JPH0963884A - Capacitor employing superdielectric - Google Patents

Capacitor employing superdielectric

Info

Publication number
JPH0963884A
JPH0963884A JP7211932A JP21193295A JPH0963884A JP H0963884 A JPH0963884 A JP H0963884A JP 7211932 A JP7211932 A JP 7211932A JP 21193295 A JP21193295 A JP 21193295A JP H0963884 A JPH0963884 A JP H0963884A
Authority
JP
Japan
Prior art keywords
super
dielectric
capacitor
superdielectric
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7211932A
Other languages
Japanese (ja)
Inventor
Masanori Sugawara
昌敬 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP7211932A priority Critical patent/JPH0963884A/en
Publication of JPH0963884A publication Critical patent/JPH0963884A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a capacitor employing a superdielectric and having extremely high capacitance by employing a two layer structure of superdielectric layer and a normal dielectric layer. SOLUTION: The capacitor employing a superdielectric comprises a superdielectric layer 11, a normal dielectric layer 12 arranged in series with the superdielectric layer 11, an anode metal electrode 13 connected with the upper surface of superdielectric layer 11, and a cathode metal electrode 14 connected with the lower surface of normal dielectric layer 12, wherein a DC power supply 15 is connected between the electrode 13, 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、蓄電器に係り、特
に超誘電体を用いた蓄電器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and more particularly to a battery using a super dielectric.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
以下に示すようなものがあった。図5は通常の誘電体
(誘電率ε1 ,面積S,厚さt1 )を用いた蓄電器(コ
ンデンサ)の構造と静電的諸量の関係を示す。この場合
の静電容量C0 〔F〕は、 (t1 が薄い場合) C0 =Q/V=Sσ/t1 E=Sε1 E/t1 E=Sε
1 /t1 で与えられる。
2. Description of the Related Art Conventionally, techniques in such a field include:
There was something like the following. FIG. 5 shows the relationship between the structure of a capacitor (capacitor) using an ordinary dielectric (dielectric constant ε 1 , area S, thickness t 1 ) and various electrostatic quantities. The electrostatic capacitance C 0 [F] in this case is (when t 1 is thin) C 0 = Q / V = Sσ / t 1 E = Sε 1 E / t 1 E = Sε
It is given by 1 / t 1 .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記し
た従来のコンデンサは、通常の静電容量を有するに過ぎ
ず、技術的に満足のいくものではなかった。本発明は、
上記問題点を解決し、超誘電体層と通常の誘電体層の2
層構造にし、静電容量が極めて大きい超誘電体を用いた
蓄電器を提供することを目的とする。
However, the above-mentioned conventional capacitor has only a normal capacitance and is not technically satisfactory. The present invention
To solve the above problems, the super-dielectric layer and the ordinary dielectric layer
An object of the present invention is to provide a capacitor having a layered structure and using a super-dielectric having an extremely large capacitance.

【0004】[0004]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 (1)超誘電体を用いた蓄電器であって、超誘電体層
と、この超誘電体層に直列に配置される通常の誘電体層
と、前記超誘電体層に接続される金属電極と、前記通常
の誘電体層に接続される金属電極とを設けるようにした
ものである。
In order to achieve the above object, the present invention provides: (1) a capacitor using a super-dielectric, the super-dielectric layer being disposed in series with the super-dielectric layer. The conventional dielectric layer, the metal electrode connected to the super-dielectric layer, and the metal electrode connected to the normal dielectric layer are provided.

【0005】(2)上記(1)記載の超誘電体を用いた
蓄電器において、前記超誘電体層は、ランタン系超伝導
体La2-x Srx CuO4 結晶からなる超誘電体を用い
るようにしたものである。 (3)上記(2)記載の超誘電体を用いた蓄電器におい
て、前記ランタン系超伝導体La2-x Srx CuO4
晶はキャリアドープ量がx=1/4n またはx=2/4
n (ただし、nは正の整数)である。
(2) In the capacitor using the super-dielectric according to the above (1), the super-dielectric layer is made of a lanthanum-based superconductor La 2-x Sr x CuO 4 crystal. It is the one. (3) In the capacitor using the superdielectric described in (2), the lanthanum-based superconductor La 2−x Sr x CuO 4 crystal has a carrier doping amount of x = 1/4 n or x = 2/4.
n (where n is a positive integer).

