JPH0961597A - Device for capturing and supplying charged particle - Google Patents

Device for capturing and supplying charged particle

Info

Publication number
JPH0961597A
JPH0961597A JP7215698A JP21569895A JPH0961597A JP H0961597 A JPH0961597 A JP H0961597A JP 7215698 A JP7215698 A JP 7215698A JP 21569895 A JP21569895 A JP 21569895A JP H0961597 A JPH0961597 A JP H0961597A
Authority
JP
Japan
Prior art keywords
electrode
particles
columnar electrodes
electrodes
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7215698A
Other languages
Japanese (ja)
Other versions
JP2869517B2 (en
Inventor
Toshihiko Kanayama
敏彦 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7215698A priority Critical patent/JP2869517B2/en
Publication of JPH0961597A publication Critical patent/JPH0961597A/en
Application granted granted Critical
Publication of JP2869517B2 publication Critical patent/JP2869517B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to capture particles of a specific mass and take them out as well as capture particles of a wide range to the outside by supplying pole-like electrodes with a phase-inverting direct-current voltage and giving a direct-current bias acting as the attraction force toward the pole electrodes to charged particles existing between the pole electrodes and an external electrode. SOLUTION: Four pole electrodes 11A to 11D are symmetrically placed around the central axis 12, and an alternating power source 13 supplies an alternating voltage of alternately inverting its phases. The alternating power source 13 is connected to a direct-current power source 14 giving a direct-current bias acting as the attraction force in the direction to a central electrode 11 to charged particles 16 existing in the space between the central electrode 11 and an external electrode 15, and both direct- and alternating-current voltages are simultaneously applied to the central electrode 11. This makes it possible to capture the charged particles of a wide mass range with a high density in the space between the pole electrodes 11A to 11D and the external electrode 15 and select the particles 16 with mass of a specific value or more from the captured particles 16 to take in them from the edge surrounded by the external electrode 15 into the space around the central electrode 11 to take them out to the outside.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子やイオンなど
の荷電粒子を所定の空間に電磁的に保持し、かつ空間外
に供給する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for electromagnetically holding charged particles such as electrons and ions in a predetermined space and supplying the particles outside the space.

【0002】[0002]

【従来の技術】図6は、空間に荷電粒子を捕獲する従来
の方法を表す。図6(a)はいわゆる4重極質量分離器
で、図6(b)はこれと同じ原理に基づいて3次元的に
荷電粒子を閉じこめるポールトラップである。また、図
6(c)は、電界と磁界を直交させて印加することに基
づくいわゆるペニングトラップである。
2. Description of the Related Art FIG. 6 shows a conventional method for trapping charged particles in space. FIG. 6A is a so-called quadrupole mass separator, and FIG. 6B is a pole trap that traps charged particles three-dimensionally based on the same principle. Further, FIG. 6C is a so-called Penning trap based on applying an electric field and a magnetic field at right angles.

【0003】図6(a)では、4つの捕獲電極31〜3
4で荷電粒子を捕獲したい空間を取り囲む。この4つの
電極の内、対向する2つの電極31と33に図のように
交流電源2より高周波電圧を印加し、捕獲したい空間に
高周波電界を発生させる。この方法は、電極に高周波を
印加した時にその中に置かれた荷電粒子に働く力が、時
間平均すると電界勾配の小さい方向に作用するという原
理を利用して荷電粒子を電極で囲まれた空間に2次元的
に捕獲する。また、図6(b)では、回転双曲面状の捕
獲電極35,36と、内面が回転双曲面のリング状の捕
獲電極37を用いて、捕獲したい空間を3次元的に取り
囲むことにより、図6(a)と同じ原理により3次元的
に粒子を捕獲する。上記の原理から明らかなように、こ
れらの方法では荷電粒子を閉じこめたい空間での電界勾
配をその周辺に比べて小さくする必要があり、その回り
を電極で密に取り囲むことが必要となる。また、図6
(a)の構成が質量分離器として広く用いられているこ
とから分かるように、この捕獲原理は荷電粒子の質量に
敏感である。この理由は、上記の捕獲原理が荷電粒子を
高周波電界により振動させることに基づいていることに
よる。即ち、質量の大きな粒子には振動の振幅が小さい
ために捕獲のための力が作用しない。また、軽い粒子は
振動の振幅が大きいために電極に衝突してしまう。
In FIG. 6 (a), four capture electrodes 31 to 31 are used.
Surround the space where you want to capture charged particles with 4. Of these four electrodes, a high frequency voltage is applied from the AC power supply 2 to the two electrodes 31 and 33 facing each other as shown in the figure, and a high frequency electric field is generated in the space to be captured. This method uses the principle that when a high frequency is applied to an electrode, the force acting on the charged particle placed in the electrode acts in the direction in which the electric field gradient is small when time averaged. Two-dimensionally capture. Further, in FIG. 6B, the trapping electrodes 35 and 36 having a rotating hyperboloid shape and the ring-shaped capturing electrode 37 having an inner surface having a rotating hyperboloid shape are used to three-dimensionally surround the space to be captured. Particles are three-dimensionally captured by the same principle as 6 (a). As is clear from the above principle, in these methods, it is necessary to make the electric field gradient in the space in which the charged particles are desired to be confined smaller than that in the surroundings, and it is necessary to enclose the surroundings with electrodes densely. FIG.
This trapping principle is sensitive to the mass of the charged particles, as can be seen from the widespread use of the configuration of (a) as a mass separator. The reason is that the above trapping principle is based on vibrating charged particles by a high frequency electric field. That is, since the vibration amplitude is small, the force for trapping does not act on the particles having a large mass. In addition, the light particles collide with the electrode because the vibration amplitude is large.

