JPH0962867A - Graphic processor and graphic processing method - Google Patents

Graphic processor and graphic processing method

Info

Publication number
JPH0962867A
JPH0962867A JP7220053A JP22005395A JPH0962867A JP H0962867 A JPH0962867 A JP H0962867A JP 7220053 A JP7220053 A JP 7220053A JP 22005395 A JP22005395 A JP 22005395A JP H0962867 A JPH0962867 A JP H0962867A
Authority
JP
Japan
Prior art keywords
dimensional
component
parts
dimensional shape
graphic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7220053A
Other languages
Japanese (ja)
Inventor
Masahiko Haraguchi
雅彦 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7220053A priority Critical patent/JPH0962867A/en
Publication of JPH0962867A publication Critical patent/JPH0962867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a graphic processor/graphic processing method, which restore a two-dimensional drawing drawn by combining plural parts into a three-dimensional shape for the respective parts, calculate the position relations of the restored parts, and improve the accuracy of restoration, processing speed, the visibility of the respective parts, work efficiency and operability. SOLUTION: A two-dimensional drawing input means 6 dividing the plural parts and inputting them as the two-dimensional drawing consisting of three drawings, a three-dimensional shape restoration means 7 calculating parts reference points for the respective parts from the three drawings of the respective parts and restoring them into the three-dimensional shape, a parts arrangement information extraction means 8 calculating a whole reference point showing the position relation of the parts reference points of the respective parts and a three-dimensional parts arrangement means 9 which relatively arranges the three-dimensional shapes of the respective parts based on the calculated whole reference point are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2次元図面として描か
れた図形の3次元形状を復元する図形処理装置及び図形
処理方法に関し、特に、CADシステム(Computer Aid
ed Design )で用いられる図形処理装置及び図形処理方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphic processing apparatus and a graphic processing method for restoring a three-dimensional shape of a graphic drawn as a two-dimensional drawing, and more particularly to a CAD system (Computer Aid).
The present invention relates to a graphic processing device and a graphic processing method used in ed Design).

【0002】[0002]

【従来の技術】近年、1つの部品や形状等を表現した2
次元図面を用いて、立体図形であるソリッドモデルを作
成する3次元形状復元装置である図形処理装置が開発さ
れている。
2. Description of the Related Art In recent years, two parts representing one part, shape, etc.
A graphic processing device that is a three-dimensional shape restoration device that creates a solid model that is a three-dimensional graphic using a three-dimensional drawing has been developed.

【0003】以下に従来の図形処理装置について説明す
る。従来、物体の形状モデリングを行う伝統的な手法で
は、2次元図面において3面図が最も広く用いられ、各
面図間の要素の整合性(合致性)を調べて計算し、3次
元の立体図形であるソリッドモデルを作成する。各図面
間の要素の整合性を調べる方法としては、各図面の頂点
及び稜線の情報から面を復元した後、復元した面をいろ
いろ組合わせ、最終的に矛盾のない3次元立体を形成す
るものである。すなわち、頂点に関しては、3面図の全
ての図面に点として現れる。頂点とその投影点は、共通
する座標において同じ座標形を採る。この関係を利用し
て面図間で対応を採り頂点を復元する。次に、3図面の
各面図において、頂点に対応する点間に線分が存在して
いれば、この頂点間を結んで稜線の復元を行う。
A conventional graphic processing device will be described below. Conventionally, in a traditional method for modeling the shape of an object, a three-dimensional drawing is most widely used in a two-dimensional drawing. Create a solid model that is a figure. As a method to check the consistency of elements between each drawing, after restoring the surface from the information of the vertices and ridges of each drawing, various restored surfaces are combined and finally a consistent three-dimensional solid is formed. Is. That is, the vertices appear as points in all the three views. The vertex and its projection point have the same coordinate shape in common coordinates. By utilizing this relationship, the correspondence is adopted between the views to restore the vertices. Next, in each of the three drawings, if a line segment exists between the points corresponding to the vertices, the ridges are restored by connecting the vertices.

【0004】更に、従来の図形処理装置では、2次元図
面上において正確に表示されていない図面は、3次元座
標軸上においてデータを配置するための位置を2次元図
面データから計算することができず、3次元形状として
認識することができなかった。このため、2次元図面デ
ータについて、その面図間の関係上から見て正しく対応
する点があるかをチェックする手法、又、各2次元図面
データを3次元空間上に矛盾なく配置できるかをチェッ
クする手法等がいくつか確立されている。これらの手法
において、発見された不整合や矛盾を正しく修正する場
合、2次元図面の面図間の関係をどのように理解するか
かが大きな課題であり、従来、現状エラーとなっている
面図と対応するデータがない面図との面図間だけから考
えられる修正をすべて2次元図面に対して加える手法が
採られている。
Further, in the conventional graphic processing apparatus, for a drawing which is not accurately displayed on the two-dimensional drawing, the position for arranging the data on the three-dimensional coordinate axis cannot be calculated from the two-dimensional drawing data. It could not be recognized as a three-dimensional shape. Therefore, with regard to the two-dimensional drawing data, there is a method of checking whether there is a point that corresponds correctly in terms of the relationship between the plan views, and whether each two-dimensional drawing data can be arranged in a three-dimensional space without contradiction. There are some established methods for checking. In these methods, when correcting inconsistencies and contradictions that have been discovered correctly, how to understand the relationship between the two-dimensional drawing planes is a major issue. A method is adopted in which all possible corrections are added to the two-dimensional drawing only between the drawings and the drawings with no corresponding data.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記従来
の方法では、複数の部品が組み合わされた形で描かれた
2次元図面又は組立図等において、3次元形状を復元す
ることができないデータの組合わせ、又は3次元上に面
を構成することができないデータの組合わせ等を形成し
てしまい、3次元形状を直接復元することは極めて困難
であるという問題点を有していた。
However, in the above-mentioned conventional method, a combination of data in which a three-dimensional shape cannot be restored in a two-dimensional drawing or an assembly drawing in which a plurality of parts are combined is drawn. Or, there is a problem that it is extremely difficult to directly restore a three-dimensional shape by forming a combination of data that cannot form a surface in three dimensions.