【0006】(4)上記(1)記載の超誘電体を用いた
蓄電器において、前記超誘電体層が2次元導電層のCu
2 単位あたりの正孔キャリア数が1/4n または2/
n(ただし、nは正の整数)のキャリア状態と同等の
正孔または電子をキャリアとする2次元導電物質であ
る。 (5)上記(1)記載の超誘電体を用いた蓄電器におい
て、前記2次元導電物質が酸化物である。
(4) In the capacitor using the super-dielectric according to the above (1), the super-dielectric layer is Cu which is a two-dimensional conductive layer.
The number of hole carriers per O 2 unit is 1/4 n or 2 /
It is a two-dimensional conductive substance having holes or electrons equivalent to the carrier state of 4 n (where n is a positive integer) as carriers. (5) In the electric storage device using the superdielectric described in (1) above, the two-dimensional conductive material is an oxide.

【0007】上記(1)〜(5)のように構成したの
で、静電容量が極めて大きい蓄電器を得ることができ
る。
Since the above-mentioned constitutions (1) to (5) are adopted, it is possible to obtain a condenser having an extremely large electrostatic capacity.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て図を参照しながら詳細に説明する。図1は本発明の超
誘電体を用いた蓄電器の構成図、図2は超伝導体と超誘
電体の分極の説明図であり、図2(a)は超伝導体の分
極の説明図、図2(b)は超誘電体の分極の説明図、図
3は真空、通常の誘電物質、超誘電体の分極状態を示す
図であり、図3(a)は真空における分極状態を示す
図、図3(b)は通常の誘電体における分極状態を示す
図、図3(c)は超誘電体の分極状態を示す図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram of a capacitor using a superconductor of the present invention, FIG. 2 is an explanatory diagram of polarization of a superconductor and a superconductor, and FIG. 2A is an explanatory diagram of polarization of a superconductor, FIG. 2 (b) is an explanatory diagram of polarization of a super-dielectric, FIG. 3 is a diagram showing a polarization state of a vacuum, an ordinary dielectric substance, and a super-dielectric, and FIG. 3 (a) is a diagram showing a polarization state in a vacuum. 3 (b) is a diagram showing the polarization state of a normal dielectric, and FIG. 3 (c) is a diagram showing the polarization state of a super-dielectric.

【0009】図1に示すように、本発明の超誘電体を用
いた蓄電器は、超誘電体層11と、この超誘電体層11
に直列に配置される通常の誘電体層12と、超誘電体層
11の上面に接続される陽極金属電極13と、通常の誘
電体層12の下面に接続される陰極金属電極14とを備
え、それらの電極13,14間に直流電源15が接続さ
れるようになっている。
As shown in FIG. 1, the capacitor using the superdielectric of the present invention includes a superdielectric layer 11 and this superdielectric layer 11.
A normal dielectric layer 12 arranged in series with the anode metal electrode 13 connected to the upper surface of the super-dielectric layer 11 and a cathode metal electrode 14 connected to the lower surface of the normal dielectric layer 12. A DC power supply 15 is connected between the electrodes 13 and 14.

【0010】なお、この実施例で示した陽極金属電極1
3を陰極金属電極に、陰極金属電極14を陽極金属電極
に代えて、逆の電圧を加えても、負の外部電荷が注入さ
れ、静電容量の増加が生じることは言うまでもない。ま
ず、ここで、超誘電体の説明を行う。 〔A〕超誘電体の電子状態 超誘電体の電子構造は、超伝導体と相対である。超伝導
体の電子状態は、以下のようである。
The anode metal electrode 1 shown in this embodiment is used.
Needless to say, even if 3 is replaced with the cathode metal electrode and the cathode metal electrode 14 is replaced with the anode metal electrode and a reverse voltage is applied, negative external charges are injected and the capacitance increases. First, the super-dielectric will be described here. [A] Electronic state of superconductor The electronic structure of a superconductor is relative to a superconductor. The electronic states of the superconductor are as follows.

【0011】(i)導電性を担う荷電粒子(電子または
正孔など)が運動量空間で対を形成し、運動量空間内
(の原点の周辺)に充満する。 (ii)全ての荷電粒子対の位相Θは同一となる。この位
相Θは、秩序パラメータの位相となる。 (iii)磁束量子の通過により、通過軌跡の両側の荷電粒
子対間に2πの位相差を生じる。これらに対応して、超
誘電体の電子状態は、以下のようである。
(I) Charged particles (electrons, holes, etc.) that are responsible for conductivity form a pair in the momentum space and fill up in (around the origin of) the momentum space. (Ii) The phase Θ of all charged particle pairs is the same. This phase Θ becomes the phase of the order parameter. (Iii) The passage of the magnetic flux quantum causes a phase difference of 2π between the charged particle pairs on both sides of the passage locus. Corresponding to these, the electronic state of the super-dielectric is as follows.

