JPH0964449A - Magnetic field-controlled high stable light source - Google Patents

Magnetic field-controlled high stable light source

Info

Publication number
JPH0964449A
JPH0964449A JP23193995A JP23193995A JPH0964449A JP H0964449 A JPH0964449 A JP H0964449A JP 23193995 A JP23193995 A JP 23193995A JP 23193995 A JP23193995 A JP 23193995A JP H0964449 A JPH0964449 A JP H0964449A
Authority
JP
Japan
Prior art keywords
magnetic field
output
light
laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23193995A
Other languages
Japanese (ja)
Inventor
Shigeru Nakagawa
茂 中川
Norihide Yamada
範秀 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to JP23193995A priority Critical patent/JPH0964449A/en
Publication of JPH0964449A publication Critical patent/JPH0964449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain amplitude-stabilized output light from a magnetic field-controlled high stabilized light source with less noise by controlling a magnetic field generated from a magnetic field generator so that the detection signal corresponding to the output light can become a prescribed value. SOLUTION: The output laser beam 6 of a laser 1 travels as laser beams 8, 10, and 12 by branching off an output laser beam 7 and wavelength detecting laser beams 9 and 11 whenever the laser beam 6 passes through semitransparent mirrors 20, 22, and 24. A photodetector 26 detects the intensity of the laser beam and, when a switch 52 is closed, outputs the intensity to a power control source control circuit 5 as a light intensity output. The circuit 50 integrates and amplifies the differences between the light intensity output of the photodetector 26 and modulated signals inputted to a modulated signals inputting terminal 50 and outputs the amplified result to the control terminal M of a power source 3 as a control input. The power source 3 supplies an element current to the element 1 in accordance with the control input. When an error signal represents the excessively strong intensity of the laser light, the polarity of the error signals is selected to as to reduce the current of the element 1. Therefore, the intensity of the laser light 7 can be adjusted in accordance with the modulated input.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光源に関し、特に磁界
によって波長を変化させるレーザ素子を備えた高安定光
源に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source, and more particularly to a highly stable light source having a laser element that changes its wavelength by a magnetic field.

【0002】[0002]

【従来技術】半導体レーザ等のレーザ光源の出力光の波
長を所定の値に維持するために、まずエタロンや光ヘテ
ロダイン等によりレーザ装置の発振波長を検出する。発
振波長が所望値からずれていれば、そのずれ、即ち誤差
がレーザ装置に負帰還されて、発振波長が所望値に近づ
くようにされる。そのためにはレーザ装置の波長を直接
変調する方法が便利である。従来、このためにレーザ装
置の駆動電流を変調したり動作温度を変調したりする方
法がとられていた。磁界によりレーザ装置の波長を直接
変調する方法が知られているが、この方法をレーザ光源
の波長安定化に応用した例は知られていない。
2. Description of the Related Art In order to maintain the wavelength of the output light of a laser light source such as a semiconductor laser at a predetermined value, the oscillation wavelength of a laser device is first detected by an etalon or an optical heterodyne. If the oscillation wavelength deviates from the desired value, the deviation, that is, the error is negatively fed back to the laser device, and the oscillation wavelength approaches the desired value. For that purpose, a method of directly modulating the wavelength of the laser device is convenient. Conventionally, a method of modulating the drive current of the laser device or the operating temperature has been used for this purpose. A method of directly modulating the wavelength of a laser device by a magnetic field is known, but no example of applying this method to wavelength stabilization of a laser light source is known.

【0003】駆動電流を変調する方法では出力光に振幅
変調が寄生し、動作温度を変調する方法には装置が複雑
で許容変調周波数が低いという問題がある。そのため、
低雑音で振幅の安定した出力光をうるレーザ光源を得る
事が困難である。
In the method of modulating the drive current, amplitude modulation is parasitic on the output light, and in the method of modulating the operating temperature, there is a problem that the device is complicated and the allowable modulation frequency is low. for that reason,
It is difficult to obtain a laser light source that produces output light with low noise and stable amplitude.