【0004】図6(c)では、図6(b)と同じ構成の
電極に、直流電源3によって荷電粒子を図のz方向に閉
じこめ、水平方向(図のr方向)に発散させる方向の直
流電圧を印加する。同時に磁石38によってz方向の磁
界39を発生させる。上記の直流電圧によって荷電粒子
が中心から水平方向に遠ざかる運動が生じるが、この運
動の方向を磁界39によって曲げることにより粒子が逃
げ去るのを抑制する。粒子が磁界から受ける力は粒子の
速度に比例するため、電極に同じ電圧を印加しても重い
粒子には磁界による閉じこめ効果は少ない。従って、こ
の方法では、重イオンなどの質量の大きな粒子を捕獲し
ようとすると極めて大きな磁界を必要とするため、捕獲
できる粒子の質量やエネルギーが小さい値に限られる。
In FIG. 6 (c), a DC power source 3 confines charged particles in the z direction of the figure to an electrode having the same structure as that of FIG. 6 (b), and direct current in the direction of diverging in the horizontal direction (r direction of the figure) is used. Apply voltage. At the same time, a magnetic field 39 in the z direction is generated by the magnet 38. The direct-current voltage causes the charged particles to move away from the center in the horizontal direction. By bending the direction of this movement by the magnetic field 39, the particles are prevented from escaping. Since the force that the particles receive from the magnetic field is proportional to the velocity of the particles, even if the same voltage is applied to the electrodes, the confinement effect by the magnetic field is small for heavy particles. Therefore, in this method, an extremely large magnetic field is required to capture a particle having a large mass such as heavy ions, and therefore the mass and energy of the particle that can be captured are limited to a small value.

【0005】このように上記の従来方法で捕獲できる粒
子の質量は、狭い範囲に限られる。
As described above, the mass of particles that can be captured by the above conventional method is limited to a narrow range.

【0006】また、図7は本願発明の発明者が先に出願
した荷電粒子の捕獲装置である(特開平4−29669
9号公報参照)。この方法では、図のように1組の中心
電極4と外部電極5を用意し、これに交流電源6から交
流電圧を印加し、さらに直流電源7から直流電圧を重畳
させて印加することにより、中心電極の回りの空間にあ
る荷電粒子8に、中心電極からの距離の増大とともに強
度が減少する交流電界と、中心電極に向かう力を及ぼす
直流電界とを重畳させて加える。この方法では、広い質
量範囲の荷電粒子を同時に捕獲できるが、逆に、特定の
質量の粒子のみを選別して取り出すことはできない。
FIG. 7 shows a device for trapping charged particles, which was previously filed by the inventor of the present invention (Japanese Patent Laid-Open No. 4-29669).
No. 9). In this method, as shown in the figure, a pair of center electrode 4 and outer electrode 5 is prepared, an alternating voltage is applied from an alternating current power source 6, and a direct current voltage is superposed and applied from a direct current power source 7. An alternating electric field whose strength decreases with an increase in the distance from the central electrode and a direct current electric field exerting a force toward the central electrode are added to the charged particles 8 in the space around the central electrode in a superimposed manner. In this method, charged particles in a wide mass range can be simultaneously captured, but conversely, only particles having a specific mass cannot be selected and taken out.

【0007】以上のように、従来の方法は荷電粒子を捕
獲できるものの、特定の質量の粒子を捕獲できるか、あ
るいは、広い質量の範囲の粒子を捕獲できるかのどちら
かであり、捕獲している広い質量範囲の荷電粒子から特
定の質量を持つものを選択的に取り出し、それを外部に
自動的に供給することはできなかった。
As described above, although the conventional method can trap charged particles, it can trap particles having a specific mass or particles having a wide mass range. It was not possible to selectively take out charged particles with a specific mass from a wide range of charged particles and automatically supply them to the outside.

【0008】[0008]

【発明が解決しようとする課題】本願発明は、図7に示
した従来の方法を改良し、広い質量範囲の荷電粒子を所
定の空間に捕獲すると同時に、特定の値以上の質量の粒
子を自動的かつ選択的に捕獲空間の外部に取り出し供給
することを目的とする。このような装置は、特に、電磁
的な荷電粒子の捕獲方法を、空間に保持した状態での結
晶成長のような、容器の壁から完全に隔離した状態での
材料処理などに適用するために、実現が望まれていた。
The present invention is an improvement over the conventional method shown in FIG. 7, in which charged particles in a wide mass range are trapped in a predetermined space, and at the same time, particles having a mass larger than a specific value are automatically generated. The purpose is to selectively and selectively take out and supply it to the outside of the capture space. Such an apparatus is particularly suitable for applying an electromagnetically charged particle capturing method to material processing in a state of being completely isolated from a wall of a container, such as crystal growth in a state of being held in a space. , Was desired to be realized.

【0009】[0009]

【課題を解決するための手段】上記の問題を解決するた
め、本発明は、中心軸の回りに対称的に配置された4本
以上の偶数本の柱状電極からなる中心電極と、前記偶数
本の柱状電極のそれぞれの一端部を取り囲む外部電極
と、前記偶数本の柱状電極のそれぞれに交互に位相の反
転した交流電圧を供給するように接続された交流電源
と、この交流電源に前記偶数本の柱状電極と前記外部電
極との間の空間に存在する荷電粒子に対して前記柱状電
極に向かう引力として作用する直流バイアスを与える直
流電源とから成ることを特徴とする。
In order to solve the above problems, the present invention provides a center electrode composed of four or more even columnar electrodes symmetrically arranged around a central axis, and the even number electrode. External electrodes surrounding one end of each of the columnar electrodes, an AC power source connected to each of the even number of columnar electrodes so as to alternately supply an alternating voltage with a reversed phase, and the even number of the AC power source. And a DC power source for applying a DC bias acting as an attractive force toward the columnar electrode to the charged particles existing in the space between the columnar electrode and the external electrode.

【0010】ここで、偶数本の柱状電極の本数が、4本
であってもよく、偶数本の柱状電極の内、1つおきに配
置された半数の柱状電極のそれぞれの前記一端部が、そ
れ以外の半数の柱状電極のそれぞれの前記一端部よりも
等しい長さだけ突き出していてもよい。
Here, the number of even-numbered columnar electrodes may be four, and among the even-numbered columnar electrodes, one end of each half of the columnar electrodes arranged at intervals of The other half of the columnar electrodes may be projected by the same length as the one end portion.