【0006】本発明は上記従来の問題点を解決するもの
で、複数の部品が組み合わされて描かれた2次元図面に
おいて、各部品毎に3次元形状を復元するとともに、復
元され各部品毎の位置関係を算出し、復元の正確性,処
理速度,各部品の視認性及び作業効率の高い操作性に優
れた図形処理装置、及び、復元の正確性,処理速度,各
部品の視認性及び作業効率の高い操作性に優れた図形処
理方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art. In a two-dimensional drawing in which a plurality of parts are combined and drawn, a three-dimensional shape is restored for each part, and the restored three-dimensional shape of each part is restored. Figure processing device that calculates the positional relationship and has excellent operability with restoration accuracy, processing speed, visibility of each part and work efficiency, and restoration accuracy, processing speed, visibility of each part and work An object is to provide a graphic processing method with high efficiency and excellent operability.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載の図形処理装置は、複数の部
品を各部品毎に分けて3面図からなる2次元図面として
入力する2次元図面入力手段と、各部品の3面図から各
部品毎に部品基準点を算出して3次元形状に復元する3
次元形状復元手段と、各部品の部品基準点の位置関係を
表す全体基準点を算出する部品配置情報抽出手段と、算
出された全体基準点を基に各部品の3次元形状を相対的
に配置する3次元空間部品配置手段と、を備えている構
成を有している。
To achieve this object, the graphic processing apparatus according to claim 1 of the present invention divides a plurality of parts into respective parts and inputs them as a two-dimensional drawing consisting of three views. 2D drawing input means for calculating the part reference point for each part from the three-view drawing of each part, and restoring to the three-dimensional shape 3
A three-dimensional shape of each component is relatively arranged based on the calculated overall reference point, a three-dimensional shape restoring unit, a component placement information extracting unit that calculates an overall reference point indicating a positional relationship between the component reference points of the respective components. And a three-dimensional spatial component arranging means for

【0008】請求項2に記載の図形処理装置は、請求項
1において、2次元図面入力手段が、各部品毎又は部品
を構成する基本要素毎に入力するレイヤを備えている構
成を有している。
According to a second aspect of the present invention, in the graphic processing apparatus according to the first aspect, the two-dimensional drawing input means is provided with a layer for inputting each part or each basic element forming the part. There is.

【0009】請求項3に記載の図形処理装置は、請求項
1又は2において、部品配置情報抽出手段又は3次元空
間部品配置手段が、各部品毎に部品の干渉があるかどう
かを検知する部品干渉検知手段と、3次元空間部品配置
手段が、部品干渉検知手段により干渉があると検知され
た各部品に異なる色又は模様を割り当てる部品識別手段
と、を備えている構成を有している。
According to a third aspect of the present invention, in the graphic processing apparatus according to the first or second aspect, the component placement information extraction means or the three-dimensional spatial component placement means detects whether or not there is component interference for each component. The interference detecting means and the three-dimensional spatial component arranging means are provided with a component identifying means for assigning different colors or patterns to the respective components detected as having interference by the component interference detecting means.

【0010】請求項4に記載の図形処理方法は、複数の
部品を各部品毎に分けて3面図からなる2次元図面とし
て入力する2次元図面入力ステップと、各部品の3面図
から各部品毎に部品基準点を算出して3次元形状に復元
する3次元形状復元ステップと、各部品の部品基準点の
位置関係を表す全体基準点を算出する部品配置情報抽出
ステップと、算出された各位置を基に各部品の3次元形
状を相対的に配置する3次元空間部品配置ステップと、
を備えている構成を有している。
According to a fourth aspect of the present invention, in the graphic processing method, a step of inputting a two-dimensional drawing in which a plurality of parts are divided into respective parts and inputted as a two-dimensional drawing consisting of three views, and a three-view drawing of each part is used. A three-dimensional shape restoring step of calculating a part reference point for each part and restoring it to a three-dimensional shape, and a part placement information extracting step of calculating an overall reference point indicating a positional relationship of the part reference points of each part A three-dimensional spatial component placement step of relatively placing the three-dimensional shape of each component based on each position,
Is provided.

【0011】請求項5に記載の図形処理方法は、請求項
4において、3次元形状復元ステップが、レイヤ毎に各
部品毎又は部品を構成する基本要素毎に3次元形状を復
元する構成を有している。
According to a fifth aspect of the present invention, in the graphic processing method according to the fourth aspect, the three-dimensional shape restoring step restores the three-dimensional shape for each part or each basic element constituting the part. are doing.