【0004】[0004]

【発明の課題】従って本発明の課題は高速かつ低寄生振
幅変調で簡易な変調手段を用いて低雑音で振幅の安定し
た出力光をうる高安定光源を得る事である。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a highly stable light source which can produce output light with low noise and stable amplitude by using a simple modulating means with high speed and low parasitic amplitude modulation.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
本発明の高安定光源は、電源により付勢されて出力光を
発生するレーザ・ダイオード等のレーザ素子と、該レー
ザ素子に磁界を印加するための磁界発生器と、前記出力
光を入力して、該出力光の波長に応じた検出信号を出力
する波長検出手段と、前記検出信号を前記磁界発生器に
導入し前記磁界を変化させて前記検出信号が所定の値と
なるように制御するための制御手段とから構成される。
In order to solve the above-mentioned problems, a highly stable light source of the present invention comprises a laser element such as a laser diode which is energized by a power source to generate output light, and a magnetic field is applied to the laser element. And a wavelength detecting means for inputting the output light and outputting a detection signal according to the wavelength of the output light, and introducing the detection signal into the magnetic field generator to change the magnetic field. And a control means for controlling the detection signal to have a predetermined value.

【0006】また、本発明の高安定光源は寄生波長変調
の小さい振幅変調出力光を発生するための振幅変調手段
を備える事ができる。さらにまた、本発明の高安定光源
は寄生振幅変調の小さい波長変調出力光を発生するため
の変調手段を備える事ができる。
Further, the highly stable light source of the present invention can be provided with an amplitude modulating means for generating an amplitude modulated output light having a small parasitic wavelength modulation. Furthermore, the highly stable light source of the present invention can be provided with a modulation means for generating wavelength-modulated output light with small parasitic amplitude modulation.

【0007】[0007]

【作用】前記寄生波長変調の小さい振幅変調出力光を発
生するには前記振幅変調手段により前記電源を変調し、
前記波長検出手段から出力される前記検出信号を寄生波
長変調を抑圧するように調整して前記磁界発生器に導入
する。前記制御手段のループ帯域より高い周波数の変調
信号で前記磁界を変調すれば寄生振幅変調の小さい周波
数変調出力光を得る事ができる。寄生振幅変調抑圧の必
要がある場合は該変調のための信号を調整して前記電源
に導入する。
In order to generate an amplitude-modulated output light having a small parasitic wavelength modulation, the amplitude modulation means modulates the power source,
The detection signal output from the wavelength detecting means is adjusted so as to suppress parasitic wavelength modulation and then introduced into the magnetic field generator. By modulating the magnetic field with a modulation signal having a frequency higher than the loop band of the control means, it is possible to obtain frequency-modulated output light with small parasitic amplitude modulation. When it is necessary to suppress parasitic amplitude modulation, a signal for the modulation is adjusted and introduced into the power supply.

【0008】[0008]

【実施例】図1は、本発明の一実施例の磁界制御高安定
光源のブロック図である。図1において電源3によって
付勢されたレーザ素子1は半導体レーザ・ダイオードで
あって、磁極2a,2bを備えた磁気回路2の磁極間に配置
される。これらレーザ素子と磁極との関係は、周知のYI
G(イットリューム鉄ガーネット)同調回路に類似した
ものである。磁極2a,2bは一部分を永久磁石とすること
ができ、磁極2a上部に巻かれたコイル2cの電流による磁
界を重畳した直流磁界をレーザ素子1に印加することが
できる。コイル2cはコイル駆動回路4の出力電流によっ
て駆動される。
1 is a block diagram of a magnetic field controlled high stability light source according to an embodiment of the present invention. In FIG. 1, a laser element 1 energized by a power source 3 is a semiconductor laser diode and is arranged between magnetic poles of a magnetic circuit 2 having magnetic poles 2a and 2b. The relationship between these laser elements and magnetic poles is known in the YI
It is similar to the G (yttrum iron garnet) tuning circuit. Part of the magnetic poles 2a and 2b can be permanent magnets, and a DC magnetic field in which a magnetic field generated by the current of the coil 2c wound on the magnetic pole 2a is superimposed can be applied to the laser element 1. The coil 2c is driven by the output current of the coil drive circuit 4.