【0012】(1)荷電粒子系は、積層した2次元面上
にあり、各2次元(xy)面上で荷電粒子対を形成し、
2次元面に充満している。 (2)便宜上、2次元面上に(xy)面をとり、面と垂
直にz軸をとると、荷電粒子対の位相は、z座標で決ま
る。従って、同一面上の荷電粒子対はすべて同一位相Θ
にある。この位相Θは、秩序パラメータの位相となる。
平衡状態では、積層した2次元面上の全ての荷電粒子対
は同一位相となる。
(1) The charged particle system is on a stacked two-dimensional surface and forms a pair of charged particles on each two-dimensional (xy) surface,
It is full of two-dimensional surfaces. (2) For convenience, if the (xy) plane is taken on the two-dimensional plane and the z axis is taken perpendicularly to the plane, the phase of the charged particle pair is determined by the z coordinate. Therefore, all charged particle pairs on the same plane have the same phase Θ
It is in. This phase Θ becomes the phase of the order parameter.
In the equilibrium state, all the charged particle pairs on the stacked two-dimensional surface have the same phase.

【0013】(3)外部から超誘電体内に注入した電荷
(以下、外部電荷と呼ぶ)が、ある位置の荷電粒子対を
z軸に沿って通過すれば、通過の前後で荷電粒子対の位
相は2πだけ変わる。 〔B〕超誘電体の作製 超誘電体の作製は、2次元導電面(CuO2 面)を持つ
高温酸化物超伝導体を用いると簡単である。例えば、最
も構造が簡単な高温酸化物超伝導体La2-x Srx Cu
4 では、x=1/4n (n=1,2,3,…)の場合
に正孔対がCuO2 面に充満するから、超誘電体の性質
が現れる。他の高温酸化物超伝導体でも、CuO2 また
はこれに対応する2次元導電面の原子集団要素あたりの
(電子または正孔)キャリア量が1/4n の場合に超誘
電体となる。
(3) If a charge injected from the outside into the super-dielectric (hereinafter referred to as an external charge) passes through the charged particle pair at a certain position along the z axis, the phase of the charged particle pair before and after the passage. Changes by 2π. [B] Fabrication of Super Dielectric The fabrication of a super dielectric is easy if a high temperature oxide super conductor having a two-dimensional conductive surface (CuO 2 surface) is used. For example, the most simple structure high temperature oxide superconductor La 2-x Sr x Cu
In O 4 , when Cu = 1/4 n (n = 1, 2, 3, ...), the hole pairs fill the CuO 2 plane, so that the property of a super-dielectric appears. Other high-temperature oxide superconductors also become superdielectrics when the amount of carriers (electrons or holes) per atom collective element of CuO 2 or the corresponding two-dimensional conductive surface is ¼ n .

【0014】〔C〕分極特性 電子状態の相対性に基づき、超誘電体は、超電導体と相
対な電磁気的な特性を示す。超伝導体の完全反磁性に対
応して、超誘電体は「完全誘電性」を示し、内部の「電
束密度」がゼロとなる。それらの特性は、図2に示すよ
うになる。図2に示すように、超誘電体が秩序パラメー
タの位相Θを一定に保とうとする性質を有するのと同様
に、超誘電体では、内部で秩序パラメータΘの位相を一
定に保とうとする性質があり、このため、内部での正味
の電荷移動がゼロとなる。この性質が「内部でD=0」
という特性をもたらす。
[C] Polarization Characteristics Based on the relativity of electronic states, a superdielectric material exhibits electromagnetic characteristics relative to a superconductor. Corresponding to the perfect diamagnetism of superconductors, superconductors exhibit "perfect dielectricity" and the internal "electric flux density" becomes zero. Their characteristics are as shown in FIG. As shown in FIG. 2, in the same way as the super-dielectric has the property of keeping the phase of the order parameter Θ constant, the super-dielectric has the property of keeping the phase of the order parameter Θ constant inside. Yes, this results in zero net charge transfer inside. This property is “D = 0 inside”
Bring about the characteristics.

【0015】超誘電体ではどのような分極が生ずるかを
説明する。図3に、真空、通常の誘電物質、超誘電体の
分極の状態を比較して示す。図3(a)に示すように、
真空の場合、分極により、電界EからD=ε0 Eの電束
密度を生ずる。ただし、ε0 は真空の誘電率である。通
常の誘電体の分極では、真空分極に分子分極が加わる。
超誘電体の(表面領域を除いた)内部に外部より注入し
た電荷(外部電荷)Qexが侵入しない場合には、内部で
「分極」は生じていない。内部で「分極」を生ずるの
は、外部電荷Qexが内部に侵入する場合である。この外
部電荷の侵入は、「電荷量子」の形で生ずる。「電荷量
子」は、外部電荷と、その周りに分布してQexの電束を
遮蔽する「分極電荷」Qpo(=−Qex)で構成される。
What kind of polarization occurs in the super dielectric will be described. FIG. 3 shows a comparison of the polarization states of vacuum, ordinary dielectric materials, and superdielectrics. As shown in FIG.
In the case of vacuum, polarization produces an electric flux density of D = ε 0 E from the electric field E. However, ε 0 is the dielectric constant of vacuum. In ordinary dielectric polarization, molecular polarization is added to vacuum polarization.
When the charge (external charge) Q ex injected from the outside does not enter the inside (excluding the surface region) of the super-dielectric, "polarization" does not occur inside. It is the case where the external charge Q ex penetrates inside that "polarization" occurs inside. This invasion of external charges occurs in the form of "charge quanta". The “charge quantum” is composed of an external charge and a “polarized charge” Q po (= −Q ex ) distributed around the external charge and shielding the electric flux of Q ex .