【0012】請求項6に記載の図形処理方法は、請求項
4又は5において、部品配置情報抽出ステップ又は3次
元空間部品配置ステップが、各部品毎に部品の干渉があ
るかどうかを検知する部品干渉検知ステップと、部品干
渉検知ステップにより干渉があると検知された各部品に
異なる色又は模様を割り当てる部品識別ステップと、を
備えている構成を有している。
According to a sixth aspect of the present invention, in the graphic processing method according to the fourth or fifth aspect, the component placement information extraction step or the three-dimensional spatial component placement step detects whether or not there is component interference for each component. The interference detection step and the component identification step of assigning a different color or pattern to each component detected to have interference by the component interference detection step are provided.

【0013】[0013]

【作用】この構成によって、複数の部品を各部品毎に分
けて3面図からなる2次元図面として入力する2次元図
面入力手段と、各部品の3面図から各部品毎に部品基準
点を算出して3次元形状に復元する3次元形状復元手段
と、各部品の部品基準点の位置関係を表す全体基準点を
算出する部品配置情報抽出手段と、算出された全体基準
点を基に各部品の3次元形状を相対的に配置する3次元
空間部品配置手段と、を備えているので、2次元図面か
ら各部品間の全体基準点の関係を取り出し、複数の部品
の位置関係を表した3次元形状に復元することができ
る。更に、部品毎に3次元形状に復元するので、極めて
作図作業が容易で修正作業を簡単にでき、作業効率を向
上させることができる。又、特に、2次元図面を部品毎
に描く際に、各部品毎又は部品を構成する基本要素毎に
レイヤと呼ばれる透明なシート層に分けて入力を行うこ
とにより、部品毎に3次元形状に容易に復元することが
でき、処理の高速化を図ることができる。更に、部品配
置情報抽出手段又は3次元空間部品配置手段が、各部品
毎に部品の干渉があるかどうかを検知する部品干渉検知
手段と、3次元空間部品配置手段が、部品干渉検知手段
により干渉があると検知された各部品に異なる色又は模
様を割り当てる部品識別手段と、を備えることにより、
部品間の干渉を調べることができ、干渉している場合、
干渉している形状の色を変えて表示させることにより、
部品の干渉の有無を一目で認識することができ、複雑な
部品構成の確認が容易である。上述の各手段を処理ステ
ップとしてソフトウェア化することにより、同様に、復
元の正確性、処理速度,各部品の視認性及び作業効率を
向上させることができる。
With this configuration, a two-dimensional drawing input means for inputting a plurality of parts into each part as a two-dimensional drawing consisting of three views, and a part reference point for each part from the three views of each part. A three-dimensional shape restoring unit that calculates and restores a three-dimensional shape, a component placement information extracting unit that calculates an overall reference point that represents a positional relationship between the component reference points of each component, and a three-dimensional shape based on the calculated overall reference point Since the three-dimensional spatial component placement means for relatively placing the three-dimensional shape of the component is provided, the relation of the overall reference points between the components is extracted from the two-dimensional drawing to represent the positional relation of the plurality of components. It can be restored to a three-dimensional shape. Furthermore, since each part is restored to a three-dimensional shape, drawing work is extremely easy, correction work can be easily performed, and work efficiency can be improved. Further, in particular, when drawing a two-dimensional drawing for each part, each part or each basic element constituting the part is divided into transparent sheet layers called layers, and input is performed, so that each part has a three-dimensional shape. It can be easily restored, and the processing speed can be increased. Further, the component placement information extraction means or the three-dimensional spatial component placement means detects the component interference for each component and the three-dimensional spatial component placement means interferes with the component interference detection means. By providing a component identification means for assigning a different color or pattern to each component detected to be present,
You can check for interference between parts, and if so,
By changing the color of the interfering shape and displaying it,
The presence or absence of component interference can be recognized at a glance, making it easy to check the complex component configuration. By converting each of the above means into software as a processing step, the accuracy of restoration, the processing speed, the visibility of each component, and the work efficiency can be similarly improved.

【0014】[0014]

【実施例】以下本発明の一実施例の図形処理装置及び図
形処理方法について、図を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A graphic processing apparatus and a graphic processing method according to an embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の一実施例における図形処理
装置を示す装置ブロック図である。1は情報の演算及び
処理,制御等を行う中央処理装置、2はオペレーティン
グシステム、ウィンドウシステム等の実行中のプログラ
ムを一時的に記憶する主記憶装置、3は図形処理プログ
ラムやデータ等を記憶保存する二次記憶装置、4は文
字,数値及び位置等のデータを入力するキーボード,タ
ブレット,マウス等からなる入力装置、5はウィンド
ウ,図形要素,文字等の表示を行う表示装置である。二
次記憶装置3内において、6は複数の部品を各部品毎に
分けて2次元図面の3面図として入力するための2次元
図面入力モジュールからなる2次元図面入力手段であ
り、各部品毎又は部品を構成する基本要素毎に入力する
レイヤを備えている。又、7は2次元図面入力手段6に
入力された各部品毎の3面図から各部品毎に部品基準点
を算出して3次元形状を復元する3次元形状復元モジュ
ールからなる3次元形状復元手段、8は各部品の部品基
準点の位置関係を表す全体基準点を算出する部品配置情
報抽出モジュールからなる部品配置情報抽出手段、9は
算出された全体基準点を基に各部品の3次元形状を配置
する3次元空間部品配置モジュールからなる3次元空間
部品配置手段である。
FIG. 1 is a device block diagram showing a graphic processing device according to an embodiment of the present invention. Reference numeral 1 is a central processing unit for calculating and processing information, control, etc., 2 is a main storage device for temporarily storing running programs such as an operating system and a window system, and 3 is a memory for storing graphic processing programs and data. A secondary storage device 4, an input device composed of a keyboard, a tablet, a mouse and the like for inputting data such as characters, numerical values and positions, and a display device 5 for displaying windows, graphic elements, characters and the like. In the secondary storage device 3, reference numeral 6 is a two-dimensional drawing input means including a two-dimensional drawing input module for inputting a plurality of parts into each part as a three-view drawing of a two-dimensional drawing. Alternatively, it is provided with a layer for inputting each basic element that constitutes a part. Reference numeral 7 is a three-dimensional shape restoration module including a three-dimensional shape restoration module that restores a three-dimensional shape by calculating a part reference point for each part from the three-view drawing of each part input to the two-dimensional drawing input means 6. Reference numeral 8 denotes a component placement information extraction unit including a component placement information extraction module that calculates an overall reference point that represents a positional relationship between the component reference points of the respective components, and 9 indicates a three-dimensional shape of each component based on the calculated overall reference point. It is a three-dimensional spatial component placement means including a three-dimensional spatial component placement module for placing shapes.