【0011】交互に位相の反転した交流電圧の電圧が互
いに異なってもよく、交流電源が周波数可変であっても
よい。
The alternating current voltages whose phases are alternately inverted may be different from each other, and the alternating current power source may be variable in frequency.

【0012】[0012]

【発明の実施の形態】図1は本発明の基本的な実施例を
表す図であり、中心電極11が4本の柱状電極11A〜
11Dからなる場合を示している。図のように、中心軸
12の回りに対称的に配置された4本の柱状電極11A
〜11Dに交流電源13を接続し、柱状電極11A〜1
1Dのそれぞれに交互に位相の反転した交流電圧を供給
する。図では、トランスを用いて交流電源13を構成
し、4本の柱状電極に1本置きに位相を反転させて交流
電圧を供給している。また、柱状電極11A〜11Dの
それぞれの一端部11a〜11dを取り囲むように外部
電極15を設ける。この交流電源13に、中心電極11
と外部電極15との間の空間に存在する荷電粒子16に
対して中心電極11の方向への引力として作用する直流
バイアスを与える直流電源14を接続する。図1では、
すべての柱状電極11A〜11Dに共通の直流バイアス
を与えているが、引力として作用する、つまり、極性が
同じであれば、必ずしもすべてに同じ値の直流バイアス
を与える必要はない。このようにして、中心電極11に
荷電粒子16を引きつける方向の直流電圧と、交流電圧
とを重畳して印加する。例えば正イオンを捕獲するに
は、図のように外部電極に対して各柱状電極に負の直流
電圧を加える。この時、外部電極15の目的は、中心電
極11の回りの電界を規定するためであり、隙間なく中
心電極を囲む必要はなく、図のように適当な間隙を設け
てよい。また、本発明の方法で重要なのは柱状電極付近
の電界のみなので、外部電極は、単に回りを取り囲んで
いれば良く、その形状の詳細は重要でない。例えば、図
では外部電極も軸対称な構造を持つが、必ずしもその必
要はない。逆に、各柱状電極は、質量選択性良く荷電粒
子を取り出すために、中心軸の回りに対称的な構造をと
ることが望ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a basic embodiment of the present invention, in which a central electrode 11 has four columnar electrodes 11A to 11A.
The case of 11D is shown. As shown, four columnar electrodes 11A symmetrically arranged around the central axis 12
To 11D, the AC power source 13 is connected to the columnar electrodes 11A to 1D.
An alternating voltage whose phase is inverted is alternately supplied to each of 1D. In the figure, an AC power supply 13 is configured by using a transformer, and alternating phases are supplied to every four columnar electrodes with the phase reversed. Further, the external electrodes 15 are provided so as to surround the respective one ends 11a to 11d of the columnar electrodes 11A to 11D. This AC power supply 13 is connected to the center electrode 11
A DC power supply 14 that applies a DC bias acting as an attractive force toward the central electrode 11 to the charged particles 16 existing in the space between the external electrode 15 and the external electrode 15 is connected. In Figure 1,
A common DC bias is applied to all the columnar electrodes 11A to 11D, but if they act as an attractive force, that is, if they have the same polarity, it is not necessary to apply a DC bias of the same value to all of them. In this way, the DC voltage in the direction of attracting the charged particles 16 and the AC voltage are superimposed and applied to the center electrode 11. For example, to capture positive ions, a negative DC voltage is applied to each columnar electrode with respect to the external electrode as shown in the figure. At this time, the purpose of the external electrode 15 is to define the electric field around the center electrode 11, and it is not necessary to surround the center electrode without a gap, and an appropriate gap may be provided as shown in the figure. Further, since only the electric field in the vicinity of the columnar electrode is important in the method of the present invention, it is sufficient that the external electrode simply surrounds the circumference, and the details of its shape are not important. For example, although the external electrode has an axially symmetrical structure in the drawing, it is not always necessary. On the contrary, each columnar electrode preferably has a symmetrical structure around the central axis in order to extract the charged particles with good mass selectivity.

【0013】この構成をとることで、広い質量範囲の荷
電粒子を各柱状電極11A〜11Dと外部電極5との間
の空間に高密度に捕獲でき、かつ、捕獲した荷電粒子の
中から特定の値以上の質量の荷電粒子を各柱状電極の外
部電極で囲まれた一端部から自動的選択的に各柱状電極
で囲まれた中心軸の回りの空間に取り込み、この空間を
通して、各柱状電極のもう1つの端部の側から選択的に
外部に取り出せる。
With this configuration, charged particles in a wide mass range can be captured at high density in the space between each of the columnar electrodes 11A to 11D and the external electrode 5, and a specific amount of the captured charged particles can be obtained. A charged particle having a mass equal to or larger than the above value is automatically and selectively taken from one end surrounded by the external electrode of each columnar electrode into the space around the central axis surrounded by each columnar electrode, and through this space, each columnar electrode It can be selectively taken out from the other end side.

【0014】本発明の装置で、中心電極と外部電極との
間の中心電極の回りの空間に荷電粒子を捕獲する原理は
先願発明と同じである。すなわち、各柱状電極に印加し
た直流電圧による静電引力により荷電粒子を捕獲する。
ところが、単に引力のみでは、捕獲した粒子はやがては
柱状電極に衝突してしまう。本発明の方法では、交流電
圧を重畳して印加することによりこれを防止する。ここ
で、交流電界の強度が中心電極から距離の増大とともに
減少していると、この交流電界から荷電粒子が受ける力
は、時間平均すると中心電極から遠ざかる方向に、つま
り斥力として働き、直流電界による引力と平衡して荷電
粒子を空間に保持する。この時、交流電界による斥力の
大きさは、交流の周波数をfとすると、1/mf2 (m
は荷電粒子の質量)に比例し、粒子の質量に反比例す
る。従って、直流電界による引力との平衡位置は、粒子
の質量が大きいほど中心電極に近くなる。
In the device of the present invention, the principle of trapping charged particles in the space around the center electrode between the center electrode and the outer electrode is the same as that of the prior invention. That is, the charged particles are captured by the electrostatic attraction due to the DC voltage applied to each columnar electrode.
However, the trapped particles will eventually collide with the columnar electrode only by the attractive force. In the method of the present invention, this is prevented by superimposing and applying the AC voltage. Here, when the strength of the AC electric field decreases with an increase in the distance from the center electrode, the force received by the charged particles from this AC electric field acts as a repulsive force in the direction away from the center electrode when time-averaged. Holds charged particles in space in equilibrium with attractive forces. At this time, the repulsive force due to the AC electric field is 1 / mf 2 (m
Is proportional to the mass of the charged particle) and inversely proportional to the mass of the particle. Therefore, the equilibrium position with the attraction due to the DC electric field becomes closer to the center electrode as the mass of the particle increases.