【0016】この「分極電荷」は、荷電粒子対系の変位
により生ずる。荷電粒子対の2次元上で充満状態である
超誘電体内では、面上での荷電粒子対の自由な移動は相
互の強いクーロン斥力と量子効果のために制限される。
荷電粒子対の変位は、(i)系全体が一体となって動く
場合、(ii)系の一部が「分極」の形で動く場合、に限
られる。
This "polarization charge" is generated by the displacement of the charged particle pair system. In a super-dielectric which is full on two dimensions of a charged particle pair, the free movement of the charged particle pair on the plane is limited due to mutual strong Coulomb repulsion and quantum effects.
The displacement of the charged particle pair is limited to (i) when the entire system moves as a unit, and (ii) when a part of the system moves in the form of “polarization”.

【0017】以下、z軸に沿った方向の電荷移動につい
て考える。静電遮蔽距離が十分長い場合には、個々の
「電荷量子」に働く力は、外部電荷同志の反発力で決ま
る。単位体積当たりの外部電荷密度をρexに働く力をf
=ρex* ≡ρex* /εとすれば、 f=−V(D*2/2ε)=−(V・D* )D* /ε=ρ
ex* より、ρex=−V・D* となる。
The charge transfer in the direction along the z-axis will be considered below. When the electrostatic shield distance is sufficiently long, the force acting on each "charge quantum" is determined by the repulsive force of the external charges. The force acting on the external charge density per unit volume ρ ex is f
= If ρ ex E * ≡ρ ex D * / ε, f = -V (D * 2 / 2ε) = - (V · D *) D * / ε = ρ
From ex E * , ρ ex = −V · D * .

【0018】この関係は、D* がρexとその変位ベクト
ルの積で与えられる「分極」ベクトルであることを示し
ている。εは荷電粒子対系の有効誘電率である。電流の
ない平衡状態では、外部電荷Qexに働く力はゼロとな
る。上記の力fは、荷電粒子対系の分極を形成する界
〔すなわち、遮蔽電荷Q- poと、系表面に存在する分極
電荷Q+ po(=−Q- po)を維持する電界〕で相殺され
る。この分極ベクトルをP* とすれば、「電荷量子」の
変位であるQexの変位と、Q- po(=−Qex)の変位の
ベクトルは同じであるから、 P* =−D* の関係が常に成立することになる。分極P* を形成する
静電ポテンシャルは、荷電粒子対系の化学ポテンシャル
にもなっている。
This relationship indicates that D * is the "polarization" vector given by the product of ρ ex and its displacement vector. ε is the effective dielectric constant of the charged particle pair system. In the equilibrium state where there is no current, the force acting on the external charge Q ex becomes zero. The force f is canceled by the field that forms the polarization of the charged particle pair system [that is, the shielding charge Q - po and the electric field that maintains the polarization charge Q + po (= -Q - po ) existing on the system surface]. To be done. If this polarization vector is P * , the displacement vector of Q ex , which is the displacement of “charge quantum”, and the displacement vector of Q po (= −Q ex ) are the same, so P * = −D * The relationship will always be established. The electrostatic potential forming the polarization P * is also the chemical potential of the charged particle pair system.

【0019】超誘電体が平衡状態に近いと看做せる程度
に小さい有限な印加電流(外部電荷の分極ベクトルD*
の時間的単調増加)が存在している場合には、荷電粒子
対系の分極ベクトルP* も時間的に単調増加するであろ
う。従って、この状況下の4端子法の測定で「電圧端
子」が荷電粒子対と電荷交換する場合には、外部電荷の
流れとオームの法則より決まる「電圧」と逆方向の「起
電力」を検出することになる。また、後述するように、
誘電体と超誘電体の複合キャパシタンスでは、この「分
極状態」において、容量の増加が観測される。
A finite applied current (polarization vector D * of the external charge) that is small enough to be considered that the super-dielectric is close to the equilibrium state .
If the temporal monotonically increased) are present, the polarization vector of the charged particle pair system P * will also increase temporally monotonous. Therefore, when the “voltage terminal” exchanges charge with the charged particle pair in the four-terminal method measurement under this situation, the “electromotive force” opposite to the “voltage” determined by the flow of external charges and Ohm's law is applied. Will be detected. Also, as described below,
An increase in capacitance is observed in this "polarized state" in the composite capacitance of the dielectric and superdielectric.

