JPH0961401A - Mass analyzing method - Google Patents

Mass analyzing method

Info

Publication number
JPH0961401A
JPH0961401A JP7221429A JP22142995A JPH0961401A JP H0961401 A JPH0961401 A JP H0961401A JP 7221429 A JP7221429 A JP 7221429A JP 22142995 A JP22142995 A JP 22142995A JP H0961401 A JPH0961401 A JP H0961401A
Authority
JP
Japan
Prior art keywords
sample
ions
analyzed
mass
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7221429A
Other languages
Japanese (ja)
Inventor
Seiji Yamamoto
清二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7221429A priority Critical patent/JPH0961401A/en
Publication of JPH0961401A publication Critical patent/JPH0961401A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform the mass analysis of an ultramicro-amt. of a sample to be analyzed. SOLUTION: Ions for ionizing a sample (reagent 102) are caught by a three- dimensional mass analyser 101 and a sample 103 to be analyzed is introduced thereinto in a pulse like manner and ionized by the charge transfer accompanied by collision. The capture condition of ions 104 is relaxed to discharge the ions from the capture region and the ions are detected by a detection meter 105 to obtain a mass spectrum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三次元質量分析計を用い
た極微量被分析試料を高感度に質量分析する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mass-analyzing an extremely small amount of a sample to be analyzed with a three-dimensional mass spectrometer.

【0002】[0002]

【従来の技術】従来、質量分析方法として、四重極質量
分析計を用いる方法が主流であった。この方法では、主
として中性の試料を電子衝撃(あるいは光照射)でイオ
ン化し、四重極電場を掃引し、ある条件のもとで通過し
たイオンを検出した。透過型であるがゆえ、この方法で
は、初期のイオン化の履歴がそのままフラグメントパタ
ーン,信号強度等に反映し正確な分析に困難が伴い、ま
た分析完了まで被分析試料を少なからず導入し続ける必
要があり、極微量試料の分析は事実上できない。
2. Description of the Related Art Conventionally, a method using a quadrupole mass spectrometer has been the mainstream as a mass spectrometry method. In this method, a neutral sample was ionized mainly by electron impact (or light irradiation), the quadrupole electric field was swept, and the ions that passed under certain conditions were detected. Since it is a transmission type, in this method, the history of initial ionization is directly reflected in the fragment pattern, signal intensity, etc., which makes accurate analysis difficult, and it is necessary to continue introducing a large amount of sample to be analyzed until the analysis is completed. Yes, it is practically impossible to analyze a very small amount of sample.

【0003】近年、三次元質量分析計(イオントラップ
質量分析計)を用いた質量分析方法が脚光を浴びてい
る。この方法は、直流およびRF電圧(UおよびVcosω
t)を三次元電極に印加して、関心のある全比電荷質量
範囲内のイオンを、電極によって作られる電界内に同時
に捕捉する。これらのイオンは、電子衝撃など、種々の
公知技術のいずれかによって、四極電界内で発生させる
か、あるいはこの領域内でイオンを導入する。ある蓄積
時間の後に、直流電圧U,RF電圧V、およびRF周波
数ωを組み合わせて、あるいは単独で変化させ、連続比
電荷質量の捕捉イオンを連続的に不安定にさせる。各イ
オンの捕捉が不安定になると、これらのイオンは電界の
境界を越える軌道を持つようになる。これらのイオンは
電極内に設けた穴を通って排出され、電子増倍管のよう
な検出器に衝突する。時間の関数として検出されるイオ
ン電流信号強度は、捕捉されたイオンの質量スペクトル
に対応する。
In recent years, a mass spectrometry method using a three-dimensional mass spectrometer (ion trap mass spectrometer) has been in the limelight. This method uses DC and RF voltages (U and Vcosω
t) is applied to the three-dimensional electrode to simultaneously trap ions within the total specific charge mass range of interest in the electric field created by the electrode. These ions are generated in the quadrupole field or introduced in this region by any of various known techniques, such as electron bombardment. After a certain accumulation time, the DC voltage U, the RF voltage V, and the RF frequency ω are changed in combination or independently to continuously destabilize the trapped ions of continuous specific charge mass. When the trapping of each ion becomes unstable, these ions have a trajectory that crosses the boundary of the electric field. These ions are ejected through holes provided in the electrodes and strike a detector such as an electron multiplier. The detected ion current signal strength as a function of time corresponds to the mass spectrum of the trapped ions.