【0016】図2は本発明の一実施例における図形処理
方法の各ステップの流れを示すフローチャートである。
ステップ1は複数の部品を各部品毎に分けて2次元図面
の3面図として入力する2次元図面入力ステップであ
り、レイヤ毎に各部品毎又は部品を構成する基本要素毎
を入力できる。ステップ2は2次元図面入力ステップ1
で入力された各部品毎の3面図から各部品毎に部品基準
点を算出して3次元形状を復元する3次元形状復元ステ
ップ、ステップ3は各部品の部品基準点の位置関係を表
す全体基準点を算出する部品配置情報抽出ステップであ
る。又、ステップ4は算出された全体基準点を基に各部
品の3次元形状を配置する3次元空間部品配置ステップ
であり、各部品毎に部品の干渉があるかどうかを検知す
る部品干渉検知ステップと、部品干渉検知ステップによ
り干渉があると検知された各部品に異なる色又は模様を
割り当てる部品識別ステップと、を備えている。
FIG. 2 is a flow chart showing the flow of each step of the graphic processing method in one embodiment of the present invention.
Step 1 is a two-dimensional drawing input step of inputting a plurality of parts for each part as a three-dimensional view of a two-dimensional drawing, and each part or each basic element constituting the part can be input for each layer. Step 2 is 2D drawing input step 1
A three-dimensional shape restoration step of calculating a part reference point for each part from the three-view drawing input for each part and restoring the three-dimensional shape. Step 3 is an overall representation of the positional relationship of the part reference points of each part. It is a component placement information extraction step of calculating a reference point. Further, step 4 is a three-dimensional space component placement step for placing the three-dimensional shape of each component based on the calculated overall reference point, and a component interference detection step for detecting whether or not there is component interference for each component. And a component identification step of assigning a different color or pattern to each component detected to have interference by the component interference detection step.

【0017】以上のように構成された図形処理装置及び
図形処理方法の原理について、以下図3乃至図6を用い
て説明する。図3(a)は本発明の一実施例の図形処理
装置において複数の部品がレイヤ毎に入力された例を示
す3面図からなる2次元平面図であり,図3(b)は図
3(a)における各レイヤが重ねられた組図を示す2次
元平面図である。図4(a)は図3(a)における1つ
のレイヤ(レイヤ1)に入力された部品11の3面図で
あり、図4(b)は図4(a)を基に3次元形状に復元
された3次元平面図である。図5(a)は図3(a)に
おける他の1つのレイヤ(レイヤ2)に入力された部品
12の3面図であり、図5(b)は図5(a)を基に3
次元形状に復元された3次元平面図である。図6(a)
は図3(b)における複数のレイヤが重ね合わされた組
図を示す2次元平面図であり、図6(b)は図4(b)
及び図5(b)の各部品の位置関係を基に重ねて3次元
形状に復元された3次元平面図である。
The principle of the graphic processing apparatus and the graphic processing method configured as described above will be described below with reference to FIGS. 3 to 6. FIG. 3A is a two-dimensional plan view consisting of three views showing an example in which a plurality of components are input for each layer in the graphic processing apparatus according to the embodiment of the present invention, and FIG. It is a two-dimensional top view which shows the assembly figure in which each layer in (a) was piled up. FIG. 4A is a three-dimensional view of the component 11 input to one layer (layer 1) in FIG. 3A, and FIG. 4B is a three-dimensional shape based on FIG. 4A. It is a restored three-dimensional plan view. FIG. 5A is a three-view drawing of the component 12 input to the other layer (layer 2) in FIG. 3A, and FIG. 5B is a three-dimensional view based on FIG.
It is a three-dimensional plan view restored to the three-dimensional shape. FIG. 6 (a)
FIG. 6B is a two-dimensional plan view showing an assembly diagram in which a plurality of layers in FIG. 3B are superposed, and FIG. 6B is FIG. 4B.
FIG. 6 is a three-dimensional plan view that is restored to a three-dimensional shape by superimposing it on the basis of the positional relationship between the respective parts in FIG.