【0020】〔D〕以下、本発明の超誘電体を用いた蓄
電池について説明する。上に述べたように超誘電体に外
部電荷を注入している場合の電子対系の電気ポテンシャ
ルの傾斜は、外部電荷の流れである電流によって決まる
通常のオーム的電圧と逆符号となる。従って、超誘電体
のみを金属電極で挟み、これに電源を接続する場合、超
誘電状態が完全に維持されると仮定すれば、抵抗値が負
となり、電源を含んだ回路系についての熱力学の条件が
満たされない。
[D] A storage battery using the superdielectric of the present invention will be described below. As described above, the gradient of the electric potential of the electron pair system when the external charge is injected into the superconductor has the opposite sign to the normal ohmic voltage determined by the current that is the flow of the external charge. Therefore, if only the super-dielectric is sandwiched by metal electrodes and the power supply is connected to this, assuming that the super-dielectric state is completely maintained, the resistance value will be negative and the thermodynamics of the circuit system including the power supply will be negative. The condition of is not satisfied.

【0021】実際には、この状況では、超誘電体は超誘
電状態が部分的に破壊されて、全体として理想状態は維
持できなくなる。そして、電極間に正抵抗の電流が流れ
る。安定に動作するキャパシタンスを構成するために
は、次の2条件が必要となる。(i)定常状態で電流が
ゼロとなる。(ii)超誘電体が超誘電状態にあるとし
て、系全体のキャパシタンスが正値となる。この2条件
を満たすためには、超誘電体層と通常の誘電体層の2重
層を挟んだ構成とする必要がある。
In reality, in this situation, the superdielectric state is partially destroyed in the superdielectric state, and as a whole, the ideal state cannot be maintained. Then, a positive resistance current flows between the electrodes. The following two conditions are necessary in order to configure a capacitance that operates stably. (I) The current is zero in the steady state. (Ii) Assuming that the superdielectric is in the superdielectric state, the capacitance of the entire system has a positive value. In order to satisfy these two conditions, it is necessary to have a structure in which a double layer of a super dielectric layer and a normal dielectric layer is sandwiched.

【0022】次に、通常の誘電体のみを用いたコンデン
サと、超誘電体も用いたコンデンサの静電容量を比較し
て説明する。通常の誘電体(誘電率ε1 、面積S、厚さ
1 )を用いたコンデンサは、上記した図5のような構
成である。次に、図1に示すように、通常の誘電体層
(誘電率ε1 、面積S、厚さt1 )12と超誘電体層
(面積S、厚さt2 )11の2重層を金属電極で挟んだ
構造のコンデンサを考える。超誘電体内部では、平衡状
態でD2 * +P2 * =0が成り立つ。
Next, the electrostatic capacities of a capacitor using only a normal dielectric and a capacitor also using a super dielectric will be compared and described. A capacitor using a normal dielectric (dielectric constant ε 1 , area S, thickness t 1 ) has a configuration as shown in FIG. Next, as shown in FIG. 1, a double layer of an ordinary dielectric layer (dielectric constant ε 1 , area S, thickness t 1 ) 12 and a super-dielectric layer (area S, thickness t 2 ) 11 is formed into a metal. Consider a capacitor sandwiched between electrodes. Inside the super-dielectric, D 2 * + P 2 * = 0 holds in equilibrium.

【0023】また、静電界E2 =−E2 * =−D2 *
ε2 が発生する。ε2 は超誘電体の荷電粒子対系の実効
誘電率である。正電極と、超誘電体の境界には(実効的
に)障壁が無く、通常の電極/誘電体境界のような電荷
の蓄積はなく、電極電荷は外部電荷として超誘電体内に
注入される。図1の正電位の電極を通して超誘電体の単
位面積あたりに注入される電荷量は、(分極ベクトルP
2 * の値の如何に関わらず)分極ベクトルD2 * に等し
い。電流の連続性から、負電極を通って流出する単位面
積あたりの電荷(負電極の蓄積電荷に等しい)は、正電
極を通って流入する電荷と等しい。従って、通常の誘電
体側の単位面積あたりの電荷移動量に等しい分極ベクト
ルD1 は注入電荷D2 * と等しくなくてはならない。い
わゆる、「電束密度」の連続性である。
The electrostatic field E2= -E2 *= -D2 */
ε2Occurs. ε2Is the effective of the charged particle pair system of superdielectric
It is the dielectric constant. The boundary between the positive electrode and the super-dielectric is (effective
2) There is no barrier, and there is no charge like a normal electrode / dielectric boundary.
There is no charge accumulation, and the electrode charge is external charge inside the super dielectric.
Injected. Through the positive potential electrode of Fig.
The amount of charge injected per unit area is (polarization vector P
2 *Polarization vector D regardless of the value of2 *Equal to
Yes. Due to the continuity of the electric current, the unit surface that flows out through the negative electrode
The charge per product (equal to the charge stored on the negative electrode) is positive.
Equal to the charge flowing through the pole. Therefore, normal dielectric
Polarization vector equal to the amount of charge transfer per unit area on the body side
Le D1Is the injection charge D2 *Must be equal to. I
It is the continuity of "electric flux density".