【0004】一方、化学的イオン化(CI)質量分析法
〔ジャーナル オブ ジ アメリカンケミカル ソサエ
ティー(J. Amer. Chem. Soc. )88,2621(19
66)〕では、試料すなわち被分析試料のイオン化は電
子衝突,光子衝突,電場イオン化等ではなく、気相イオ
ン−分子反応によって行われる。
On the other hand, chemical ionization (CI) mass spectrometry [J. Amer. Chem. Soc.] 88,2621 (19)
66)], the sample, that is, the sample to be analyzed is ionized not by electron collision, photon collision, electric field ionization, etc., but by gas phase ion-molecule reaction.

【0005】三次元質量分析計を用いた化学的イオン化
(CI)質量分析法は、特開昭64−86438 号公報に記載
されている。これは、電気的に中性な試薬試料と被分析
試料を分析計内に同時に導入し、試薬試料を電子衝撃等
でイオン化し、捕捉する。そして、それら試薬試料との
衝突にともない化学的イオン化によって生成した被分析
試料のイオンも、同時に捕捉する。所望の時間捕捉し反
応を行わせた後、上記方法と同様な方法で質量スペクト
ルを得、分析を行う。
A chemical ionization (CI) mass spectrometry method using a three-dimensional mass spectrometer is described in JP-A-64-86438. In this method, an electrically neutral reagent sample and a sample to be analyzed are simultaneously introduced into the analyzer, and the reagent sample is ionized by electron impact or the like and captured. Then, the ions of the sample to be analyzed generated by the chemical ionization due to the collision with the reagent sample are also captured at the same time. After capturing and reacting for a desired time, a mass spectrum is obtained and analyzed by the same method as the above method.

【0006】イオンサイクロトロン共鳴(ICR)法を
用い化学的イオン化質量スペクトルを得る方法が実証さ
れている〔アナリティカル ケミストリ(Anal. Che
m.)53,428(1981)〕。試料はイオン化用
イオンの1%の濃度で存在するので、試料も電子衝撃で
かなりイオン化するため質量分析の障害となる。
A method for obtaining a chemical ionization mass spectrum by using the ion cyclotron resonance (ICR) method has been demonstrated [Analytical Chemistry (Anal. Che.
m. 53, 428 (1981)]. Since the sample exists at a concentration of 1% of the ionizing ions, the sample is also considerably ionized by electron impact, which is an obstacle to mass spectrometry.

【0007】[0007]

【発明が解決しようとする課題】各種のクロマトグラフ
ィーとともに三次元質量分析計を動作させる時、イオン
化および分析のために捕捉領域に導入される試料の濃度
は様々である。また、一般に試料化合物の反応速度も様
々である。従って、極微量または(および)遅い化学反
応の場合には、十分に生成イオンが生ぜず検出すること
が困難となる場合が多い。
When operating a three-dimensional mass spectrometer with various chromatographies, the concentration of sample introduced into the capture region for ionization and analysis is variable. Further, generally, the reaction rate of the sample compound also varies. Therefore, in the case of an extremely small amount or / and a slow chemical reaction, it is often difficult to detect the product ions because the product ions are not sufficiently generated.

【0008】本発明の目的は、三次元質量分析計の感度
を向上させる方法を提供することにある。
An object of the present invention is to provide a method for improving the sensitivity of a three-dimensional mass spectrometer.

