JPH0964137A - Detecting method of crystal defect of single-crystal silicon substrate - Google Patents

Detecting method of crystal defect of single-crystal silicon substrate

Info

Publication number
JPH0964137A
JPH0964137A JP7233230A JP23323095A JPH0964137A JP H0964137 A JPH0964137 A JP H0964137A JP 7233230 A JP7233230 A JP 7233230A JP 23323095 A JP23323095 A JP 23323095A JP H0964137 A JPH0964137 A JP H0964137A
Authority
JP
Japan
Prior art keywords
silicon single
single crystal
crystal substrate
silicon substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7233230A
Other languages
Japanese (ja)
Inventor
Noritada Sato
則忠 佐藤
Osamu Ishiwatari
統 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7233230A priority Critical patent/JPH0964137A/en
Publication of JPH0964137A publication Critical patent/JPH0964137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the crystal defects of a single-crystal silicon surface easily by measuring the light and shade of an anodic oxide film by the difference of the growth thickness of the anodic oxide film formed on the surface of a single-crystal silicon substrate. SOLUTION: A single-crystal silicon substrate 4 and a platinum counter electrode 3 are dipped in an electrolytic bath 2. The single-crystal silicon substrate 4 is used as an anode and the platinum counter electrode 3 as a cathode, and a specified current is made to flow between the single-crystal silicon substrate 4 and the platinum counter electrode 3. An Al evaporated film 8 is formed on the whole rear of the silicon substrate 4, the Al evaporated film and a lead wire 5 are fixed with conductive paints 9, and an insulating film 10 is formed. When the silicon substrate 4 is anodized, an anodizing electrolytic current is concentrated to crystal defects on the surface of the silicon substrate 4, oxide films 7 are grown in the crystal defects more thickly, and light and shade are generated in the oxide films 7. Accordingly, the crystal defects on the outermost surface of the silicon substrate are detected easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はシリコン単結晶基板の
結晶欠陥検出方法に係り、特に基板表面の結晶欠陥検出
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting crystal defects in a silicon single crystal substrate, and more particularly to a method for detecting crystal defects on the surface of a substrate.

【0002】[0002]

【従来の技術】シリコン単結晶の不完全性である転位,
積層欠陥,析出物,表面汚染,拡散等の検出には液体エ
ッチング法が従来用いられてきた。この液体エッチング
法には例えばジルトル液が知られている。ジルトル液は
フッ酸とクロム酸の1;1混合溶液であり、シリコン単
結晶の表面を10μm以上エッチングして上記の種々の
欠陥を検出するものである。
2. Description of the Related Art Dislocations, which are imperfections in silicon single crystals,
Liquid etching has been used to detect stacking faults, precipitates, surface contamination, and diffusion. For this liquid etching method, for example, Ziltor solution is known. The Siltor solution is a 1: 1 mixed solution of hydrofluoric acid and chromic acid, and is used to detect the above various defects by etching the surface of a silicon single crystal by 10 μm or more.

【0003】また上記した液体エッチング法の他に走査
型電子顕微鏡や透過型電子顕微鏡を用いる方法やX線ト
ポグラフィー等が知られている。X線トポグラフィーは
X線をシリコン単結晶に照射してX線の回折像であるX
線トポグラフから結晶欠陥を検出するものである。
In addition to the above liquid etching method, a method using a scanning electron microscope or a transmission electron microscope, X-ray topography, etc. are known. X-ray topography is an X-ray diffraction image obtained by irradiating a silicon single crystal with X-rays.
The crystal defect is detected from the line topography.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述の従
来の液体エッチング法においては上述のようにシリコン
単結晶の表面を10μm以上エッチングする必要がある
ためにシリコン単結晶最表面の結晶欠陥を検出すること
は不可能であった。さらに液体エッチング法においては
エッチング液が有害なクロムを含有するために環境衛生
上の問題があり、また廃液の処理も液体エッチング法を
使用する際の問題の一つであった。
However, in the above-mentioned conventional liquid etching method, it is necessary to etch the surface of the silicon single crystal by 10 μm or more as described above, and therefore the crystal defects on the outermost surface of the silicon single crystal should be detected. Was impossible. Further, the liquid etching method has an environmental hygiene problem because the etching liquid contains harmful chromium, and the treatment of the waste liquid is one of the problems when the liquid etching method is used.