【0024】前述したように、(電流が存在しない)定
常状態では、D2 * =σを相殺するP2 * を形成・維持
する電荷E2 が内部に存在する。 E2 =P2 * /ε2 =−D2 * /ε2 =−σ/ε22 は、通常物質内に外部より電荷を印加した場合に発
生する電界とは逆方向を向く。E2 による「負電圧」の
存在と電源電圧との整合性は、電流が有限な場合には、
回路の抵抗や試料物質と金属端子との「接触抵抗」等に
よる電圧降下の存在により達成されるが、図1のような
電流の存在しない定常状態では、通常の誘電体領域内の
電位差の存在によって達成される。
As described above, in the steady state (where no current is present), the electric charge E 2 that forms and maintains P 2 * that cancels D 2 * = σ exists inside. E 2 = P 2 * / ε 2 = -D 2 * / ε 2 = -σ / ε 2 E 2 is directed to the opposite direction to the electric field generated when applying an external from the charge to the normal in the material. The existence of the "negative voltage" due to E 2 and the consistency with the power supply voltage are as follows.
This is achieved by the presence of a voltage drop due to the resistance of the circuit or the “contact resistance” between the sample material and the metal terminal, but in the steady state where no current exists as shown in FIG. 1, the presence of a potential difference in the normal dielectric region. Achieved by

【0025】この複合コンデンサの静電容量CS 〔F〕
は次式で与えられる。 CS =Q/V=Sσ/(t1 1 +t2 2 ) =Sσ/〔(t1 σ/ε1 )+(−t2 σ/ε2 )〕 =S/〔(t1 /ε1 )−(t2 /ε2 )〕 この式は、超誘電体層の膜厚t2 次第に増加していくと
き、t2 →t1 ε2 /ε1 の極限でCS →+∞なり、無
限大の静電容量が得られることを示している。
The capacitance C S [F] of this composite capacitor
Is given by C S = Q / V = S σ / (t 1 E 1 + t 2 E 2 ) = S σ / [(t 1 σ / ε 1 ) + (− t 2 σ / ε 2 )] = S / [(t 1 / ε 1 ) − (t 2 / ε 2 )] This formula shows that when the film thickness t 2 of the superdielectric layer is gradually increased, C S → + ∞ in the limit of t 2 → t 1 ε 2 / ε 1. Which means that an infinite capacitance can be obtained.

【0026】以下、本発明の超誘電体を用いた蓄電器の
実験結果について説明する。膜厚t1 のSrTiO3
板上に膜厚t2 のLa2-x Srx CuO4 (x=1/1
6)薄膜をエピタキシャル成長させ、この2層構造を、
Pd電極で挟んだ蓄電器の静電容量CS 〔F〕を測定し
た。t2 =0の場合の静電容量をCO 〔F〕とし、CS
/CO を縦軸にとり、t2 /t1 (ε2 /ε1 )を横軸
にとった場合、温室300〔K〕、液体窒素温度77
〔K〕、および液体ヘリウム温度4.2〔K〕での測定
例を図4に示す。これらの結果は、前述の計算がほぼ正
しいことを示している。
The experimental results of the capacitor using the superdielectric of the present invention will be described below. Thickness t 1 of SrTiO 3 La 2-x Sr x CuO 4 having a thickness t 2 on the substrate (x = 1/1
6) Epitaxially grow a thin film,
The capacitance C S [F] of the electric storage device sandwiched between the Pd electrodes was measured. Let C O [F] be the capacitance when t 2 = 0, and C S
/ C O on the vertical axis and t 2 / t 12 / ε 1 ) on the horizontal axis, greenhouse 300 [K], liquid nitrogen temperature 77
FIG. 4 shows an example of measurement at [K] and a liquid helium temperature of 4.2 [K]. These results show that the above calculations are almost correct.