【0009】[0009]

【課題を解決するための手段】上記目的は、被分析試料
のイオン化用イオンを三次元質量分析計に捕捉してお
き、そこへパルス的に極微量の電気的に中性の被分析試
料を導入し、衝突に伴う電荷移行により、試料をイオン
化し、イオン捕捉時間の調整により、最適の数の試料イ
オンを生成させ、このイオンの捕捉条件をゆるめ、捕捉
部位より排出させ、上記イオンを検出することにより質
量スペクトルを得ることにより解決される。
[Means for Solving the Problems] The above object is to capture the ionizing ions of the sample to be analyzed in a three-dimensional mass spectrometer, and to collect a very small amount of electrically neutral sample to be analyzed in a pulsed manner. The sample is ionized by charge transfer due to introduction and collision, and the optimal number of sample ions is generated by adjusting the ion trapping time. The trapping conditions for this ion are relaxed and ejected from the trapping site to detect the above ion. This is solved by obtaining a mass spectrum by

【0010】[0010]

【作用】図1を用いて本発明の作用を述べる。ここで、
被分析試料のイオン化に用いるイオンを試薬イオンと呼
ぶことにする。まず、試薬ガスを電子衝撃あるいは光衝
撃等の方法を用いて十分な量イオン化させる。この試薬
イオン生成は、三次元質量分析計内で行ってもよいし、
その外部で行ってから内部に導入してもよい。そして、
従来の技術で述べたように、適宜電場を調節して化学的
イオン化に必要な試薬イオンを選別して捕捉しておく
(図1a)。試薬イオンの反応性は相手の分子によって
大きく異なり、一定の試料分子とは全く反応しない場合
や、非常に強く反応する場合もある。従って、適当な試
薬ガスの選択により、特定の成分を検出するための高い
特異性を得ることができる。
The operation of the present invention will be described with reference to FIG. here,
Ions used for ionization of the sample to be analyzed will be referred to as reagent ions. First, the reagent gas is ionized in a sufficient amount using a method such as electron impact or light impact. This reagent ion generation may be performed in a three-dimensional mass spectrometer,
It may be performed outside and then introduced inside. And
As described in the prior art, the electric field is appropriately adjusted to select and capture the reagent ions necessary for chemical ionization (FIG. 1a). The reactivity of the reagent ion greatly differs depending on the partner molecule, and it may not react with a certain sample molecule at all or may react very strongly. Therefore, by selecting an appropriate reagent gas, high specificity for detecting a specific component can be obtained.

【0011】次に、新たな試薬イオンの供給を停止し安
定に捕捉しておきながら、電気的に中性の被分析試料を
捕捉領域にパルス的に導入する(図1b)。ここで、新
たな試薬イオンの供給を停止し、しかもパルス的に試料
を導入するのは、衝突領域に与える余計な散乱を減ら
し、イオン数を減少させたり反応経路に影響を与えない
ためであり、本発明の特徴である。
Next, while the supply of new reagent ions is stopped and the sample is stably captured, an electrically neutral sample to be analyzed is introduced into the capture region in a pulsed manner (FIG. 1b). The reason why the supply of new reagent ions is stopped and the sample is introduced in a pulsed manner is to reduce unnecessary scattering given to the collision region, reduce the number of ions, and do not affect the reaction path. , Is a feature of the present invention.

【0012】ここで捕捉されたイオンの運動エネルギは
高々20eV程度であるので、電子衝撃イオン化と比べ
て化学的イオン化では、試料のフラグメント化が抑えら
れる。生成する試料イオンの数は捕捉した試薬イオン
数,試料分子数,反応時間等のパラメータで決まる。本
発明では、極めて少ない試料を効率よくイオン化するた
め、試薬イオンを捕捉しておき、衝突回数を増やす工夫
をしている。なおかつ、生成した試料イオンをも捕捉し
ておく(図1c)ため、試料分子数の少ない点をもカバ
ーし、信号対雑音比を向上させることができる。従っ
て、この場合には、比較的広い範囲の比電荷質量のイオ
ンを捕捉できる条件が望ましい。
Since the kinetic energy of the trapped ions is about 20 eV at most, fragmentation of the sample is suppressed by chemical ionization as compared with electron impact ionization. The number of sample ions generated is determined by parameters such as the number of trapped reagent ions, the number of sample molecules, and the reaction time. In the present invention, in order to efficiently ionize an extremely small amount of sample, reagent ions are trapped in advance and the number of collisions is increased. Moreover, since the generated sample ions are also trapped (FIG. 1c), the point where the number of sample molecules is small can be covered, and the signal-to-noise ratio can be improved. Therefore, in this case, it is desirable that the condition that ions having a relatively wide range of specific charge mass can be trapped.