【0009】レーザ素子1の出力であるレーザ光6は半
透明鏡20、22、24を通過する毎に、出力レーザ光
7、波長検出用レーザ光9、11を分割出力しつつ、レ
ーザ光8、10、12となって進行する。本発明の波長
誤差の生成方法によっては、半透明鏡24を省略するこ
ともできる。レーザ光12の強度は光検出器26によっ
て検出され、スイッチ52が閉成されている場合は、そ
の検出出力が光強度出力として電源制御回路5に入力さ
れる。
The laser beam 6 output from the laser element 1 splits the output laser beam 7 and the wavelength detecting laser beams 9 and 11 each time it passes through the semi-transparent mirrors 20, 22 and 24, and outputs the laser beam 8. It progresses to 10 and 12. The semitransparent mirror 24 may be omitted depending on the wavelength error generating method of the present invention. The intensity of the laser light 12 is detected by the photodetector 26, and when the switch 52 is closed, the detection output is input to the power supply control circuit 5 as a light intensity output.

【0010】電源制御回路5は光検出器26からの光強
度出力と変調信号入力端子50に入力された変調信号と
の差をとり、その差を積分増幅した後電源3の制御端子
Mに制御入力として入力する。電源3は制御入力に応じ
た素子電流をレーザ素子1に供給する。誤差信号がレー
ザ光の強度過大を示せば、素子電流を減少させるように
誤差信号の極性が選ばれる。以上の構成によって出力レ
ーザ光7の強度を変調入力に応じた値にする負帰還ルー
プが形成される。変調信号入力端子50に入力される変
調信号を直流とすると、出力レーザ光7の強度は該直流
に応じた値となる。また、その他の強度変調技術につい
ては、周知の信号発生器における技術がもちいられる。
負帰還ループの開放はスイッチ52を開放する事でおこ
なえる。
The power supply control circuit 5 takes the difference between the light intensity output from the photodetector 26 and the modulation signal input to the modulation signal input terminal 50, integrates and amplifies the difference, and then controls the control terminal M of the power supply 3. Enter as input. The power supply 3 supplies a device current according to the control input to the laser device 1. If the error signal indicates excessive intensity of the laser light, the polarity of the error signal is selected so as to reduce the device current. With the above configuration, a negative feedback loop that forms the intensity of the output laser light 7 in a value according to the modulation input is formed. When the modulation signal input to the modulation signal input terminal 50 is DC, the intensity of the output laser light 7 has a value corresponding to the DC. For other intensity modulation techniques, well-known signal generator techniques are used.
The negative feedback loop can be opened by opening the switch 52.

【0011】出力レーザ光7の波長を安定化するための
第一の実施例ではスイッチ28の端子s,b間を短絡し、
端子s,a間を開放する。即ちこの実施例では半透明鏡2
4とエタロン分光器25は不要であり、レーザ光10と
レーザ光12は同じものとなる。波長検出用レーザ光9
を受信するエタロン分光器23の出力は、そのエタロン
の透過度Tに実質的に比例する。図2は波長検出用レー
ザ光9の波長λにたいする透過度Tを描いたものであ
る。透過度Tはピーク値を1として正規化されている。
ピーク値を示す波長はλnやλn+1で多数あり、この
波長λnやλn+1は可変である。
In the first embodiment for stabilizing the wavelength of the output laser light 7, the terminals s and b of the switch 28 are short-circuited,
Open between terminals s and a. That is, in this embodiment, the semitransparent mirror 2
4 and the etalon spectroscope 25 are unnecessary, and the laser light 10 and the laser light 12 are the same. Laser light for wavelength detection 9
The output of the etalon spectroscope 23 that receives is substantially proportional to the transmittance T of the etalon. FIG. 2 shows the transmittance T for the wavelength λ of the laser light 9 for wavelength detection. The transmittance T is normalized with a peak value of 1.
There are a large number of wavelengths showing the peak value at λn and λn + 1, and these wavelengths λn and λn + 1 are variable.