【0005】走査型電子顕微鏡,透過型電子顕微鏡,X
線トポグラフィーにおいては高価な装置や高度の取扱技
術を要するために簡便性に欠けることと、これらの方法
ではシリコン単結晶のバルクの結晶欠陥が検出されシリ
コン単結晶の最表面の結晶欠陥は検出不能であった。こ
の発明は上述の点に鑑みてなされ、その目的は簡便でし
かも環境にやさしい上にシリコン単結晶最表面の物性を
反映する方法を用いることによりシリコン単結晶最表面
の結晶欠陥を検出する方法を提供することにある。
Scanning electron microscope, transmission electron microscope, X
Line topography lacks simplicity because it requires expensive equipment and advanced handling technology, and these methods detect bulk crystal defects in silicon single crystals and detect crystal defects on the outermost surface of silicon single crystals. It was impossible. This invention has been made in view of the above points, and its object is a method for detecting crystal defects on the outermost surface of a silicon single crystal by using a method that reflects the physical properties of the outermost surface of a silicon single crystal, which is simple and environmentally friendly. To provide.

【0006】[0006]

【課題を解決するための手段】上述の目的はこの発明に
よればシリコン単結晶基板を陽極酸化してシリコン単結
晶基板の表面に陽極酸化膜を形成し、陽極酸化膜の成長
厚さの違いによる陽極酸化膜濃淡の分布を測定するとす
ることにより達成される。上述の発明において陽極酸化
はホウ酸とホウ酸ナトリウムの混合水溶液を電解液とし
て用いるとすること、または1000Ω・cm以上の高
比抵抗のシリコン単結晶基板を陽極酸化する場合は、シ
リコン単結晶基板の一方の主面を導電性の薄膜で被覆す
るとすることが有効である。
According to the present invention, the above object is to anodic oxidize a silicon single crystal substrate to form an anodic oxide film on the surface of the silicon single crystal substrate, and to increase the growth thickness of the anodic oxide film. It is achieved by measuring the distribution of the light and shade of the anodic oxide film according to. In the above-mentioned invention, the anodic oxidation uses a mixed aqueous solution of boric acid and sodium borate as an electrolytic solution, or, when anodizing a silicon single crystal substrate having a high specific resistance of 1000 Ω · cm or more, a silicon single crystal substrate is used. It is effective to cover one of the main surfaces with a conductive thin film.

【0007】[0007]

【作用】シリコン単結晶表面の結晶欠陥には陽極酸化電
解電流が集中する。このためにシリコン単結晶表面の陽
極酸化電解電流に不均一性が生じ、結晶欠陥に酸化膜が
より厚く成長する。このようにして酸化膜に濃淡が発生
する。結晶欠陥には転位,拡散層,歪み層等が含まれ
る。拡散層には例えばp型基板の表面に選択的にn層の
形成されたもの,p型基板にp+ 拡散層を形成したもに
等が含まれる。
Function: Anodizing electrolytic current concentrates on crystal defects on the surface of the silicon single crystal. Therefore, non-uniformity occurs in the anodic oxidation electrolytic current on the surface of the silicon single crystal, and the oxide film grows thicker due to crystal defects. In this way, shading occurs in the oxide film. Crystal defects include dislocations, diffusion layers, strained layers, and the like. The diffusion layer includes, for example, a p-type substrate on which an n-layer is selectively formed, a p-type substrate on which a p + diffusion layer is formed, and the like.

【0008】ホウ酸とホウ酸ナトリウムの混合水溶液は
弱アルカリ性であるためシリコン単結晶基板は電解浴中
で安定であり、陽極に分極することにより水酸イオンの
放電が起こりシリコン単結晶基板最表面が酸化する。シ
リコン単結晶基板の一方の主面を導電性の薄膜で被覆す
るとシリコン単結晶基板の電位分布が均一になる。
Since the mixed aqueous solution of boric acid and sodium borate is weakly alkaline, the silicon single crystal substrate is stable in the electrolytic bath, and the polarization of the anode causes discharge of hydroxide ions, and the outermost surface of the silicon single crystal substrate. Oxidizes. When one main surface of the silicon single crystal substrate is covered with a conductive thin film, the potential distribution of the silicon single crystal substrate becomes uniform.