【0013】十分試料イオンを生成させた後に、直流電
圧U,RF電圧V、およびRF周波数ωを組み合わせ
て、あるいは単独で変化させ、連続比電荷質量の捕捉イ
オンを連続的に不安定にさせる。各イオンの捕捉が不安
定になると、これらのイオンは電界の境界を越える軌道
を持つようになる。
After sufficient sample ions are generated, the DC voltage U, the RF voltage V, and the RF frequency ω are changed in combination or independently to make the trapped ions of continuous specific charge mass continuously unstable. When the trapping of each ion becomes unstable, these ions have a trajectory that crosses the boundary of the electric field.

【0014】これらのイオンは電極内に設けた穴を通っ
て排出され(図1d)、電子増倍管のような検出器に衝
突する。時間の関数として検出されるイオン電流信号強
度は、捕捉されたイオンの質量スペクトルに対応する。
なお、試料に十分な量がある場合、信号対雑音比の向上
は、上記過程を複数回実施し積算する。
These ions are ejected through holes provided in the electrodes (FIG. 1d) and strike a detector such as an electron multiplier. The detected ion current signal strength as a function of time corresponds to the mass spectrum of the trapped ions.
When the sample has a sufficient amount, the signal-to-noise ratio can be improved by performing the above process a plurality of times.

【0015】公知例である、特開昭64−86438 号公報に
記載されている方法と本発明との最大の相異は、試薬分
子(イオン)と試料分子の供給方法にある。公知例で
は、試薬分子と試料分子は同時に質量分析計内に導入さ
れ、同時に電子衝撃にさらされるため、試料分子のイオ
ン化の際フラグメントイオンが多数発生し、また反応そ
のものも複雑となり、得られるスペクトルも複雑とな
る。本発明ではあらかじめ試薬イオンを選択捕捉してい
るために、反応系が単純化されており、試薬イオンの捕
捉後に試料をパルス的に導入するため、電子衝撃による
擾乱もない。これらの工夫は従来例から容易に類推され
るものではない。
The biggest difference between the method disclosed in JP-A-64-86438, which is a known example, and the present invention lies in the method of supplying reagent molecules (ions) and sample molecules. In a known example, the reagent molecule and the sample molecule are simultaneously introduced into the mass spectrometer and simultaneously exposed to electron impact, so that a large number of fragment ions are generated during the ionization of the sample molecule, and the reaction itself becomes complicated. Becomes complicated. In the present invention, since the reagent ions are selectively captured in advance, the reaction system is simplified, and since the sample is introduced in a pulsed manner after the reagent ions are captured, there is no disturbance due to electron impact. These ideas are not easily inferred from conventional examples.

【0016】[0016]

【実施例】本発明の実施例を図2を用いて説明する。試
薬イオンとしてH+ ,試料分子としてp- ベンゾキノン
とする。三次元質量分析計201の電極には試薬導入用
の穴が開いており、分子線バルブ202を通して水蒸気
分子線を導入する。ここで、電子銃203から放出され
る50eVの電子衝撃で分析計内でイオン化する。この
時、H+ ,O+ ,OH+ ,H2O+ およびH3O+ が生成
するがH+ 206のみを選択的に捕捉する。分子線導入
および電子衝撃をやめ、しばらくH+ を捕捉したまま真
空度を向上させる。
EXAMPLE An example of the present invention will be described with reference to FIG. H + is used as a reagent ion and p-benzoquinone is used as a sample molecule. The electrode of the three-dimensional mass spectrometer 201 has a hole for introducing a reagent, and a water vapor molecular beam is introduced through the molecular beam valve 202. Here, it is ionized in the analyzer by the electron impact of 50 eV emitted from the electron gun 203. At this time, H +, O +, OH +, H 2 O + and H 3 is O + is produced to selectively capture only H + 206. The introduction of the molecular beam and the electron impact are stopped, and the vacuum degree is improved while H + is trapped for a while.