【0012】出力レーザ光7の波長を安定化するこの実
施例ではか誤差信号発生器30はエタロン分光器23の
出力と光検出器26の出力の加重差を誤差信号として出
力する。例えば出力レーザ光7の波長をλ=λn+Δλ
に制御設定する場合は、透過度Tの値が0.5に相当する
エタロン分光器23の出力において誤差信号が零となる
ように加重を設定すればよい。誤差信号発生器30とし
ては加重抵抗を入力抵抗とした演算増幅回路が適してい
る。
In this embodiment for stabilizing the wavelength of the output laser beam 7, the error signal generator 30 outputs the weighted difference between the output of the etalon spectroscope 23 and the output of the photodetector 26 as an error signal. For example, if the wavelength of the output laser light 7 is λ = λn + Δλ
When the control is set to, the weighting may be set so that the error signal becomes zero at the output of the etalon spectroscope 23 whose transmittance T is 0.5. As the error signal generator 30, an operational amplifier circuit having a weighted resistance as an input resistance is suitable.

【0013】誤差信号はコイル駆動回路4によりコイル
電流に変換される。コイル電流の変化はレーザ素子1に
印加されている磁界の変化に翻訳されて、結果としてこ
のレーザ素子から出力されるレーザ光の波長を変化させ
る。このようにして、出力レーザ光の波長をλn+Δλ
に制御するための負帰還ループが構成される。出力レー
ザ光の制御はその波長がλn+Δλの近傍で変化し、負
帰還ループの一巡利得が十分大きい波長範囲に限られ
る。従って、与えられたλに応じてλnを予備調整し、
略図2に示す関係を満足せしめるのがよい。
The error signal is converted into a coil current by the coil driving circuit 4. The change in the coil current is translated into a change in the magnetic field applied to the laser element 1, and as a result, the wavelength of the laser light output from this laser element is changed. In this way, the wavelength of the output laser light is λn + Δλ
Negative feedback loop for controlling to. The control of the output laser light is limited to the wavelength range in which the wavelength changes in the vicinity of λn + Δλ and the one-way gain of the negative feedback loop is sufficiently large. Therefore, pre-adjust λn according to the given λ,
It is preferable to satisfy the relationship shown in the schematic diagram 2.

【0014】磁界の印加により量子井戸型レーザにおけ
るフォトン・エネルギーの増加は、量子井戸に垂直な磁
界の印加による方が量子井戸に平行な磁界の印加による
よりも大きく、また量子井戸の幅が広いほど大きく、例
えば1Tあたり0.1~1meV程度である。また、磁界の強度が
大きい方でシフト量の感度も高い(例えば H. Sakai,
et. al., Appl. Phys. Lett. Vol. 40, pp 83-85(198
5)を参照)。コイルによる磁界の変化はせいぜい0.1Tで
あり、したがって、永久磁石により可変直流バイアス磁
界を重畳するのが負帰還ループの利得を高めるための得
策である。可変直流バイアス磁界は磁路の一部を機械的
な狭窄すればよい。
The increase in photon energy in a quantum well laser by applying a magnetic field is larger by applying a magnetic field perpendicular to the quantum well than by applying a magnetic field parallel to the quantum well, and the width of the quantum well is wider. Larger, for example, about 0.1 to 1 meV per 1T. In addition, the sensitivity of the shift amount is higher when the magnetic field strength is higher (eg H. Sakai,
Et. al., Appl. Phys. Lett. Vol. 40, pp 83-85 (198
(See 5)). The change in the magnetic field due to the coil is 0.1 T at most, and therefore, superimposing the variable DC bias magnetic field with the permanent magnet is a good measure for increasing the gain of the negative feedback loop. The variable DC bias magnetic field may mechanically narrow a part of the magnetic path.