【0009】[0009]

【実施例】次にこの発明の実施例を図面に基づいて説明
する。 実施例1 図1はシリコン単結晶の陽極酸化法を示す原理図であ
る。シリコン単結晶基板4と白金対向電極3が電解浴2
の中に侵漬される。シリコン単結晶基板4は陽極,白金
対向電極3は陰極にしてシリコン単結晶基板4と白金対
向電極3の間に所定の電流が流される。5はリード線で
ある。シリコン単結晶基板の表面には酸化シリコン膜が
成長する。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a principle diagram showing an anodizing method for a silicon single crystal. Silicon single crystal substrate 4 and platinum counter electrode 3 are electrolytic bath 2
Is soaked in. A predetermined current is passed between the silicon single crystal substrate 4 and the platinum counter electrode 3 by using the silicon single crystal substrate 4 as an anode and the platinum counter electrode 3 as a cathode. 5 is a lead wire. A silicon oxide film grows on the surface of the silicon single crystal substrate.

【0010】電解浴2はホウ酸6gとホウ酸ナトリウム
38gの水溶液で温度は22ないし25℃である。シリ
コン単結晶基板は表面を鏡面仕上げしてあり、白金対向
電極3は30mm×50mm×0.1mmの寸法にして
用いた。シリコン単結晶基板を流れる電流は0.5ない
し1.0mAとなるようにDC電源電圧を調整した。図
6はこの発明の実施例に係るシリコン単結晶基板陽極を
示す断面図である。シリコン単結晶基板4の裏面全体に
Al蒸着膜8を形成し、Al蒸着膜8とリード線5を導電性
ペイント9で固定したのち絶縁皮膜10を形成する。7
は酸化シリコン膜である。この陽極構造はシリコン単結
晶基板の比抵抗が1000Ω・cm以上の場合に有効で
あり、均一な陽極酸化膜7が得られる。シリコン単結晶
基板の比抵抗が100Ω・cm以下の場合にはシリコン
単結晶基板を単にクリップでつまむだけでもよい。比抵
抗が1000Ω・cm以上の場合にはクリップでつまむ
だけでは均一な陽極酸化膜が形成されない。
The electrolytic bath 2 is an aqueous solution of 6 g of boric acid and 38 g of sodium borate and has a temperature of 22 to 25 ° C. The surface of the silicon single crystal substrate was mirror-finished, and the platinum counter electrode 3 was used with dimensions of 30 mm × 50 mm × 0.1 mm. The DC power supply voltage was adjusted so that the current flowing through the silicon single crystal substrate was 0.5 to 1.0 mA. FIG. 6 is a sectional view showing a silicon single crystal substrate anode according to an embodiment of the present invention. On the entire back surface of the silicon single crystal substrate 4.
An Al vapor deposition film 8 is formed, the Al vapor deposition film 8 and the lead wire 5 are fixed with a conductive paint 9, and then an insulating film 10 is formed. 7
Is a silicon oxide film. This anodic structure is effective when the specific resistance of the silicon single crystal substrate is 1000 Ω · cm or more, and a uniform anodic oxide film 7 can be obtained. When the specific resistance of the silicon single crystal substrate is 100 Ω · cm or less, the silicon single crystal substrate may be simply pinched with a clip. When the specific resistance is 1000 Ω · cm or more, a uniform anodic oxide film cannot be formed only by pinching with a clip.