【0015】一方、複数の柱状電極で囲まれた内部の空
間、すなわち中心電極内部の空間にも、交流電界の同様
の作用で荷電粒子を捕獲できる。また、本発明の装置構
成では、中心電極を構成する各柱状電極の一端部が外部
電極で囲まれているので、各柱状電極のこの一端部と外
部電極との間にも荷電粒子を捕獲する空間が形成され
る。しかも中心電極の端部ではその中心部分、図1,図
2の中心軸上、で交流電界による荷電粒子に対する反発
力が最も弱い。従って、印加された直流バイアスによる
引力が反発力に打ちかって荷電粒子を中心電極の内部空
間に引き込む。この場合には、柱状電極の長さに沿う方
向には閉じこめの力が働かないので、捕獲された粒子は
中心軸に沿って自由に移動できることになる。このよう
な内部への閉じこめの原理は、やはり交流電界の作用が
時間平均すると斥力として作用することに基づいている
が、粒子の質量が小さすぎると、交流電界の作用が大き
いので粒子の運動が共鳴的に加速されてしまい、安定に
捕獲することができない。これにより、中心電極の内部
空間を通過できる粒子の質量には下限が発生する。つま
り、交流電圧をVacで表すと、Vac/mf2 が、柱状電
極の構造で決まるある特定値以下になると中心電極の内
部空間をイオンが通過可能になる。図1のように、全て
の柱状電極に共通の直流バイアスを加えた場合には、内
部の空間には直流電界が発生しないが、柱状電極ごとに
直流バイアスを変えることで、粒子の通過特性を変化さ
せられる。
On the other hand, charged particles can be trapped in the inner space surrounded by a plurality of columnar electrodes, that is, the inner space of the central electrode by the same action of the alternating electric field. Further, in the device configuration of the present invention, since one end of each columnar electrode constituting the center electrode is surrounded by the external electrode, charged particles are also captured between this one end of each columnar electrode and the external electrode. A space is formed. Moreover, at the end portion of the center electrode, the repulsive force against the charged particles by the AC electric field is weakest in the center portion, on the center axis of FIGS. 1 and 2. Therefore, the attractive force due to the applied DC bias overcomes the repulsive force to draw the charged particles into the internal space of the center electrode. In this case, since the confinement force does not work in the direction along the length of the columnar electrode, the trapped particles can move freely along the central axis. The principle of such confinement inside is based on the fact that the action of the AC electric field acts as a repulsive force when time averaged.However, if the mass of the particle is too small, the action of the AC electric field is large and the movement of the particle It is accelerated resonantly and cannot be captured stably. This creates a lower limit on the mass of particles that can pass through the inner space of the center electrode. That is, when the AC voltage is represented by V ac , when V ac / mf 2 becomes equal to or less than a specific value determined by the structure of the columnar electrode, ions can pass through the inner space of the center electrode. As shown in FIG. 1, when a common DC bias is applied to all columnar electrodes, no DC electric field is generated in the internal space, but by changing the DC bias for each columnar electrode, the passage characteristics of particles can be improved. Can be changed.

【0016】従って、本願発明の構成をとると、上記の
中心電極の外部の空間での荷電粒子の捕獲特性と内部の
空間での捕獲特性を自動的に結合させ、外部の空間に広
い範囲の質量の粒子を捕獲しながら同時に、特定の値以
上の質量の粒子を内部の空間を通じて取り出すことがで
きる。つまり、質量の小さな粒子は外部の空間に捕獲さ
れているときは中心電極から離れた位置に捕獲されてい
るので、中心電極の内部にはいることはできず、安定に
捕獲され続ける。逆に、質量の大きな粒子は外部空間で
の捕獲位置が中心電極に近く、容易にその内部に取り込
まれるが、取り込まれたあとも安定に内部を通過できる
ので、外部捕獲を構成していない柱状電極のもう1つの
端部から、自動的に取り出され、供給される。
Therefore, according to the configuration of the present invention, the trapping characteristic of the charged particles in the space outside the center electrode and the trapping characteristic in the inner space are automatically combined so that a wide range of the external space can be obtained. It is possible to capture particles having a mass and at the same time, particles having a mass larger than a specific value can be taken out through the internal space. That is, since particles having a small mass are trapped at a position away from the center electrode when trapped in the external space, they cannot enter the center electrode and are stably trapped. On the contrary, particles with a large mass have a trapping position in the outer space close to the center electrode and are easily taken into the inside, but since they can pass through the inside stably even after being taken in, columnar columns that do not constitute external trapping The other end of the electrode is automatically removed and dispensed.

【0017】この時、柱状電極の本数は、4本が最も実
用的な構成である。4重極は、通常、質量分析器に用い
られているとおり、内部空間での粒子の通過特性がもっ
とも質量に敏感である。しかし、上記の本願発明の原理
は、4重極に限られることはなく、6本など任意の偶数
本の柱状電極に対して同様に成り立つ。
At this time, the number of columnar electrodes is four, which is the most practical configuration. The quadrupole is usually most mass-sensitive in the passage characteristics of particles in the internal space, as is used in mass spectrometers. However, the principle of the invention of the present application is not limited to the quadrupole, and the same holds for any even number of columnar electrodes such as six.