【0027】室温での横軸が1近傍の縦軸の値は、低温
の場合より、半分程度以下に低下した。これは、臨界温
度が室温近傍であるために生ずる。今後、臨界温度が十
分高く、室温でも理想的な動作特性が得られる材料を開
発する必要がある。これとほぼ同様な結果がLa2-x
x CuO4 (x=1/4)を用いた蓄電器でも得られ
た。また、La2-x Srx CuO4 (x=1/8)を用
いた蓄電器では、多少の容量増大の効果が見られた。
The value on the vertical axis when the horizontal axis was around 1 at room temperature decreased to about half or less of that at low temperature. This occurs because the critical temperature is near room temperature. In the future, it is necessary to develop a material that has a sufficiently high critical temperature and that has ideal operating characteristics even at room temperature. The result similar to this is La 2-x S
It was also obtained with a capacitor using r x CuO 4 (x = 1/4). Further, in the electric storage device using La 2−x Sr x CuO 4 (x = 1/8), some effect of increasing the capacity was observed.

【0028】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0029】[0029]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、超誘電体を用いた蓄電器であって、超誘電体層
と、この超誘電体層に直列に配置される通常の誘電体層
と、前記超誘電体層に接続される金属電極と、前記通常
の誘電体層に接続される金属電極とを設けるようにした
ので、静電容量が極めて大きい蓄電器を得ることができ
る。
As described above in detail, according to the present invention, there is provided a capacitor using a super-dielectric, which includes a super-dielectric layer and an ordinary super-dielectric layer arranged in series. Since the dielectric layer, the metal electrode connected to the super-dielectric layer, and the metal electrode connected to the normal dielectric layer are provided, it is possible to obtain a capacitor having an extremely large capacitance. .

【0030】また、超誘電体層としては、ランタン系超
伝導体La2-x Srx CuO4 結晶を、キャリアドープ
量がx=1/4n およびx=2/4n (ただし、nは正
の整数)や、2次元導電層のCuO2 単位あたりの正孔
キャリア数が1/4n または2/4n の銅酸化物、また
はそれに対応した特性の正孔をキャリアとする酸化物、
または、正孔または電子をキャリアとする2次元導電物
質を用いることができる。
As the super-dielectric layer, a lanthanum-based superconductor La 2-x Sr x CuO 4 crystal having a carrier doping amount of x = 1/4 n and x = 2/4 n (where n is Positive integer) or a copper oxide in which the number of hole carriers per CuO 2 unit of the two-dimensional conductive layer is 1/4 n or 2/4 n , or an oxide having holes having the characteristics corresponding thereto as carriers.
Alternatively, a two-dimensional conductive substance having holes or electrons as carriers can be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超誘電体を用いた蓄電器の構成図であ
る。
FIG. 1 is a configuration diagram of a capacitor using a superdielectric of the present invention.

【図2】超伝導体と超誘電体の分極の説明図である。FIG. 2 is an explanatory diagram of polarization of a superconductor and a superdielectric.

【図3】真空、通常の誘電物質、超誘電体の分極状態を
示す図である。
FIG. 3 is a diagram showing polarization states of vacuum, a normal dielectric substance, and a super-dielectric.

【図4】本発明の超誘電体を用いた蓄電器の実験結果を
示す図である。
FIG. 4 is a diagram showing an experimental result of a capacitor using the superdielectric of the present invention.

【図5】従来の蓄電器の構成図である。FIG. 5 is a configuration diagram of a conventional electric storage device.

【符号の説明】[Explanation of symbols]

11 超誘電体層 12 通常の誘電体層 13 陽極金属電極 14 陰極金属電極 15 直流電源 11 Super Dielectric Layer 12 Ordinary Dielectric Layer 13 Anode Metal Electrode 14 Cathode Metal Electrode 15 DC Power Supply