【0011】図2(a)はこの発明の実施例に係るシリ
コン単結晶基板陽極酸化膜の濃淡を示す結晶構造の写真
である。シリコン単結晶基板(直径40mm.厚さ40
0μm)は比抵抗40ないし50Ω・cm,無転位単結
晶基板である。シリコン単結晶基板の両面からリンを拡
散(表面濃度1×1021atoms/cm3 深さ約150μm)
したのちに片面のリン拡散層を除去し鏡面仕上げした。
シリコン単結晶基板の中心部をAl箔で覆いホウ素をイオ
ン注入(加速電圧100keV,ドース量1×1015
cm2 )した。ホウ素をイオン注入したのちに陽極酸化
を施した。
FIG. 2 (a) is a photograph of the crystal structure showing the light and shade of the anodic oxide film on the silicon single crystal substrate according to the embodiment of the present invention. Silicon single crystal substrate (diameter 40 mm, thickness 40
0 μm) is a dislocation-free single crystal substrate having a specific resistance of 40 to 50 Ω · cm. Diffuse phosphorus from both sides of the silicon single crystal substrate (surface concentration 1 × 10 21 atoms / cm 3 depth about 150 μm)
After that, the phosphorus diffusion layer on one side was removed and mirror finishing was performed.
The center of the silicon single crystal substrate is covered with Al foil and boron is ion-implanted (accelerating voltage 100 keV, dose 1 × 10 15 /
cm 2 ). After ion implantation of boron, anodic oxidation was performed.

【0012】イオン注入により発生した結晶欠陥がAl箔
で覆った部分を除いて黒点として観測される。またシリ
コン単結晶作製時のドーパントが木の年輪のように分布
する所謂ストライエーションも観測される。 比較例1 図2(b)はこの発明の比較例に係るシリコン単結晶基
板の結晶欠陥を示すX線トポグラフのX線写真である。
Crystal defects generated by ion implantation are observed as black dots except for the portion covered with Al foil. In addition, so-called striation in which the dopant is distributed like a tree ring when producing a silicon single crystal is also observed. Comparative Example 1 FIG. 2B is an X-ray photograph of an X-ray topography showing crystal defects of the silicon single crystal substrate according to the comparative example of the present invention.

【0013】シリコン単結晶基板を陽極酸化しないでX
線トポグラフを測定する他は実施例1と同様である。シ
リコン単結晶基板に残った一方のリン拡散層による転位
網が観測される。実施例1と比較例1の方法で求めた結
晶欠陥は相互に異なる。実施例1の方法で求めた結晶欠
陥はシリコン単結晶基板の最表面のものであり、比較例
1で求めた結晶欠陥はシリコン単結晶基板のバルクの結
晶欠陥である。 実施例2 図3(a)はこの発明の異なる実施例に係るシリコン単
結晶基板陽極酸化膜の濃淡を示す結晶構造の写真であ
る。
X without anodic oxidation of the silicon single crystal substrate
The procedure is the same as in Example 1 except that the line topography is measured. A dislocation network due to the one phosphorus diffusion layer remaining on the silicon single crystal substrate is observed. The crystal defects obtained by the methods of Example 1 and Comparative Example 1 are different from each other. The crystal defects obtained by the method of Example 1 are those on the outermost surface of the silicon single crystal substrate, and the crystal defects obtained in Comparative Example 1 are bulk crystal defects of the silicon single crystal substrate. Example 2 FIG. 3A is a photograph of a crystal structure showing the light and shade of an anodized film of a silicon single crystal substrate according to a different example of the present invention.

【0014】シリコン単結晶基板(直径40mm.厚さ
400μm)は比抵抗40ないし50Ω・cm、エッチ
ピット密度2×104 /cm2 を示す。フッ硝酸を用い
て表面加工層を除去したのちに陽極酸化を施した。エッ
チピットに起因する陽極酸化膜の黒点が観測される。図
4はこの発明の異なる実施例に係るシリコン単結晶基板
陽極酸化膜の濃淡を示す結晶構造の拡大写真(×200
倍)である。
A silicon single crystal substrate (diameter 40 mm, thickness 400 μm) has a specific resistance of 40 to 50 Ω · cm and an etch pit density of 2 × 10 4 / cm 2 . After removing the surface-treated layer with hydrofluoric nitric acid, anodization was performed. Black spots on the anodic oxide film due to the etch pits are observed. FIG. 4 is an enlarged photograph (× 200) of a crystal structure showing the shade of the anodic oxide film of a silicon single crystal substrate according to another embodiment of the present invention.
Times).