【0018】この時、柱状電極の粒子を捕獲する側の端
部11a〜11dは、図2(a)のようにすべての柱状
電極11A〜11Dが同じ長さを持っていても、また、
不揃いであっても、上記の本願発明の原理は同様に成立
する。しかし、図2(b)のように、偶数本の柱状電極
の内、1つおきに配置された半数の柱状電極、例えば1
1A,11Bの端部11a,11bが、それ以外の半数
の柱状電極11C,11Dの端部11c,11dよりも
等しい長さだけ突き出している構成をとると、図2
(a)の場合に比べて粒子の捕獲特性を向上させること
ができる。即ち、図2(b)の構成をとると、長さが長
い半数の柱状電極11A,11Bと、短い半数の柱状電
極11C,11Dに印加されている交流電圧が、ちょう
ど位相が反転している。その結果、各柱状電極と外部電
極15の間の空間では、位相の反転する交流電圧が相殺
し合わず、長さが長い半数の柱状電極11A,11Bに
加えられた位相の交流電界が優勢で、結果として、柱状
電極からの距離に対して交流電界の減衰の仕方が緩やか
になっている。これは、特に柱状電極の端部に近い部分
で、交流電界から荷電粒子に働く実効的な斥力を大きく
する効果をもたらし、捕獲粒子の平衡位置を柱状電極か
ら遠ざける作用を果たす。その結果、捕獲した粒子が柱
状電極に衝突したり、あるいは柱状電極近くの狭い領域
に捕獲されるために荷電粒子同士の反発により粒子が失
われることが防止され、捕獲特性が向上する。このよう
に柱状電極の長さを不同にしても、柱状電極の内部を通
じて粒子を取り出す特性は変化しない。
At this time, the end portions 11a to 11d of the columnar electrodes on the side for trapping particles have the same length as all the columnar electrodes 11A to 11D as shown in FIG.
Even if they are not uniform, the above principle of the present invention is similarly established. However, as shown in FIG. 2B, half of the even number of columnar electrodes, for example, one columnar electrode, for example,
When the end portions 11a and 11b of 1A and 11B are protruded by the same length as the end portions 11c and 11d of the other half of the columnar electrodes 11C and 11D, the configuration shown in FIG.
As compared with the case of (a), the particle trapping property can be improved. That is, in the configuration shown in FIG. 2B, the AC voltages applied to the half long columnar electrodes 11A and 11B and the short half columnar electrodes 11C and 11D have exactly the opposite phases. . As a result, in the space between each columnar electrode and the external electrode 15, the AC voltages whose phases are inverted do not cancel each other out, and the AC electric field of the phase applied to the half long columnar electrodes 11A and 11B is dominant. As a result, the AC electric field is attenuated gradually with respect to the distance from the columnar electrode. This has the effect of increasing the effective repulsive force that acts on the charged particles from the AC electric field, particularly at the portion near the ends of the columnar electrodes, and acts to move the equilibrium position of the trapped particles away from the columnar electrodes. As a result, the trapped particles collide with the columnar electrode or are trapped in a narrow region near the columnar electrode, so that the particles are prevented from being lost due to repulsion between the charged particles, and the trapping property is improved. Thus, even if the lengths of the columnar electrodes are made different, the characteristics of extracting particles through the inside of the columnar electrodes do not change.

【0019】上述のように、柱状電極の長さを不同にす
る目的は、位相の反転する交流電圧が相殺し合うのを部
分的に妨げるためにある。従って、長さが等しい柱状電
極を用いても、それに交互に供給する位相の反転した交
流電圧が、互いに異なっていれば、やはり、互いの相殺
効果が弱まるので、上記の柱状電極の長さを不同にした
ときと全く同じ効果が得られる。
As described above, the purpose of making the lengths of the columnar electrodes unequal is to partially prevent the AC voltages whose phases are inverted from canceling each other. Therefore, even if the columnar electrodes having the same length are used, if the alternating voltages having the inverted phases supplied to them are different from each other, the mutual canceling effect is weakened. The effect is exactly the same as when they are made different.

【0020】以下、具体的な実験例につき説明する。Specific experimental examples will be described below.

【0021】図3(a)に示した構成の装置で、Xeと
Arのイオンを捕獲し、上記の特性を実際に確認した。
この図の例は、図1の構成、即ち、中心軸の回りに対称
的な4本の柱状電極を配置する方法を用いている。ただ
し、図3(a)では交流電源および直流電源の図示を省
略している。ここでは、それぞれ直径1cmのステンレ
ス円筒からなる柱状電極11A〜11Dを、図3(b)
に断面図を示すようにそれぞれの円筒の軸が中心軸12
から半径1cmの周上に並ぶように配置して中心電極と
した。その回りに外部電極15として、直径17cm、
長さ20cmの円筒状の金網を配置した。その中に、各
柱状電極が15cmだけ突き出している。すなわち、柱
状電極の一方の端部が外部電極に囲まれている。この中
心電極の内部、すなわち柱状電極11A〜11Dで囲ま
れた空間の内部を通過して取り出されるイオンを検出す
るために、柱状電極の他端側に4重極質量分析器17を
配置した。また、中心電極と外部電極の間に捕獲されて
いるイオンを検出するために、外部電極15の一部に開
口部15Aを設け、その後ろに引き出し電極18を配置
した。この引き出し電極の目的は、これに負のパルス電
圧を印加して捕獲した荷電粒子を引き出し、4重極質量
分析器19で捕獲した粒子の質量を測定することであ
る。
With the device having the structure shown in FIG. 3A, the ions of Xe and Ar were captured, and the above characteristics were actually confirmed.
The example of this figure uses the configuration of FIG. 1, that is, the method of disposing four columnar electrodes symmetrical about the central axis. However, in FIG. 3A, illustration of the AC power supply and the DC power supply is omitted. Here, the columnar electrodes 11A to 11D each made of a stainless steel cylinder having a diameter of 1 cm are shown in FIG.
The axis of each cylinder is the central axis 12
Were arranged side by side on a circumference having a radius of 1 cm to form a center electrode. Around that, as the external electrode 15, a diameter of 17 cm,
A cylindrical wire net having a length of 20 cm was arranged. Each columnar electrode projects into it by 15 cm. That is, one end of the columnar electrode is surrounded by the external electrode. A quadrupole mass spectrometer 17 is arranged on the other end side of the columnar electrode in order to detect the ions extracted through the inside of the center electrode, that is, the space surrounded by the columnar electrodes 11A to 11D. Further, in order to detect the ions trapped between the center electrode and the external electrode, an opening 15A was provided in a part of the external electrode 15, and the extraction electrode 18 was arranged behind it. The purpose of this extraction electrode is to apply a negative pulse voltage to the extraction electrode to extract the captured charged particles and measure the mass of the captured particles with the quadrupole mass analyzer 19.