【0015】図3は典型的なレーザ・ダイオードの素子
電流対出力波長の関係を示す図である。図からも読み取
れるように、一つの発振姿態での波長の変化は高々0.2n
mである。上記1meVのエネルギーは約0.8nmの波長の変
化に相当する。市販のエタロン分光器(たとえばNewpor
t社製SRー200)を用いれば、上記実施例において
出力レーザ光7の波長をλの波長安定度を0.003nm以下
にもできる。
FIG. 3 is a diagram showing the relationship between device current and output wavelength of a typical laser diode. As can be seen from the figure, the change in wavelength in one oscillation mode is at most 0.2n.
m. The above energy of 1 meV corresponds to a wavelength change of about 0.8 nm. Commercially available etalon spectrometer (eg Newpor
If SR-200 manufactured by T. Co. is used, the wavelength stability of the wavelength of the output laser light 7 can be set to 0.003 nm or less in the above embodiment.

【0016】素子電流の増加により、発振波長即ち出力
レーザ光7の波長は増加するので、スイッチ54を介し
て電源制御回路からの信号をコイル駆動回路4に導入し
て、印加磁界を減少させるようにしてもよい。スイッチ
54を開放して、端子56より周波数変調信号をコイル
駆動回路4に導入して誤差信号に加算すれば、出力レー
ザ光の波長を変調できる。この場合誤差信号発生器30
は誤差信号を十分積分して出力し周波数変調信号による
波長の変化には追随しないようにするべきである。
Since the oscillation wavelength, that is, the wavelength of the output laser beam 7 is increased by the increase of the element current, a signal from the power supply control circuit is introduced into the coil drive circuit 4 via the switch 54 to reduce the applied magnetic field. You may The wavelength of the output laser light can be modulated by opening the switch 54 and introducing the frequency modulation signal from the terminal 56 to the coil drive circuit 4 and adding it to the error signal. In this case, the error signal generator 30
Should sufficiently integrate and output the error signal so as not to follow the wavelength change due to the frequency modulation signal.

【0017】出力レーザ光7の波長を安定化するための
第ニの実施例ではスイッチ28の端子s,a間を短絡し、
端子s,b間を開放する。即ちこの実施例では半透明鏡2
4とエタロン分光器25も使用される。波長検出用レー
ザ光11を受信するエタロン分光器25の出力は、その
エタロンの透過度Tに実質的に比例する。図4は波長検
出用レーザ光9、11の波長λにたいする透過度Tを描
いたものである。エタロン分光器23、25の透過度T
はそれぞれのピーク値を1として正規化されており、ピ
ーク値を示す波長は互いに2Δλ離れている。
In the second embodiment for stabilizing the wavelength of the output laser beam 7, the terminals s and a of the switch 28 are short-circuited,
Open between terminals s and b. That is, in this embodiment, the semitransparent mirror 2
4 and etalon spectrometer 25 are also used. The output of the etalon spectroscope 25 that receives the wavelength detecting laser beam 11 is substantially proportional to the transmittance T of the etalon. FIG. 4 illustrates the transmittance T of the wavelength detecting laser lights 9 and 11 with respect to the wavelength λ. Transmittance T of etalon spectroscopes 23 and 25
Are normalized with the respective peak values being 1, and the wavelengths showing the peak values are separated from each other by 2Δλ.

【0018】誤差信号発生器30はエタロン分光器23
の出力とエタロン分光器25の出力の加重差を誤差信号
として出力する。例えば出力レーザ光7の波長をλ=
(λ+Δλ+λーΔλ)/2に制御設定する場合は、出力
レーザ光7の波長がλのとき誤差信号が零となるように
加重を設定すればよい。この第二の実施例では制御しう
る波長範囲を第一の実施例におけるより広くできる。
The error signal generator 30 is an etalon spectroscope 23.
And an output of the etalon spectroscope 25 is output as an error signal. For example, the wavelength of the output laser light 7 is λ =
When the control is set to (λ + Δλ + λ−Δλ) / 2, the weight may be set so that the error signal becomes zero when the wavelength of the output laser light 7 is λ. In this second embodiment, the controllable wavelength range can be made wider than in the first embodiment.