【0015】転位を中心に約50ないし100μmの結
晶の乱れが発生していることがわかる。 比較例2 図3(b)はこの発明の異なる比較例に係るシリコン単
結晶基板の結晶欠陥を示すX線トポグラフのX線写真で
ある。
It can be seen that crystal disorder of about 50 to 100 μm occurs around dislocations. Comparative Example 2 FIG. 3B is an X-ray photograph of an X-ray topography showing crystal defects of a silicon single crystal substrate according to a different comparative example of the present invention.

【0016】シリコン単結晶基板を陽極酸化しないでX
線トポグラフを測定する他は実施例1と同様である。エ
ッチピットの分布が実施例2の陽極酸化膜の濃淡に近似
していることがわかる。実施例2と比較例2のいずれの
方法で求めた結晶欠陥も一致を示す。 実施例3 図5(a)はこの発明のさらに異なる実施例に係るシリ
コン単結晶基板陽極酸化膜の濃淡を示す結晶構造の写真
である。
X without anodic oxidation of the silicon single crystal substrate
The procedure is the same as in Example 1 except that the line topography is measured. It can be seen that the distribution of the etch pits is close to that of the anodic oxide film of Example 2. The crystal defects obtained by both the methods of Example 2 and Comparative Example 2 are in agreement. Example 3 FIG. 5 (a) is a photograph of a crystal structure showing the light and shade of the anodic oxide film of a silicon single crystal substrate according to a further different example of the present invention.

【0017】シリコン単結晶基板(直径40mm.厚さ
400μm)は比抵抗40ないし50Ω・cmで無転位
の単結晶基板である。鏡面仕上げをしたのちにダイアモ
ンドペンで文字8を描き、次いで陽極酸化を施した。文
字8に結晶欠陥があるので文字8のみが観測される。 比較例3 図5(b)はこの発明のさらに異なる比較例に係るシリ
コン単結晶基板の結晶欠陥を示すX線トポグラフのX線
写真である。
The silicon single crystal substrate (diameter 40 mm, thickness 400 μm) is a dislocation-free single crystal substrate having a specific resistance of 40 to 50 Ω · cm. After mirror finishing, the letter 8 was drawn with a diamond pen and then anodized. Since the character 8 has crystal defects, only the character 8 is observed. Comparative Example 3 FIG. 5B is an X-ray photograph of an X-ray topography showing crystal defects of a silicon single crystal substrate according to a further different comparative example of the present invention.

【0018】文字8に結晶欠陥があるので文字8のみが
観測される。実施例3と比較例3のいずれの方法で求め
た結晶欠陥も一致を示す。
Since the character 8 has a crystal defect, only the character 8 is observed. The crystal defects obtained by any of the methods of Example 3 and Comparative Example 3 are in agreement.

【0019】[0019]

【発明の効果】シリコン単結晶基板を陽極酸化するとシ
リコン単結晶基板の表面の結晶欠陥には陽極酸化電解電
流が集中して結晶欠陥に酸化膜がより厚く成長し酸化膜
に濃淡が発生する。このためにシリコン単結晶基板最表
面の結晶欠陥が容易に検出される。
When the silicon single crystal substrate is anodized, the anodizing electrolytic current concentrates on the crystal defects on the surface of the silicon single crystal substrate, the oxide film grows thicker on the crystal defects, and the oxide film has density. Therefore, crystal defects on the outermost surface of the silicon single crystal substrate are easily detected.

【0020】陽極酸化にホウ酸とホウ酸ナトリウムの混
合水溶液を電解液として用いると、陽極酸化により水酸
イオンの放電が起こりシリコン単結晶基板が酸化され
る。シリコン単結晶基板の一方の主面を導電性の薄膜で
被覆して陽極酸化を行うとシリコン単結晶基板の他の主
面の電位分布はほぼ均一になるのでシリコン単結晶基板
表面の全体にわたって陽極酸化膜が形成されシリコン単
結晶基板全体の結晶欠陥検出が可能になる。
When a mixed aqueous solution of boric acid and sodium borate is used as an electrolytic solution for anodic oxidation, discharge of hydroxide ions occurs due to anodic oxidation and the silicon single crystal substrate is oxidized. When one main surface of the silicon single crystal substrate is covered with a conductive thin film and anodized, the potential distribution on the other main surface of the silicon single crystal substrate becomes almost uniform. An oxide film is formed, which makes it possible to detect crystal defects in the entire silicon single crystal substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】シリコン単結晶の陽極酸化法を示す原理図FIG. 1 is a principle diagram showing an anodizing method for a silicon single crystal.