【0018】図3(a)において、複数の部品を区別す
る手段として、レイヤと呼ばれる透明のシート層である
表示エリア毎に分けて各部品図101,102を入力
し、更にそれらを重ねて表示することにより、図3
(b)に示す1つの組図103として見ることができ
る。図4において、図3に示す3次元形状として配置す
る際の部品11の部品基準点Aとして、2次元図面の3
面図(正面図101a、平面図101b、右側面図10
1c)の左下の点が定義される。更に、図5において、
図3に示す3次元形状として配置する際の部品12の部
品基準点Bとして、2次元図面の3面図(正面図102
a、平面図102b、右側面図102c)の左下の点が
定義される。又、図5において、図4における部品11
の部品基準点Aも記載されている。次に、図6におい
て、部品11及び部品12を組み合わせた組図における
各部品間の組図の全体基準点Cとして、組図における2
次元図面の3面図(正面図103a、平面図103b、
右側面図103c)の左下の点が唯一定義される。この
全体基準点Cは部品基準点Aと一致している。これによ
り、各部品の3次元空間での配置位置が決定される。
In FIG. 3 (a), as a means for distinguishing a plurality of parts, the parts drawings 101 and 102 are input separately for each display area which is a transparent sheet layer called a layer, and these parts are displayed in an overlapping manner. By doing
It can be seen as one assembly diagram 103 shown in (b). In FIG. 4, as the component reference point A of the component 11 when arranging as the three-dimensional shape shown in FIG.
Front view (front view 101a, plan view 101b, right side view 10
The lower left point of 1c) is defined. Further, in FIG.
As the component reference point B of the component 12 when arranging as the three-dimensional shape shown in FIG. 3, a three-dimensional view of the two-dimensional drawing (front view 102
a, bottom view 102b, right side view 102c), the lower left point is defined. Further, in FIG. 5, the component 11 in FIG.
The component reference point A of is also described. Next, in FIG. 6, 2 in the assembly drawing is set as the overall reference point C of the assembly drawing between the parts in the assembly drawing in which the parts 11 and 12 are combined.
Three-dimensional view of a three-dimensional drawing (front view 103a, plan view 103b,
The bottom left point of the right side view 103c) is uniquely defined. The overall reference point C coincides with the component reference point A. As a result, the arrangement position of each component in the three-dimensional space is determined.

【0019】次に、本発明の一実施例の図形処理装置及
び図形処理方法について、以下に動作を説明する。図7
は本発明の一実施例における図形処理装置及び図形処理
方法の動作を示すフローチャートである。最初に、2次
元図面入力ステップ1として、レイヤ毎に分けて各部品
の3面図を入力する(S11)。次に、3次元形状復元
ステップ2として、各部品毎に面構成を行い、3次元形
状を復元する(S12)。次に、配置した各部品の配置
位置を抽出する(S13)。これは、図4及び図5に示
すように、各部品の2次元図面において、平面図、正面
図及び右側面図のそれぞれの左下隅となる部品基準点
(X軸方向座標及びY軸方向座標が最小になる点)A,
Bを抽出する。
Next, the operation of the graphic processing apparatus and the graphic processing method according to an embodiment of the present invention will be described below. Figure 7
6 is a flowchart showing the operation of the graphic processing apparatus and the graphic processing method according to an embodiment of the present invention. First, as a two-dimensional drawing input step 1, a three-view drawing of each part is input for each layer (S11). Next, as a three-dimensional shape restoration step 2, a surface configuration is performed for each part to restore the three-dimensional shape (S12). Next, the placement position of each placed component is extracted (S13). As shown in FIGS. 4 and 5, this is a component reference point (X-axis direction coordinate and Y-axis direction coordinate) that is the lower left corner of each of the plan view, front view, and right side view in the two-dimensional drawing of each component. Is the minimum point) A,
Extract B.

【0020】次に、部品配置情報抽出ステップ3とし
て、各部品図を重ね合わせた状態で各部品の部品基準点
A,Bの中から最も左下隅となる部品基準点Aを組図全
体の全体基準点Cとして定義し、各面図における部品間
の部品基準点A,Bの相対位置を取り出す(S14)。
図3の組図の例では、図4に示すように、部品11の部
品基準点Aを組図全体の基準点とし、図5に示すよう
に、部品12の部品基準点Bを抽出する際に、部品11
との関係を算定する。
Next, in step 3 of extracting the component arrangement information, the part reference point A, which is the lower left corner among the part reference points A and B of each part in the state where the part drawings are superposed, is set as the whole assembly drawing. It is defined as the reference point C, and the relative positions of the component reference points A and B between the parts in each plan are taken out (S14).
In the example of the assembly diagram of FIG. 3, when the component reference point A of the component 11 is used as the reference point of the entire assembly as shown in FIG. 4, and when the component reference point B of the component 12 is extracted as shown in FIG. And part 11
Calculate the relationship with.

【0021】これにより、3次元空間部品配置ステップ
4として、図6に示すように、2次元図面上での変移を
3次元のX軸、Y軸及びZ軸の変移に変換することによ
り、部品11と部品12の3次元形状を同一の3次元空
間に配置する(S15)。本実施例においては、図6の
3次元形状に示すように、部品11と部品12の相対位
置はY軸方向の変移で示されている。
As a result, in the three-dimensional spatial component placement step 4, as shown in FIG. 6, the component on the two-dimensional drawing is converted into a three-dimensional component of X-axis, Y-axis and Z-axis. The three-dimensional shapes of 11 and the part 12 are arranged in the same three-dimensional space (S15). In the present embodiment, as shown in the three-dimensional shape of FIG. 6, the relative positions of the component 11 and the component 12 are shown as a shift in the Y-axis direction.