【0019】上記実施例において、出力レーザ光7の波
長を安定化するための負帰還ループと強度を安定化する
ための負帰還ループの干渉を避ける必要が在る。しかし
ながら、本発明では磁界により強度変化を伴わずに波長
を可変しているので、そのような干渉はほとんど無い。
また、以上の説明から明らかなように、分光器はエタロ
ン分光器に限定されず、種々の分光器を使用することが
可能である。
In the above embodiment, it is necessary to avoid interference between the negative feedback loop for stabilizing the wavelength of the output laser light 7 and the negative feedback loop for stabilizing the intensity. However, in the present invention, since the wavelength is tuned by the magnetic field without changing the intensity, there is almost no such interference.
Further, as is clear from the above description, the spectroscope is not limited to the etalon spectroscope, and various spectroscopes can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成の概要を示す概略図で
ある。
FIG. 1 is a schematic diagram showing an outline of a configuration of an embodiment of the present invention.

【図2】図1の実施例で用いる分光器の透過度の波長特
性を示すグラフである。
FIG. 2 is a graph showing wavelength characteristics of transmittance of a spectroscope used in the embodiment of FIG.

【図3】レーザ・ダイオードの発振波長の素子電流特性
を示すグラフである。
FIG. 3 is a graph showing a device current characteristic of an oscillation wavelength of a laser diode.

【図4】図1の実施例で用いる二つの分光器の透過度の
波長特性を同時に示すグラフである。
FIG. 4 is a graph showing wavelength characteristics of transmittance of two spectroscopes used in the embodiment of FIG. 1 at the same time.

【符号の説明】[Explanation of symbols]

1 レーザ素子 2 磁気回路 3 電源 4 (コイル)駆動回路 5 電源制御回路 6、8、10、12レーザ光 7 出力レーザ光 9、11 波長検出用レーザ光 20、22、24 半透明鏡 23、25 エタロン分光器 26 光検出器 28、52、54 スイッチ 30 誤差信号発生器 50 変調信号入力端子 56 (周波数変調信号入力)端子 1 Laser Element 2 Magnetic Circuit 3 Power Supply 4 (Coil) Drive Circuit 5 Power Supply Control Circuit 6, 8, 10, 12 Laser Light 7 Output Laser Light 9, 11 Wavelength Detection Laser Light 20, 22, 24 Semitransparent Mirror 23, 25 Etalon spectroscope 26 Photodetector 28, 52, 54 Switch 30 Error signal generator 50 Modulation signal input terminal 56 (Frequency modulation signal input) terminal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電源により付勢されて出力光を発生するレ
ーザ素子と、 該レーザ素子に磁界を印加するための磁界発生器と、 前記出力光を入力して、該出力光の波長にに応じた検出
信号を出力する波長検出手段と、 前記検出信号を前記磁界発生器に導入し前記磁界を変化
させて前記検出信号が所定の値となるように制御するた
めの制御手段とからなる磁界制御高安定光源。
1. A laser element which is energized by a power source to generate output light, a magnetic field generator for applying a magnetic field to the laser element, and the output light which is input to a wavelength of the output light. A magnetic field consisting of a wavelength detection means for outputting a detection signal according to the above, and a control means for introducing the detection signal into the magnetic field generator and changing the magnetic field so that the detection signal has a predetermined value. Controlled highly stable light source.
【請求項2】前記波長検出手段がエタロン分光器である
請求項1に記載の磁界制御高安定光源。
2. The magnetic field controlled highly stable light source according to claim 1, wherein said wavelength detecting means is an etalon spectroscope.
【請求項3】前記電源に接続され前記出力光を振幅変調
するための振幅変調信号を発生する振幅変調手段を追加
して成る請求項1あるいは請求項2に記載の磁界制御高
安定光源。
3. The magnetic field controlled high stability light source according to claim 1 or 2, further comprising an amplitude modulation means connected to the power source for generating an amplitude modulation signal for amplitude modulating the output light.
【請求項4】前記振幅変調信号を前記磁界発生器に導入
するための手段を追加して成る請求項3に記載の磁界制
御高安定光源。
4. A magnetic field controlled high stability light source according to claim 3, further comprising means for introducing said amplitude modulated signal into said magnetic field generator.
【請求項5】前記磁界発生器に接続され前記磁界を変調
するための周波数変調信号を発生する周波数変調手段を
追加して成る請求項1あるいは請求項2に記載の磁界制
御高安定光源。
5. The magnetic field controlled high stability light source according to claim 1, further comprising frequency modulation means connected to said magnetic field generator for generating a frequency modulation signal for modulating said magnetic field.
【請求項6】前記磁界が0でない所定の直流磁界を有す
る請求項1乃至請求項5のいずれかに記載の磁界制御高
安定光源。
6. The magnetic field controlled high stability light source according to claim 1, wherein the magnetic field has a predetermined DC magnetic field which is not zero.
JP23193995A 1995-08-17 1995-08-17 Magnetic field-controlled high stable light source Pending JPH0964449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23193995A JPH0964449A (en) 1995-08-17 1995-08-17 Magnetic field-controlled high stable light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23193995A JPH0964449A (en) 1995-08-17 1995-08-17 Magnetic field-controlled high stable light source