【図2】(a)はこの発明の実施例に係るシリコン単結
晶基板陽極酸化膜の濃淡を示す結晶構造の写真 (b)はこの発明の比較例に係るシリコン単結晶基板の
結晶欠陥を示すX線トポグラフのX線写真
FIG. 2 (a) is a photograph of the crystal structure showing the light and shade of the anodic oxide film of the silicon single crystal substrate according to the example of the present invention. (B) shows the crystal defects of the silicon single crystal substrate according to the comparative example of the present invention. X-ray photograph of X-ray topograph

【図3】(a)はこの発明の異なる実施例に係るシリコ
ン単結晶基板陽極酸化膜の濃淡を示す結晶構造の写真 (b)はこの発明の異なる比較例に係るシリコン単結晶
基板の結晶欠陥を示すX線トポグラフのX線写真
FIG. 3A is a photograph of a crystal structure showing the light and shade of an anodized film of a silicon single crystal substrate according to a different embodiment of the present invention. FIG. 3B is a crystal defect of a silicon single crystal substrate according to a different embodiment of the present invention. X-ray photograph of X-ray topograph showing

【図4】この発明の異なる実施例に係るシリコン単結晶
基板陽極酸化膜の濃淡を示す結晶構造の拡大写真(×2
00倍)
FIG. 4 is an enlarged photograph (× 2) of a crystal structure showing the density of an anodized film of a silicon single crystal substrate according to a different embodiment of the present invention.
00 times)

【図5】(a)はこの発明のさらに異なる実施例に係る
シリコン単結晶基板陽極酸化膜の濃淡を示す結晶構造の
写真 (b)はこの発明のさらに異なる比較例に係るシリコン
単結晶基板の結晶欠陥を示すX線トポグラフのX線写真
FIG. 5 (a) is a photograph of a crystal structure showing the light and shade of an anodized film of a silicon single crystal substrate according to a further different embodiment of the present invention. (B) is a silicon single crystal substrate according to a still further comparative example of the present invention. X-ray photograph of X-ray topograph showing crystal defects

【図6】この発明の実施例に係るシリコン単結晶基板陽
極を示す断面図
FIG. 6 is a sectional view showing a silicon single crystal substrate anode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 電解浴 3 白金対向電極 4 シリコン単結晶基板 5 リード線 7 酸化シリコン膜 8 Al蒸着膜 9 導電性ペイント 10 絶縁皮膜 2 Electrolytic bath 3 Platinum counter electrode 4 Silicon single crystal substrate 5 Lead wire 7 Silicon oxide film 8 Al vapor deposition film 9 Conductive paint 10 Insulating film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコン単結晶基板を陽極酸化してシリコ
ン単結晶基板の表面に陽極酸化膜を形成し、陽極酸化膜
の成長厚さの違いによる陽極酸化膜濃淡の分布を測定す
ることを特徴とするシリコン単結晶基板表面の結晶欠陥
検出方法。
1. A method of anodizing a silicon single crystal substrate to form an anodized film on the surface of the silicon single crystal substrate, and measuring the distribution of the anodized film density due to the difference in the growth thickness of the anodized film. A method for detecting a crystal defect on the surface of a silicon single crystal substrate.
【請求項2】請求項1に記載の検出方法において、陽極
酸化はホウ酸とホウ酸ナトリウムの混合水溶液を電解液
として用いることを特徴とするシリコン単結晶基板の結
晶欠陥検出方法。
2. The detection method according to claim 1, wherein the anodic oxidation uses a mixed aqueous solution of boric acid and sodium borate as an electrolytic solution.
【請求項3】請求項1に記載の検出方法において、シリ
コン単結晶基板の一方の主面を導電性の薄膜で被覆して
陽極酸化を行うことを特徴とするシリコン単結晶基板の
結晶欠陥検出方法。
3. The crystal defect detection of a silicon single crystal substrate according to claim 1, wherein one main surface of the silicon single crystal substrate is covered with a conductive thin film to carry out anodization. Method.
JP7233230A 1995-08-18 1995-08-18 Detecting method of crystal defect of single-crystal silicon substrate Pending JPH0964137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7233230A JPH0964137A (en) 1995-08-18 1995-08-18 Detecting method of crystal defect of single-crystal silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7233230A JPH0964137A (en) 1995-08-18 1995-08-18 Detecting method of crystal defect of single-crystal silicon substrate