【0022】更に、3次元空間に上述のように2次元図
面から得られた配置関係で、部品11、部品12を配置
する際、部品干渉検知ステップとして、3次元モデル同
士のブーリアン演算を行うことにより、3次元形状での
各部品の干渉を調べることができる。この時、干渉して
いる場合は、部品識別ステップとして、干渉している部
品を色を変えて表示するにより、干渉の有無を一目で認
識することができる(S16)。
Further, when the parts 11 and 12 are arranged in the three-dimensional space according to the arrangement relationship obtained from the two-dimensional drawing as described above, a Boolean operation between the three-dimensional models is performed as a part interference detection step. Thus, it is possible to check the interference of each component in the three-dimensional shape. At this time, if there is an interference, the presence or absence of the interference can be recognized at a glance by displaying the interfering parts in different colors as a part identifying step (S16).

【0023】ここで、1つの部品が複雑な形状からなる
場合においても、3次元形状のプリミティブな要素又は
分割し易い要素を取り出し、これらを別々のレイヤに移
動させ分離することにより、複雑な形状を分割した幾つ
かの3次元形状の組合わせとして復元することができ、
2次元図形の入力が容易で、視認性が良く作業の効率化
を図れるとともに、2次元図形の3次元形状への復元が
極めて容易にでき、正確な図形を得ることができる。
Here, even when one part has a complicated shape, the primitive shape element or the element which can be easily divided is taken out, and these are moved to different layers to be separated into a complicated shape. Can be reconstructed as a combination of several 3D shapes divided into
It is easy to input a two-dimensional figure, the visibility is good, the work efficiency is improved, and the two-dimensional figure can be reconstructed into the three-dimensional shape very easily, and an accurate figure can be obtained.

【0024】以上のように本実施例によれば、2次元図
面を部品毎に描く際に、各部品毎又は部品を構成する基
本要素毎にレイヤと呼ばれる透明なシート層に分離して
入力を行うことにより、部品毎に3次元図形を容易に復
元することができ、極めて作図作業が容易で、修正作業
を簡単にでき、作業効率を向上させることができる。更
に、各部品間の部品基準点A,Bの関係を全体基準点C
として取り出し、複数の部品の位置関係を表わした3次
元形状に復元することができるので、各部品の3次元形
状や部品配置等の位置関係が容易に理解できる。更に、
干渉があると検知された各部品に、異なる色又は模様を
割り当てることにより、部品の干渉の有無を一目で認識
することができ、複雑な部品構成の確認が容易である。
As described above, according to the present embodiment, when a two-dimensional drawing is drawn for each part, each part or each basic element constituting the part is divided into transparent sheet layers called layers to input data. By doing so, the three-dimensional figure can be easily restored for each part, the drawing work is extremely easy, the correction work can be simplified, and the work efficiency can be improved. Furthermore, the relationship between the parts reference points A and B between the respective parts is represented by the overall reference point C.
Since the three-dimensional shape representing the positional relationship of the plurality of parts can be restored, the positional relationship such as the three-dimensional shape of each part and the arrangement of the parts can be easily understood. Furthermore,
By assigning different colors or patterns to the respective parts detected as having interference, the presence or absence of the interference of the parts can be recognized at a glance, and it is easy to check the complicated part configuration.

【0025】[0025]

【発明の効果】以上のように本発明は、複数の部品を各
部品毎に分けて3面図からなる2次元図面として入力す
る2次元図面入力手段と、各部品の3面図から各部品毎
に部品基準点を算出して3次元形状に復元する3次元形
状復元手段と、各部品の部品基準点の位置関係を表す全
体基準点を算出する部品配置情報抽出手段と、算出され
た全体基準点を基に各部品の3次元形状を相対的に配置
する3次元空間部品配置手段と、を備えているので、複
数の部品が組み合わされて描かれた2次元図面におい
て、各部品毎に3次元形状を復元するとともに、各部品
間の基準点の関係を算出し、複数の部品の位置を表現し
た3次元形状を復元することができ、復元の正確性及び
処理速度に優れた図形処理装置を実現することができ
る。更に、部品毎に3次元形状に復元するので、極めて
作図作業が容易で修正作業を簡単にでき、作業効率に優
れた図形処理装置を実現することができる。
As described above, according to the present invention, two-dimensional drawing input means for inputting a plurality of parts for each part as a two-dimensional drawing consisting of three views, and three-sided views of each part. A three-dimensional shape restoring unit that calculates a component reference point for each component and restores a three-dimensional shape, a component placement information extraction unit that calculates an overall reference point that represents the positional relationship of the component reference points of each component, and the calculated total Since the three-dimensional space component arranging means for relatively arranging the three-dimensional shape of each component based on the reference point is provided, in a two-dimensional drawing in which a plurality of components are drawn in combination, It is possible to restore the three-dimensional shape, calculate the relationship of the reference points between the parts, and restore the three-dimensional shape expressing the positions of a plurality of parts. The figure processing is excellent in the accuracy of the restoration and the processing speed. The device can be realized. Furthermore, since each part is restored to a three-dimensional shape, it is possible to realize a graphic processing device that is extremely easy to perform drawing work and correction work, and has excellent work efficiency.

【0026】又、特に、2次元図面を部品毎に描く際
に、各部品毎又は部品を構成する基本要素毎にレイヤと
呼ばれる透明なシート層に分けて入力を行うことによ
り、部品毎に3次元形状に容易に復元することができ、
処理の高速性及び操作効率に優れた図形処理装置を実現
することができる。
In particular, when a two-dimensional drawing is drawn for each part, each part or each basic element constituting the part is divided into transparent sheet layers called layers, and input is performed, thereby making it possible to perform 3 Can be easily restored to a dimensional shape,
It is possible to realize a graphic processing device excellent in high-speed processing and operation efficiency.