Publications (1)

Publication Number Publication Date
JPH0964449A true JPH0964449A (en) 1997-03-07

Family

ID=16931437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23193995A Pending JPH0964449A (en) 1995-08-17 1995-08-17 Magnetic field-controlled high stable light source

Country Status (1)

Country Link
JP (1) JPH0964449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232049A (en) * 2001-02-02 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical filter, laser apparatus and method for stabilizing laser wavelength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232049A (en) * 2001-02-02 2002-08-16 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable optical filter, laser apparatus and method for stabilizing laser wavelength

Similar Documents

Publication Publication Date Title
US6836622B2 (en) Optical transmitter, and method of controlling bias voltage to the optical transmitter
JP2002525597A (en) Optical phase detector
US4745606A (en) Dual-wavelength laser apparatus
EP0376555B1 (en) Laser control method and circuitry
JPH06314837A (en) Method and apparatus for stabilizing frequency for laser diode
US7023534B2 (en) Optical modulating apparatus having bias controller and bias control method
JP2002033548A (en) Method and apparatus for driving mode-locked semiconductor laser
JP3950570B2 (en) Frequency stabilized light source
JPH0964449A (en) Magnetic field-controlled high stable light source
US6639482B2 (en) Method for regulating the working point of a modulator and associated drive unit
JP3398929B2 (en) Optical modulator bias control circuit
JP2520740B2 (en) Variable wavelength stabilized light source
JP2849734B2 (en) Fiber optic gyro
KR0134004B1 (en) Apparatus for bias control of mach zehnder interference and fabry-perot filter
JPH0710002B2 (en) LED stabilized light source
JP2000206474A (en) Optical transmission circuit
JPH05275788A (en) Frequency-stabilized semiconductor laser
KR950007488B1 (en) Starilization method and apparatus of laser frequency and power
SU379967A1 (en)
JP2864814B2 (en) Semiconductor laser device
JPH0716069B2 (en) Oscillation frequency control method for laser device
JP2004118060A (en) Driving gear
JPH10256636A (en) Practical frequency stabilizer of yag-shg laser
JPH04186690A (en) Optical integrated type wavelength variable semiconductor laser
JPH0523513B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20050331

Free format text: JAPANESE INTERMEDIATE CODE: A02