【0022】この実験装置で、次のようにして特性を測
定した。はじめに、図1のトランスを用いた回路で、各
柱状電極11A〜11Dに外部電極15に対して−4V
の直流電圧と、交互に位相の反転した振幅100V(V
p-p =200V)の交流電圧を印加した。この電圧を保
ったまま、XeあるいはArガスを5×10-5Pa程度
導入する。次に電子ビーム源20を10msの間だけ作
動させ、エネルギー約100eVの電子ビームをパルス
的に照射して導入した希ガスをイオン化し、中心電極の
回りに捕獲した。その後、上記の2つの4重極質量分析
器17,19でイオンの捕獲特性と、中心電極の内部空
間を通過してのイオンの取り出し特性を測定した。
With this experimental apparatus, the characteristics were measured as follows. First, in the circuit using the transformer of FIG. 1, -4V is applied to each of the columnar electrodes 11A to 11D with respect to the external electrode 15.
DC voltage of 100V (V
An alternating voltage of pp = 200 V) was applied. While maintaining this voltage, Xe or Ar gas is introduced at about 5 × 10 −5 Pa. Next, the electron beam source 20 was operated only for 10 ms to pulse-irradiate the electron beam with an energy of about 100 eV to ionize the introduced rare gas and capture it around the center electrode. Then, the trapping characteristics of the ions and the extraction characteristics of the ions passing through the inner space of the center electrode were measured by the above-mentioned two quadrupole mass analyzers 17 and 19.

【0023】図4は交流電圧の周波数fを変化させて、
中心電極の内部空間を通過してくるXeイオンとArイ
オンを計数した結果である。後述のようにf=500k
Hzでも中心電極の周辺の空間には、XeとArイオン
が共に捕獲されているが、図のように、中心電極の内部
を通過して漏れ出すことはできない。fを590kHz
に増加させると中心電極の内部通過の条件が満たされ、
Xeイオンの計数が急速に立ち上がる。図のようにXe
イオンが計数される周波数領域は、Arイオンと明瞭に
分離されていて、質量選択したイオンの取り出しが可能
なのが分かる。この2つの領域はイオンの質量比の平方
根(=1.8)だけ異なっており、特性が設計通りにV
ac/mf2 で決まることを示している。
In FIG. 4, the frequency f of the AC voltage is changed to
This is the result of counting Xe ions and Ar ions passing through the internal space of the center electrode. As described below, f = 500k
Even at Hz, both Xe and Ar ions are trapped in the space around the center electrode, but as shown in the figure, they cannot pass through the center electrode and leak. f is 590 kHz
When it is increased to, the condition of internal passage of the center electrode is satisfied,
The count of Xe ions rises rapidly. Xe as shown
It can be seen that the frequency region in which ions are counted is clearly separated from Ar ions, and mass-selected ions can be extracted. The two regions differ by the square root (= 1.8) of the mass ratio of the ions, and the characteristics are V as designed.
It shows that it is determined by ac / mf 2 .

【0024】図5は上記と同じ条件で、中心電極と外部
電極の間の空間に捕獲されているXeイオンの捕獲寿命
を測定した結果である。ここでは捕獲寿命を、捕獲され
ている荷電粒子の数が捕獲開始時の値から1/eになる
時間と定義している。また、この図では、図2(a)の
ように4本の柱状電極の長さが全て等しい場合と、図2
(b)のように4本の内2本が1cmだけ突き出した場
合(従って、外部電極の中に突き出している全長は15
cmと16cmの2種類)を比較している。この両方の
場合に、交流の周波数fを増加させると、粒子の捕獲位
置が柱状電極に近づくことに起因して捕獲寿命が緩やか
に減少する。また、f=590kHzで中心電極の内部
を通過して粒子が流出し始めるので、捕獲寿命が急速に
減少する。しかし、4本の柱状電極の長さが全て等しい
場合(図には0cmと記載)と4本の内2本が1cmだ
け突き出した場合を比較すると、後者の方がfの増加に
伴う捕獲寿命の減少が緩やかであることがわかる。しか
し、この突き出しの長さをさらに2cmに増加させると
捕獲特性が逆に劣化した。
FIG. 5 shows the results of measuring the trapping life of Xe ions trapped in the space between the center electrode and the outer electrode under the same conditions as above. Here, the trapping lifetime is defined as the time when the number of trapped charged particles becomes 1 / e from the value at the start of trapping. Moreover, in this figure, as shown in FIG. 2A, the case where all the four columnar electrodes have the same length,
As shown in (b), when 2 out of 4 protrudes by 1 cm (therefore, the total length protruding into the external electrode is 15 cm).
cm and 16 cm). In both cases, when the frequency f of the alternating current is increased, the capture life of the particles gradually decreases due to the particle capture position approaching the columnar electrode. Also, at f = 590 kHz, particles begin to flow out through the inside of the center electrode, so that the capture lifetime is rapidly reduced. However, comparing the case where the lengths of the four columnar electrodes are all the same (described as 0 cm in the figure) and the case where two of the four columnar electrodes protrude by 1 cm, the latter has a longer trapping life as f increases. It can be seen that the decrease of is moderate. However, when the length of the protrusion was further increased to 2 cm, the trapping characteristic was deteriorated.