【0027】更に、部品配置情報抽出手段又は3次元空
間部品配置手段が、各部品毎に部品の干渉があるかどう
かを検知する部品干渉検知手段と、3次元空間部品配置
手段が、部品干渉検知手段により干渉があると検知され
た各部品に異なる色又は模様を割り当てる部品識別手段
と、を備えることにより、部品間の干渉を調べることが
でき、干渉している場合、干渉している部品の色を変え
て表示させることにより、部品の干渉の有無を一目で認
識することができ、複雑な部品構成の確認が容易であ
り、各部品の視認性に優れた図形処理装置を実現するこ
とができる。
Furthermore, the component placement information extracting means or the three-dimensional space component placement means detects the component interference for each component and the three-dimensional space component placement means detects the component interference. By providing a component identification unit that assigns a different color or pattern to each component that is detected as having interference by the means, interference between the components can be checked. By displaying in different colors, it is possible to recognize at a glance whether or not there is interference between parts, it is easy to check the complicated parts configuration, and it is possible to realize a graphic processing device with excellent visibility of each part. it can.

【0028】同様に、復元の正確性,処理速度,各部品
の視認性及び作業効率に優れた図形処理方法を実現する
ことができる。
Similarly, it is possible to realize a graphic processing method which is excellent in restoration accuracy, processing speed, visibility of each component, and work efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における図形処理装置を示す
装置ブロック図
FIG. 1 is a device block diagram showing a graphic processing device according to an embodiment of the present invention.

【図2】本発明の一実施例における図形処理方法の各ス
テップの流れを示すフローチャート
FIG. 2 is a flowchart showing a flow of steps of the graphic processing method according to the embodiment of the present invention.

【図3】(a)本発明の一実施例の図形処理装置におい
て複数の部品がレイヤ毎に入力された例を示す3面図か
らなる2次元平面図 (b)図3(a)における各レイヤが重ねられた組図を
示す2次元平面図
FIG. 3A is a two-dimensional plan view consisting of three views showing an example in which a plurality of components are input for each layer in the graphic processing apparatus according to the embodiment of the present invention. A two-dimensional plan view showing a composition in which layers are stacked.

【図4】(a)図3(a)における1つのレイヤに入力
された部品11の3面図 (b)図4(a)を基に3次元形状に復元された3次元
平面図
4A is a three-dimensional view of the component 11 input in one layer in FIG. 3A, and FIG. 4B is a three-dimensional plan view restored to a three-dimensional shape based on FIG. 4A.

【図5】(a)図3(a)における他の1つのレイヤに
入力された部品12の3面図 (b)図5(a)を基に3次元形状に復元された3次元
平面図
5A is a three-dimensional view of the component 12 input to another layer in FIG. 3A, and FIG. 5B is a three-dimensional plan view restored to a three-dimensional shape based on FIG. 5A.

【図6】(a)図3(b)における複数のレイヤが重ね
合わされた組図を示す2次元平面図 (b)図4(b)及び図5(b)の各部品の位置関係を
基に重ねて3次元形状に復元された3次元平面図
FIG. 6 (a) is a two-dimensional plan view showing an assembly diagram in which a plurality of layers in FIG. 3 (b) are superposed on each other. (B) Based on the positional relationship of each part in FIGS. 4 (b) and 5 (b). 3D plan view reconstructed into 3D shape

【図7】本発明の一実施例における図形処理装置及び図
形処理方法の動作を示すフローチャート
FIG. 7 is a flowchart showing the operations of the graphic processing apparatus and the graphic processing method according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 中央処理装置 2 主記憶装置 3 二次記憶装置 4 入力装置 5 表示装置 6 2次元図面入力手段 7 3次元形状復元手段 8 部品配置情報抽出手段 9 3次元空間部品配置手段 11,12 部品 1 Central Processing Unit 2 Main Storage Device 3 Secondary Storage Device 4 Input Device 5 Display Device 6 2D Drawing Input Means 7 3D Shape Restoring Means 8 Parts Placement Information Extracting Means 9 3D Spatial Parts Placement Means 11, 12 Parts

