JPH0961065A - Dc arc furnace with scrap preheating device - Google Patents

Dc arc furnace with scrap preheating device

Info

Publication number
JPH0961065A
JPH0961065A JP23331195A JP23331195A JPH0961065A JP H0961065 A JPH0961065 A JP H0961065A JP 23331195 A JP23331195 A JP 23331195A JP 23331195 A JP23331195 A JP 23331195A JP H0961065 A JPH0961065 A JP H0961065A
Authority
JP
Japan
Prior art keywords
scrap
furnace
furnace body
arc
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23331195A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ogawa
清 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP23331195A priority Critical patent/JPH0961065A/en
Publication of JPH0961065A publication Critical patent/JPH0961065A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To melt scrap within a short period of time and make a uniform steel melting temperature and uniform substances. SOLUTION: In a DC arc furnace in which a furnace bottom electrode and one electrode rod 6 inserted into a furnace body through a furnace lid are connected to a DC power supply device 10 through an electrical conductor, the furnace lid is provided with a scrap feeding port 14 at a position opposite to the DC power supply device 10 while the electrode rod 6 being held therebetween. Then, a shaft type scrap preheating device 20 is installed above the scrap feeding port 14, and then DC electromagnets 31, 41 having electrodes at positions where both sides of the electrode rod 6 as viewed from above are held are arranged at a lower part of the furnace body under a state in which the magnetic poles are placed at a lower part and/or a bottom part of a side wall of the furnace body, and magnetic pole center lines 35, 45 of each of the DC electromagnets connecting both opposite magnetic poles are crossed at a right angle as viewed from above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はスクラップを主溶
解原料として溶融金属を得るスクラップ予熱装置付きの
直流アーク炉に関し、さらに詳しくは、シャフト式スク
ラップ予熱装置をそなえた直流アーク炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC arc furnace equipped with a scrap preheating device for obtaining molten metal from scrap as a main melting raw material, and more particularly to a DC arc furnace equipped with a shaft type scrap preheating device.

【0002】[0002]

【従来の技術】アーク炉からの高温の排ガスを利用して
シャフト内のスクラップを予熱後炉体内に投入するシャ
フト式予熱装置付きのアーク炉としては、公表特許公報
平3−505625号に開示されたアーク炉(交流アー
ク炉)がある。
2. Description of the Related Art An arc furnace equipped with a shaft type preheating device that preheats scrap in a shaft into a furnace body by utilizing high temperature exhaust gas from the arc furnace is disclosed in Japanese Patent Laid-Open Publication No. 3-505625. There is an arc furnace (AC arc furnace).

【0003】ところがこの炉においては、シャフト式予
熱装置は炉蓋を貫通する電極棒との干渉を避けるため、
電極棒から離れた位置に設けられ、該予熱装置から炉内
に投入されたスクラップは電極棒から炉体の一方の側壁
側に大きく片寄った位置に堆積する。このため炉内のス
クラップの溶解が均一に進行せず、溶け残りが生じるた
め溶解時間がかかり、場合によっては面倒な酸素カッテ
ィング作業が必要となり、またスクラップの堆積しない
側の炉壁が局部的に損傷しやすい。また溶鋼は格別に還
流作用を受けず還流度合が低いため、スクラップ溶解に
時間がかかるうえ、合金を投入した場合にはその成分の
均一化のために時間がかかり、生産性が劣るものであっ
た。そしてこれらの現象および問題点は、炉蓋を貫通す
る1本の電極棒を有する直流アーク炉に、上記のシャフ
ト式予熱装置を組合わせた場合も、同様に生じるもので
ある。
However, in this furnace, the shaft type preheating device avoids interference with the electrode rod penetrating the furnace lid.
Scrap provided at a position apart from the electrode rod and charged into the furnace from the preheating device is deposited at a position largely offset from the electrode rod to one side wall side of the furnace body. For this reason, the melting of scrap in the furnace does not proceed uniformly, and unmelted residue occurs, so it takes a long time to melt, and in some cases a troublesome oxygen cutting operation is required, and the furnace wall on the side where scrap is not accumulated locally It is easily damaged. In addition, since molten steel is not affected by the reflux effect and the degree of reflux is low, it takes time to melt scrap, and when alloy is added, it takes time to homogenize its components, resulting in poor productivity. It was These phenomena and problems similarly occur when the above-mentioned shaft type preheating device is combined with a DC arc furnace having one electrode rod penetrating the furnace lid.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記従来の
問題点を解決するものであり、スクラップを溶け残りの
ない状態で短時間で溶解でき、溶鋼各部の温度および成
分を均一化することができる生産性の高いスクラップ予
熱装置付き直流アーク炉を提供しようとするものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art. The scrap can be melted in a short time in a state where there is no unmelted residue, and the temperature and composition of each part of the molten steel can be made uniform. The present invention aims to provide a DC arc furnace with a scrap preheater that has high productivity.