【0017】次に捕捉条件を連続的にゆるめていき質量
数130程度のイオンまで同時に捕捉できるような条件
とする。ここで試料としてp- ベンゾキノン(分子量1
08)を分子線バルブ204を通してパルス分子線で導
入する。この際、バッファガスとしてHeで希釈しても
よい。この後30分程度の捕捉時間中で十分に試料を化
学的にイオン化し、従来の技術で述べたように生成イオ
ン207を順次排出し、二次電子増倍管205で検出す
る。この時、イオンとして、H+ とp- ベンゾキノンに
プロトンが付加した分子量109および110のイオン
が検出された。
Next, the trapping conditions are gradually loosened so that ions having a mass number of about 130 can be trapped at the same time. Here, p-benzoquinone (molecular weight 1
08) is introduced as a pulsed molecular beam through the molecular beam valve 204. At this time, the buffer gas may be diluted with He. After this, the sample is sufficiently chemically ionized during a capture time of about 30 minutes, the generated ions 207 are sequentially ejected as described in the conventional technique, and detected by the secondary electron multiplier 205. At this time, as ions, ions of molecular weight 109 and 110 in which protons were added to H + and p-benzoquinone were detected.

【0018】ちなみに化学的イオン化を用いず、電子衝
撃をおこなった場合には様々なフラグメントイオンが検
出され、元の試料がp−ベンゾキノンであることを知る
ことは難しい。
Incidentally, when chemical bombardment is not used and electron bombardment is performed, various fragment ions are detected, and it is difficult to know that the original sample is p-benzoquinone.

【0019】逆に、試料に何が含まれているかわからな
くてもこのイオン化で質量数109のイオンが検出され
ればp−ベンゾキノンが含まれていることを推定でき
る。感度としては、100分子程度あれば十分に検出で
きる。
On the contrary, even if it is not known what is contained in the sample, it can be inferred that p-benzoquinone is contained if the ion of mass number 109 is detected by this ionization. As for the sensitivity, about 100 molecules can be sufficiently detected.

【0020】[0020]

【発明の効果】本発明によれば、超微量な被分析試料の
質量分析を高感度に達成でき、計測分野の発展に大きく
貢献することができる。
According to the present invention, mass analysis of an extremely small amount of sample to be analyzed can be achieved with high sensitivity, and it can greatly contribute to the development of the measurement field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の質量分析法の説明図。FIG. 1 is an explanatory diagram of a mass spectrometry method of the present invention.