【0025】また、上記と同じ装置でほぼ同様の条件で
メタンガスを原料としてC11のクラスターが選択的に取
り出せることを実験的に確認した。この場合には、装置
内に約10-4Paのメタンガスと約10-3PaのHeガ
スを導入し、これに、エネルギー約100eVの電子ビ
ームを連続照射した。交流電圧の周波数fを590kH
zに保ったところ、中心電極の内部空間を通過してC11
+ のクラスターイオンが流出してくることが確認でき
た。このC11のクラスターは、柱状電極と外部電極の間
の空間に捕獲されたCHx +イオンが、やはり電子ビーム
照射で形成されたCHx ラジカルと反応して形成された
ものと考えられる。
Further, it was experimentally confirmed that C 11 clusters can be selectively taken out from methane gas as a raw material in the same apparatus as above under substantially the same conditions. In this case, a methane gas of about 10 −4 Pa and a He gas of about 10 −3 Pa were introduced into the apparatus, and this was continuously irradiated with an electron beam having an energy of about 100 eV. Frequency f of AC voltage is 590 kHz
When kept at z, it passed through the inner space of the center electrode and C 11
It was confirmed that + cluster ions flowed out. It is considered that the C 11 clusters were formed by the reaction of CH x + ions trapped in the space between the columnar electrode and the external electrode with the CH x radicals also formed by electron beam irradiation.

【0026】以上の実験により、本発明の方法の有効性
を確認することができた。
From the above experiments, the effectiveness of the method of the present invention could be confirmed.

【0027】特定の荷電粒子のみを対象とする場合に
は、交流電圧の周波数は予め定められた値に固定すれば
よい。しかし、上述したように、複数種の荷電粒子を対
象とする場合には交流電源の周波数を可変とするのがよ
い。
When only specific charged particles are targeted, the frequency of the AC voltage may be fixed to a predetermined value. However, as described above, it is preferable to change the frequency of the AC power source when a plurality of types of charged particles are targeted.

【0028】[0028]

【発明の効果】本発明の装置により、広い質量範囲とエ
ネルギー範囲に亘る荷電粒子を高密度に捕獲でき、か
つ、特定の値以上の質量の荷電粒子を選択的に外部に取
り出し供給できる。従って、本発明の装置は、捕獲した
粒子を種とする微結晶の成長、捕獲粒子と反応ガスとの
反応のような空間中に隔離した状態での材料処理など目
的に供すると著しい効果が得られる。
According to the apparatus of the present invention, charged particles over a wide mass range and energy range can be captured at a high density, and charged particles having a mass of a specific value or more can be selectively taken out and supplied to the outside. Therefore, the apparatus of the present invention has a remarkable effect when it is used for the purpose such as the growth of microcrystals using the trapped particles as a seed, the material treatment in a space isolated state such as the reaction between the trapped particles and the reaction gas. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】4本の柱状電極からなる中心電極を用いる場合
の本発明の原理的な構成を表す図である。
FIG. 1 is a diagram showing a principle configuration of the present invention when a center electrode composed of four columnar electrodes is used.

【図2】柱状電極と外部電極の代表的な構造を表す側面
図である。
FIG. 2 is a side view showing a typical structure of a columnar electrode and an external electrode.

【図3】具体的な実験例の装置構成を表す図である。FIG. 3 is a diagram showing a device configuration of a specific experimental example.

【図4】図3の構成で、交流電圧の周波数を変化させ
て、中心電極の内部空間を通過してくるXeイオンとA
rイオンを計数した結果を示す図である。
FIG. 4 is a diagram showing the structure of FIG. 3 in which the frequency of the alternating voltage is changed and Xe ions and A
It is a figure which shows the result of having counted the r ion.

【図5】図4と同じ条件で、中心電極と外部電極の間の
空間に捕獲されているXeイオンの捕獲寿命を測定した
結果を示す図である。
FIG. 5 is a diagram showing the results of measuring the capture lifetime of Xe ions trapped in the space between the center electrode and the outer electrode under the same conditions as in FIG.

【図6】従来の方法を表す図である。FIG. 6 is a diagram showing a conventional method.

【図7】本願発明の発明者が先に出願した荷電粒子の捕
獲装置を示す図である。
FIG. 7 is a diagram showing a charged particle capturing device previously filed by the inventor of the present invention.

【符号の説明】[Explanation of symbols]

2 従来方法で用いられる交流電源 3 従来方法で用いられる直流電源 4 先願方法の中心電極 5 先願方法の外部電極 6 先願方法の交流電源 7 先願方法の直流電源 11 中心電極 11A,11B,11C,11D 柱状電極 11a,11b,11c,11d 柱状電極の一端部 12 中心軸 13 交流電源 14 直流電源 15 外部電極 16 荷電粒子 17,19 質量分析器 18 引き出し電極 20 電子ビーム源 31,32,33,34 従来方法で用いられる捕獲電
極 35,36 従来方法で用いられる回転双曲面状の捕獲
電極 37 従来方法で用いられる内面が回転双曲面のリング
状の捕獲電極 38 従来方法で用いられる磁石 39 従来方法で用いられる磁界
2 AC power source used in the conventional method 3 DC power source used in the conventional method 4 Center electrode of the prior application method 5 External electrode of the prior application method 6 AC power source of the prior application method 7 DC power source of the prior application method 11 Center electrodes 11A, 11B , 11C, 11D Columnar electrodes 11a, 11b, 11c, 11d One end of columnar electrode 12 Center axis 13 AC power source 14 DC power source 15 External electrode 16 Charged particle 17, 19 Mass spectrometer 18 Extraction electrode 20 Electron beam source 31, 32, 33, 34 Trapping Electrode Used in Conventional Method 35, 36 Rotating Hyperboloidal Trapping Electrode Used in Conventional Method 37 Ring Trapping Electrode with Inner Surface Rotating Hyperboloid Used in Conventional Method 38 Magnet Used in Conventional Method 39 Magnetic field used in conventional methods