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】複数の部品を各部品毎に分けて3面図から
なる2次元図面として入力する2次元図面入力手段と、
前記各部品の前記3面図から前記各部品毎に部品基準点
を算出して3次元形状に復元する3次元形状復元手段
と、前記各部品の前記部品基準点の位置関係を表す全体
基準点を算出する部品配置情報抽出手段と、算出された
前記全体基準点を基に前記各部品の3次元形状を相対的
に配置する3次元空間部品配置手段と、を備えているこ
とを特徴とする図形処理装置。
1. A two-dimensional drawing input means for inputting a plurality of parts for each part as a two-dimensional drawing consisting of three views.
A three-dimensional shape restoring unit that calculates a part reference point for each part from the three-view drawing of each part and restores it to a three-dimensional shape, and an overall reference point that represents a positional relationship between the part reference points of each part. And a three-dimensional spatial component arrangement means for relatively arranging the three-dimensional shapes of the respective components based on the calculated overall reference points. Graphic processing unit.
【請求項2】前記2次元図面入力手段が、前記各部品毎
又は部品を構成する基本要素毎に入力するレイヤを備え
ていることを特徴とする請求項1に記載の図形処理装
置。
2. The graphic processing apparatus according to claim 1, wherein the two-dimensional drawing input means includes a layer for inputting each of the parts or each basic element forming the part.
【請求項3】前記部品配置情報抽出手段又は3次元空間
部品配置手段が、前記各部品毎に部品の干渉があるかど
うかを検知する部品干渉検知手段と、前記3次元空間部
品配置手段が、前記部品干渉検知手段により干渉がある
と検知された各部品に異なる色又は模様を割り当てる部
品識別手段と、を備えていることを特徴とする請求項1
又は2に記載の図形処理装置。
3. The component placement information extraction unit or the three-dimensional spatial component placement unit detects the component interference for each of the components and the three-dimensional spatial component placement unit. 2. A component identification unit that assigns a different color or pattern to each component detected as having interference by the component interference detection unit.
Alternatively, the graphic processing device according to item 2.
【請求項4】複数の部品を各部品毎に分けて3面図から
なる2次元図面として入力する2次元図面入力ステップ
と、前記各部品の前記3面図から前記各部品毎に部品基
準点を算出して3次元形状に復元する3次元形状復元ス
テップと、前記各部品の前記部品基準点の位置関係を表
す全体基準点を算出する部品配置情報抽出ステップと、
算出された前記各位置を基に前記各部品の3次元形状を
相対的に配置する3次元空間部品配置ステップと、を備
えていることを特徴とする図形処理方法。
4. A two-dimensional drawing input step of inputting a plurality of parts for each part as a two-dimensional drawing consisting of three views, and a part reference point for each part from the three views of each part. A three-dimensional shape restoring step for calculating and restoring a three-dimensional shape, and a component placement information extracting step for calculating an overall reference point representing a positional relationship between the component reference points of the respective components,
And a three-dimensional spatial component arranging step of relatively arranging the three-dimensional shapes of the respective parts based on the calculated respective positions, the graphic processing method.
【請求項5】前記3次元形状復元ステップが、レイヤ毎
に前記各部品毎又は部品を構成する基本要素毎に3次元
形状を復元することを特徴とする請求項4に記載の図形
処理方法。
5. The graphic processing method according to claim 4, wherein the three-dimensional shape restoring step restores a three-dimensional shape for each layer or for each basic element constituting the component for each layer.
【請求項6】前記部品配置情報抽出ステップ又は3次元
空間部品配置ステップが、前記各部品毎に部品の干渉が
あるかどうかを検知する部品干渉検知ステップと、前記
部品干渉検知ステップにより干渉があると検知された各
部品に異なる色又は模様を割り当てる部品識別ステップ
と、を備えていることを特徴とする請求項4又は5に記
載の図形処理方法。
6. The component placement information extraction step or the three-dimensional spatial component placement step detects a component interference for each component, and a component interference detection step causes interference. 6. The graphic processing method according to claim 4, further comprising: a component identification step of assigning a different color or pattern to each of the detected components.
JP7220053A 1995-08-29 1995-08-29 Graphic processor and graphic processing method Pending JPH0962867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220053A JPH0962867A (en) 1995-08-29 1995-08-29 Graphic processor and graphic processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220053A JPH0962867A (en) 1995-08-29 1995-08-29 Graphic processor and graphic processing method

Publications (1)

Publication Number Publication Date
JPH0962867A true JPH0962867A (en) 1997-03-07

Family

ID=16745197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220053A Pending JPH0962867A (en) 1995-08-29 1995-08-29 Graphic processor and graphic processing method

Country Status (1)

Country Link
JP (1) JPH0962867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077178A (en) * 2011-09-30 2013-04-25 Canon Marketing Japan Inc Information processor, control method of the same and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077178A (en) * 2011-09-30 2013-04-25 Canon Marketing Japan Inc Information processor, control method of the same and program

Similar Documents

Publication Publication Date Title
US7119805B2 (en) Three-dimensional CAD attribute information presentation
CN107680154B (en) View-based voxel geometric parameter extraction method
JPH0785271B2 (en) Shape modeling method
CN105760570A (en) Viewpoint selection in the redering of a set of objects
EP0681243B1 (en) Method for performing boolean operations on geometric objects in a computer-aided design system
JP2007048004A (en) Design support apparatus and design support method
Akeo et al. Computer Graphics System for Reproducing Three‐Dimensional Shape from Idea Sketch
JP2832463B2 (en) 3D model reconstruction method and display method
JPS62251905A (en) Interactive graphic input system
JPH0962867A (en) Graphic processor and graphic processing method
JP4915522B2 (en) Graphic processing device
Rose et al. Intuitive and interactive modification of large finite element models
JPH04309187A (en) Mapping method for stereoscopic model
JPH0821089B2 (en) Solid model shape definition method in CAD / CAM system
JPH1078979A (en) Method for generating solid body from two-dimensional cad drawing and recording medium recording solid body generation program
JP3316135B2 (en) Component interference check method in two-dimensional CAD system
De Felice et al. A portable system to build 3D models of cultural heritage and to allow their exploration by blind people
JP4082582B2 (en) Three-dimensional shape processing apparatus, program, and storage medium
JPH08161383A (en) Drawing preparing device
Lööf et al. Visualization of variation in early design phases: a convex hull approach
JPH01291379A (en) Method and device for interference check of three-dimensional object
JP4630485B2 (en) Hidden line processing method
JP3721763B2 (en) How to create a 3D model
JPH07175944A (en) Method for arranging three-dimensional model
KR20230103485A (en) Method and System for tracking a CAD model in real time based on particle filters