【図2】本発明の一実施例の実験装置の説明図。FIG. 2 is an explanatory diagram of an experimental device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101…三次元質量分析計、102…試薬イオン、10
3…試料、104…生成イオン、105…検出器、20
1…三次元質量分析計の電極、202…分子線バルブ、
203…電子銃、204…分子線バルブ、205…二次
電子増倍管、206…水素イオン、207…生成イオ
ン。
101 ... Three-dimensional mass spectrometer, 102 ... Reagent ion, 10
3 ... Sample, 104 ... Product ion, 105 ... Detector, 20
1 ... Electrodes of three-dimensional mass spectrometer, 202 ... Molecular beam valve,
203 ... Electron gun, 204 ... Molecular beam valve, 205 ... Secondary electron multiplier, 206 ... Hydrogen ion, 207 ... Product ion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被分析試料のイオン化用イオンを三次元質
量分析計に捕捉しておくステップ,そこへパルス的に極
微量の電気的に中性の被分析試料を導入するステップ,
衝突にともなう電荷移行等の化学的イオン化により、試
料をイオン化するステップ,イオン捕捉時間の調整によ
り、最適の数の試料イオンを生成するステップ,このイ
オンの捕捉条件をゆるめ、捕捉部位より排出し、検出す
ることにより質量スペクトルを得るステップからなるこ
とを特徴とする質量分析方法。
1. A step of capturing ions for ionization of a sample to be analyzed in a three-dimensional mass spectrometer, a step of introducing a trace amount of an electrically neutral sample to be analyzed in a pulsed manner,
The step of ionizing the sample by chemical ionization such as charge transfer due to collision, the step of generating an optimum number of sample ions by adjusting the ion trapping time, loosening the trapping condition of this ion, and ejecting it from the trapping site, A mass spectrometric method comprising the step of obtaining a mass spectrum by detection.
【請求項2】請求項1の上記分析方法を複数回繰り返
し、信号強度を積算し信号対雑音比を向上させる質量分
析方法。
2. A mass spectrometric method for increasing the signal-to-noise ratio by repeating the analysis method of claim 1 a plurality of times to integrate signal intensities.
JP7221429A 1995-08-30 1995-08-30 Mass analyzing method Pending JPH0961401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7221429A JPH0961401A (en) 1995-08-30 1995-08-30 Mass analyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7221429A JPH0961401A (en) 1995-08-30 1995-08-30 Mass analyzing method

Publications (1)

Publication Number Publication Date
JPH0961401A true JPH0961401A (en) 1997-03-07

Family

ID=16766610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7221429A Pending JPH0961401A (en) 1995-08-30 1995-08-30 Mass analyzing method

Country Status (1)

Country Link
JP (1) JPH0961401A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037815A (en) * 2011-08-04 2013-02-21 Hitachi High-Technologies Corp Mass spectroscope
US10090228B1 (en) 2012-03-06 2018-10-02 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037815A (en) * 2011-08-04 2013-02-21 Hitachi High-Technologies Corp Mass spectroscope
US10090228B1 (en) 2012-03-06 2018-10-02 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation

Similar Documents

Publication Publication Date Title
US10068754B2 (en) Method of identifying precursor ions
JP2608100B2 (en) How to use an ion trap mass spectrometer with chemical ionization
US4686367A (en) Method of operating quadrupole ion trap chemical ionization mass spectrometry
US6627875B2 (en) Tailored waveform/charge reduction mass spectrometry
EP1135790B1 (en) Method and apparatus for multiple stages of mass spectrometry
JP5967078B2 (en) Mass spectrometer and mass spectrometry method
US7485853B2 (en) Mass spectrometric mixture analysis
JP3294106B2 (en) Three-dimensional quadrupole mass spectrometry and apparatus
WO2010044370A1 (en) Mass spectrometer and method of mass spectrometry
JP2015523550A5 (en)
JP7147789B2 (en) Mass spectrometry method and mass spectrometer
JP2002184348A (en) Ion trap mass spectrometric method
Wells et al. “Dueling” ESI: Instrumentation to study ion/ion reactions of electrospray-generated cations and anions
JP2015517721A (en) MS / MS mass spectrometry method
JP5718367B2 (en) Mass spectrometer with built-in hydrogen-deuterium exchange
JP2005514737A (en) Simultaneous acquisition of chemical information
JPH0961401A (en) Mass analyzing method
US6992285B1 (en) Method and apparatus for analyzing a substance using MSn analysis
Steiner et al. Influence of trapping parameters on ion injection and dissociation efficiencies in a quadrupole mass filter/ion trap tandem instrument
Koyanagi et al. A novel chemical reactor suited for studies of biophysical chemistry: Construction and evaluation of a selected ion flow tube utilizing an electrospray ion source and a triple quadrupole detection system
JP2007033322A (en) Mass spectrometry and device thereof
EP4317961A1 (en) Mass spectrometry device and mass spectrometry method
US20240038515A1 (en) Mass Spectrometer and Mass Spectrometry Method
US20230290628A1 (en) Identification of Harmonics in RF Quadrupole Fourier Transform Mass Spectra
JP3837264B2 (en) Ion trap mass spectrometry method