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】(a)超誘電体層と、 (b)該超誘電体層に直列に配置される通常の誘電体層
と、 (c)前記超誘電体層に接続される金属電極と、 (d)前記通常の誘電体層に接続される金属電極とを具
備することを特徴とする超誘電体を用いた蓄電器。
1. A super-dielectric layer, (b) a normal dielectric layer arranged in series with the super-dielectric layer, and (c) a metal electrode connected to the super-dielectric layer. (D) A capacitor using a super-dielectric, comprising a metal electrode connected to the ordinary dielectric layer.
【請求項2】 請求項1記載の超誘電体を用いた蓄電器
において、前記超誘電体層はランタン系超伝導体La
2-x Srx CuO4 結晶からなる超誘電体を用いた蓄電
器。
2. The capacitor using the super-dielectric according to claim 1, wherein the super-dielectric layer is a lanthanum-based superconductor La.
A capacitor using a super dielectric made of 2-x Sr x CuO 4 crystal.
【請求項3】 請求項2記載の超誘電体を用いた蓄電器
において、前記ランタン系超伝導体La2-x Srx Cu
4 結晶はキャリアドープ量がx=1/4nまたはx=
2/4n (ただし、nは正の整数)である超誘電体を用
いた蓄電器。
3. A capacitor using the superdielectric according to claim 2, wherein the lanthanum-based superconductor La 2-x Sr x Cu is used.
The O 4 crystal has a carrier doping amount of x = 1/4 n or x =
A capacitor using a super-dielectric that is 2/4 n (where n is a positive integer).
【請求項4】 請求項1記載の超誘電体を用いた蓄電器
において、前記超誘電体層が2次元導電層のCuO2
位あたりの正孔キャリア数が1/4n または2/4
n (ただし、nは正の整数)のキャリア状態と同等の正
孔または電子をキャリアとする2次元導電物質である超
誘電体を用いた蓄電器。
4. The capacitor using the super dielectric according to claim 1, wherein the super dielectric layer is a two-dimensional conductive layer and the number of hole carriers per CuO 2 unit is ¼ n or 2/4.
A capacitor using a superdielectric, which is a two-dimensional conductive material having holes or electrons equivalent to the carrier state of n (where n is a positive integer), as carriers.
【請求項5】 請求項4記載の超誘電体を用いた蓄電器
において、前記2次元導電物質が酸化物である超誘電体
を用いた蓄電器。
5. A capacitor using the superdielectric according to claim 4, wherein the two-dimensional conductive material is an oxide.
JP7211932A 1995-08-21 1995-08-21 Capacitor employing superdielectric Withdrawn JPH0963884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7211932A JPH0963884A (en) 1995-08-21 1995-08-21 Capacitor employing superdielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7211932A JPH0963884A (en) 1995-08-21 1995-08-21 Capacitor employing superdielectric

Publications (1)

Publication Number Publication Date
JPH0963884A true JPH0963884A (en) 1997-03-07

Family

ID=16614074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7211932A Withdrawn JPH0963884A (en) 1995-08-21 1995-08-21 Capacitor employing superdielectric

Country Status (1)

Country Link
JP (1) JPH0963884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096578A2 (en) * 1999-10-29 2001-05-02 Fumio Okada Solid-state excimer devices and processes for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096578A2 (en) * 1999-10-29 2001-05-02 Fumio Okada Solid-state excimer devices and processes for producing same
EP1096578A3 (en) * 1999-10-29 2005-04-13 Fumio Okada Solid-state excimer devices and processes for producing same

Similar Documents

Publication Publication Date Title
Zeller et al. Tunneling, zero-bias anomalies, and small superconductors
Hinken Superconductor electronics: fundamentals and microwave applications
Chopra Avalanche‐Induced Negative Resistance in Thin Oxide Films
Jamnik et al. Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications
Volkov et al. Phase-coherent conductance of a superconductor-normal-metal quantum interferometer
Dubuis et al. Electric field effect on superconductivity in La2− xSrxCuO4
US3689780A (en) Control of flow across a weak link in superconductive and superfluid devices
Schroeder et al. Leakage currents in high-permittivity thin films
RU2554612C2 (en) High-frequency superconducting memory element
Matsui et al. Relaxor ferroelectric behavior and collective modes in the π− d correlated anomalous metal λ−(BEDT− T S F) 2 FeCl 4
JPH0963884A (en) Capacitor employing superdielectric
JP3231742B2 (en) Single-electron tunnel transistor using stacked structure
JPH05347422A (en) Bistable diode
Johnson Nonlinear wave propagation on superconducting tunneling junctions
CN1489794A (en) Switch device without dielectric barrier using super lattice
Sun et al. Sign reversal of magnetoresistance and inverse spin Hall effect in doped conducting polymers
EP1563509B1 (en) Spin driven resistors and nanogates
Tsuchiya et al. Comparison of subthreshold swing in SrTiO3-based all-solid-state electric-double-layer transistors with Li4SiO4 or Y-stabilized-ZrO2 solid electrolyte
Imry On macroscopic quantum phenomena associated with the quantised Hall effect
Kim et al. Electrical detection of the inverse Edelstein effect on the surface of Sm B 6
Chu High-temperature superconductors
Xia et al. Enhancing nonvolatile write-once-read-many-times memory effects with SiO2 nanoparticles sandwiched by poly (N-vinylcarbazole) layers
Ishiguri New Superconductivity and Theoretical Study on a New Phenomenon of Energy Source with Assistance of Initial Experiments
Aonuma et al. GaAsSb/InGaAs double-gate vertical tunnel FET with a subthreshold slope of 56 mV dec− 1 at room temperature
Mutlu et al. A solution state diode using semiconductor polymer nanorods with nanogap electrodes

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105