-16 1995-06-16 Control method for self-exiting reactive power compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7150120A JPH096446A (en) 1995-06-16 1995-06-16 Control method for self-exiting reactive power compensation device

Publications (1)

Publication Number Publication Date
JPH096446A true JPH096446A (en) 1997-01-10

Family

ID=15489927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7150120A Pending JPH096446A (en) 1995-06-16 1995-06-16 Control method for self-exiting reactive power compensation device

Country Status (1)

Country Link
JP (1) JPH096446A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201697A (en) * 2014-09-24 2014-12-10 国家电网公司 Optimal reactive power compensation method for 110KV and 35KV power grids
CN104319787A (en) * 2014-10-11 2015-01-28 广西诺斯贝电气有限公司 Reactive power compensation method
CN106329686A (en) * 2016-08-31 2017-01-11 苏州迈力电器有限公司 AC charging pile based on three-phase load imbalance automatic compensation
CN115184193A (en) * 2022-09-06 2022-10-14 深圳永贵技术有限公司 Automatic testing method, device and equipment for cable and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201697A (en) * 2014-09-24 2014-12-10 国家电网公司 Optimal reactive power compensation method for 110KV and 35KV power grids
CN104319787A (en) * 2014-10-11 2015-01-28 广西诺斯贝电气有限公司 Reactive power compensation method
CN106329686A (en) * 2016-08-31 2017-01-11 苏州迈力电器有限公司 AC charging pile based on three-phase load imbalance automatic compensation
CN115184193A (en) * 2022-09-06 2022-10-14 深圳永贵技术有限公司 Automatic testing method, device and equipment for cable and storage medium
CN115184193B (en) * 2022-09-06 2022-11-25 深圳永贵技术有限公司 Automatic testing method, device, equipment and storage medium for cable

Similar Documents

Publication Publication Date Title
Ledezma et al. Dual AC-drive system with a reduced switch count
de Souza et al. Modeling and control of a nine-phase induction machine with open phases
JP2000004600A (en) Variable speed driving apparatus
KR20030038326A (en) Controller for multiplex winding wotor
CN111837327B (en) Power conversion device, motor drive system, and control method
JP2846203B2 (en) Parallel multiple inverter device
JP2733724B2 (en) Current control device for multi-winding AC motor
Apsley Open-circuit fault mitigation for multiphase induction motors with a unified control structure
JPH096446A (en) Control method for self-exiting reactive power compensation device
JP3296065B2 (en) Control circuit of PWM converter
JP4401724B2 (en) Power converter
JPH11187576A (en) Distributed power supply
JP3316860B2 (en) Power converter
JP2021058045A (en) Power conversion device and control method thereof
US6515440B2 (en) Departure control system using simulated phase
WO2020245916A1 (en) Power conversion device and power conversion control device
JPH07107744A (en) Power converter
JPH03190594A (en) Ac motor controller and control method
JPH1132485A (en) Control device of thyristor commutator
JP7184708B2 (en) AC power converter
JP2000125570A (en) Power converter controller
KR102596360B1 (en) Fault tolerance operation apparatus of six-phase permanent magnet synchronous motor
JPH09128072A (en) Method for controlling self-excited reactive power compensating device
JP2003299390A (en) Electric power unit for driving three-phase ac motor
JP2017017942A (en) Power conversion apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030930