Publications (1)

Publication Number Publication Date
JPH0964137A true JPH0964137A (en) 1997-03-07

Family

ID=16951800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7233230A Pending JPH0964137A (en) 1995-08-18 1995-08-18 Detecting method of crystal defect of single-crystal silicon substrate

Country Status (1)

Country Link
JP (1) JPH0964137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479296B1 (en) * 1998-01-12 2005-06-17 삼성전자주식회사 Semiconductor Wafer Analysis Method
CN105136880A (en) * 2015-09-02 2015-12-09 武汉康捷科技发展有限公司 Copper oxide film thickness measuring instrument and measuring method
CN105277598A (en) * 2014-07-18 2016-01-27 上海电缆研究所 Testing device and testing method for thickness of oxide film of copper rod for electrician

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479296B1 (en) * 1998-01-12 2005-06-17 삼성전자주식회사 Semiconductor Wafer Analysis Method
CN105277598A (en) * 2014-07-18 2016-01-27 上海电缆研究所 Testing device and testing method for thickness of oxide film of copper rod for electrician
CN105136880A (en) * 2015-09-02 2015-12-09 武汉康捷科技发展有限公司 Copper oxide film thickness measuring instrument and measuring method

Similar Documents

Publication Publication Date Title
Youtsey et al. Rapid evaluation of dislocation densities in n-type GaN films using photoenhanced wet etching
US6426235B1 (en) Method of manufacturing semiconductor device
JP3143473B2 (en) Silicon-on-porous silicon; manufacturing method and material
EP0616378A2 (en) Luminescent silicon
Beale et al. The formation of porous silicon by chemical stain etches
Takahashi et al. The cathodic polarization of aluminum covered with anodic oxide films in a neutral borate solution—I. The mechanism of rectification
Renshaw A study of pore structures on anodized aluminum
JPS5895838A (en) Method of vertically isolating and forming single crystal silicon region
Frese et al. Electrochemical measurements of interface states at the GaAs/oxide interface
Yamamoto et al. Anodic Dissolution of N‐Type Gallium Arsenide Under Illumination
Shimizu et al. The development of flaws containing γ′-crystalline alumina regions in barrier anodic films on aluminium
JP3417515B2 (en) Method for evaluating crystal defects of silicon single crystal substrate
US3261773A (en) Apparatus for doping and contacting semiconductor bodies
JPH0964137A (en) Detecting method of crystal defect of single-crystal silicon substrate
Shor et al. Dopant-selective etch stops in 6H and 3C SiC
Choo et al. Barrier‐Type Aluminum Oxide Films Formed under Prolonged Anodizing: I. Influence of Anodizing Parameters on Film Morphology
Lévy-Clément et al. Porous n-silicon produced by photoelectrochemical etching
SE500975C2 (en) Methods of preparing an insulating dielectric layer of silica on a silicon layer by precipitation of an amorphous silicon layer on a substrate at a temperature lower than about 580 degrees C
US5627382A (en) Method of making silicon quantum wires
JP3156897B2 (en) Semiconductor substrate and method of manufacturing semiconductor substrate
JPH0846161A (en) Soi substrate and fabrication thereof
Nemcsics et al. Observation of dislocations in GaAs by (photo)-electrochemical method
Schmidt et al. On the Jet Etching of N‐Type Si
Eriksson et al. Electrochemically deposited polycrystalline n-CdSe thin films studied with laterally resolved photoelectrochemistry and SEM
Buchholz Surface electronic structure for the initial stages of electrochemical oxidation of zinc