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 中心軸の回りに対称的に配置された4本
以上の偶数本の柱状電極からなる中心電極と、前記偶数
本の柱状電極のそれぞれの一端部を取り囲む外部電極
と、前記偶数本の柱状電極のそれぞれに交互に位相の反
転した交流電圧を供給するように接続された交流電源
と、この交流電源に前記偶数本の柱状電極と前記外部電
極との間の空間に存在する荷電粒子に対して前記柱状電
極に向かう引力として作用する直流バイアスを与える直
流電源とから成ることを特徴とする荷電粒子の捕獲供給
装置。
1. A center electrode composed of four or more even-numbered columnar electrodes symmetrically arranged around a central axis, an external electrode surrounding one end of each of the even-numbered columnar electrodes, and the even number. AC power supply connected to each of the columnar electrodes of the book so as to supply alternating voltage of which phases are alternately inverted, and the charging present in the space between the even-numbered columnar electrodes and the external electrodes in the AC power supply. A device for trapping and supplying charged particles, comprising: a DC power supply that applies a DC bias acting as an attractive force to the particles toward the columnar electrodes.
【請求項2】 前記偶数本の柱状電極の本数が、4本で
あることを特徴とする請求項1に記載の荷電粒子の捕獲
供給装置。
2. The charged particle supply / supply device according to claim 1, wherein the number of the even-numbered columnar electrodes is four.
【請求項3】 前記偶数本の柱状電極の内、1つおきに
配置された半数の柱状電極のそれぞれの前記一端部が、
それ以外の半数の柱状電極のそれぞれの前記一端部より
も等しい長さだけ突き出していることを特徴とする請求
項1または2に記載の荷電粒子の捕獲供給装置。
3. The one end of each of the half of the even number of columnar electrodes, which is arranged at every other one of the even number of columnar electrodes,
The charged particle trapping / supplying device according to claim 1 or 2, wherein the other half of the columnar electrodes are protruded by the same length from the one end of each of the columnar electrodes.
【請求項4】 前記交互に位相の反転した交流電圧の電
圧が互いに異なることを特徴とする請求項1から3のい
ずれかに記載の荷電粒子の捕獲供給装置。
4. The charged particle capturing / supplying device according to claim 1, wherein the alternating voltages whose phases are alternately inverted are different from each other.
【請求項5】 前記交流電源が周波数可変であることを
特徴とする請求項1から4のいずれかに記載の荷電粒子
の捕獲供給装置。
5. The charged particle capturing / supplying apparatus according to claim 1, wherein the AC power source has a variable frequency.
JP7215698A 1995-08-24 1995-08-24 Charged particle capture and supply device Expired - Lifetime JP2869517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7215698A JP2869517B2 (en) 1995-08-24 1995-08-24 Charged particle capture and supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7215698A JP2869517B2 (en) 1995-08-24 1995-08-24 Charged particle capture and supply device

Publications (2)

Publication Number Publication Date
JPH0961597A true JPH0961597A (en) 1997-03-07
JP2869517B2 JP2869517B2 (en) 1999-03-10

Family

ID=16676683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7215698A Expired - Lifetime JP2869517B2 (en) 1995-08-24 1995-08-24 Charged particle capture and supply device

Country Status (1)

Country Link
JP (1) JP2869517B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138688B2 (en) 2002-09-06 2006-11-21 National Institute Of Advanced Industrial Science And Technology Doping method and semiconductor device fabricated using the method
JP2007520726A (en) * 2003-06-03 2007-07-26 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Method and apparatus for electron capture dissociation or positron capture dissociation
JP2009259463A (en) * 2008-04-14 2009-11-05 Hitachi Ltd Ion trap, mass spectrometer, and ion mobility analyzer
US7846748B2 (en) 2002-12-02 2010-12-07 The University Of North Carolina At Chapel Hill Methods of quantitation and identification of peptides and proteins

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7138688B2 (en) 2002-09-06 2006-11-21 National Institute Of Advanced Industrial Science And Technology Doping method and semiconductor device fabricated using the method
US7846748B2 (en) 2002-12-02 2010-12-07 The University Of North Carolina At Chapel Hill Methods of quantitation and identification of peptides and proteins
JP2007520726A (en) * 2003-06-03 2007-07-26 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル Method and apparatus for electron capture dissociation or positron capture dissociation
JP2009259463A (en) * 2008-04-14 2009-11-05 Hitachi Ltd Ion trap, mass spectrometer, and ion mobility analyzer

Also Published As

Publication number Publication date
JP2869517B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
EP0871201B1 (en) Mass spectrometer
US7569811B2 (en) Concentrating mass spectrometer ion guide, spectrometer and method
JP2005535080A5 (en)
JP4709024B2 (en) Reaction apparatus and mass spectrometer
JP2007512942A (en) Aerosol charge modification device
CN103493173A (en) Mass analyser and method of mass analysis
US6251282B1 (en) Plasma filter with helical magnetic field
JP2005522845A (en) Fragmentation of ions by resonant excitation in higher order multipole field, low pressure ion traps
JPH0378743B2 (en)
EP3195935B1 (en) Particle charger
JP3721301B2 (en) Plasma mass filter
US5469323A (en) Method and apparatus for trapping charged particles
JP2000123780A (en) Mass spectrograph
JPH05294800A (en) Method for forming fine particle and device therefor
JP2869517B2 (en) Charged particle capture and supply device
US7989765B2 (en) Method and apparatus for trapping ions
KR20030051751A (en) A probe assembly for detecting an ion in a plasma generated in an ion source
JPH0668969B2 (en) Ion cyclotron resonance ion trap
JP2010170754A (en) Mass spectrometer
WO2019021338A1 (en) Method for designing ion optical element, and mass spectrometry device
JP3305473B2 (en) Ion trap type mass spectrometer
JP3656239B2 (en) Ion trap mass spectrometer
JPH03210463A (en) Resonance cell
JP3205429B2 (en) Charged particle separation method
US6639222B2 (en) Device and method for extracting a constituent from a chemical mixture

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term