【0005】[0005]

【課題を解決するための手段】この発明のスクラップ予
熱装置付き直流アーク炉は、炉体の底部に設けた炉底電
極と、前記炉体に被せられた炉蓋を貫通して前記炉体内
に挿入された1本の電極棒とを、導体を介して直流電源
装置に接続した直流アーク炉において、前記炉蓋には、
前記電極棒をはさんで前記直流電源装置と反対側の位置
にスクラップ投入口を設け、上部にスクラップ装入口を
そなえ排気装置に接続されたシャフト式スクラップ予熱
装置を、前記スクラップ投入口の上部に設けるととも
に、前記炉体の下部には、上方から見て前記電極棒を両
側からはさむ位置に磁極を有する直流電磁石を2個、前
記磁極を前記炉体の側壁下部および/または底部に臨ま
せかつ対向する両磁極を結ぶ各直流電磁石の磁極中心線
を上方から見て交叉させた状態で、配設し、これらの直
流電磁石を、それぞれ極性および電流量可変の電磁石用
直流電源装置に接続したことを特徴とする。
A DC arc furnace with a scrap preheating device according to the present invention penetrates a furnace bottom electrode provided at the bottom of the furnace body and a furnace lid covered by the furnace body into the furnace body. In a DC arc furnace in which the inserted one electrode rod is connected to a DC power supply device via a conductor, the furnace lid is
A scrap charging port is provided at a position opposite to the DC power supply device across the electrode rod, and a shaft type scrap preheating device connected to an exhaust device with a scrap charging port at the upper part is provided above the scrap charging port. At the bottom of the furnace body, two DC electromagnets having magnetic poles at positions sandwiching the electrode rod from both sides when viewed from above are provided, and the magnetic poles are made to face the lower side wall and / or the bottom portion of the side wall of the furnace body. Arranged so that the center lines of the magnetic poles of the DC electromagnets that connect the opposing magnetic poles are crossed when viewed from above, and these DC electromagnets are connected to the DC power supply device for electromagnets whose polarity and current amount are variable. Is characterized by.

【0006】[0006]

【発明の実施の形態】以下図1乃至図4によりこの発明
の一実施形態を説明する。図中、1は炉体で、2はこの
炉体1の下部側方に突出した出鋼口、3はスラグ排出口
であり、炉体1は水平軸線のまわりに、出鋼口2が昇降
する方向に図示しない傾動装置により傾動駆動される。
4は炉体1に被せられた開閉可能な炉蓋である。5は炉
体1の底部に設けた炉底電極、6はこの炉底電極5のほ
ぼ直上部において炉蓋4を貫通して下部を炉体1内に挿
入される電極棒であり、図示しない昇降旋回装置により
駆動される把持器7に把持されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. In the figure, 1 is a furnace body, 2 is a tapping hole projecting to the lower side of the furnace body 1, 3 is a slag discharge port, and the furnace body 1 is a horizontal axis line and a tapping port 2 moves up and down. It is tilt-driven by a tilting device (not shown).
Reference numeral 4 denotes a furnace lid that covers the furnace body 1 and that can be opened and closed. Reference numeral 5 is a furnace bottom electrode provided at the bottom of the furnace body 1, and 6 is an electrode rod which penetrates through the furnace lid 4 and is inserted into the furnace body 1 at a lower portion thereof almost directly above the furnace bottom electrode 5. It is gripped by a gripper 7 driven by a lifting / lowering device.

【0007】10は炉体1の側方に配置された変圧器室
11内に設けた直流電源装置で、図示しない炉用変圧器
と整流器とを備えている。12はこの直流電源装置10
と炉底電極5を接続する下側導体、13は同様に直流電
源装置10と電極棒6(詳しくは把持器7)を接続する
上側導体である。そして炉蓋4には、電極棒6をはさん
で直流電源装置とは反対側の位置、すなわち直流電源装
置10に至る上側導体13および下側導体12とは反対
側の位置に、スクラップ投入口14が、電極棒6にでき
るだけ接近させて、設けてある。
Reference numeral 10 is a DC power supply device provided in a transformer chamber 11 arranged on the side of the furnace body 1, and includes a furnace transformer and a rectifier (not shown). 12 is this DC power supply device 10
Is a lower conductor that connects the furnace bottom electrode 5 and 13 is an upper conductor that similarly connects the DC power supply device 10 and the electrode rod 6 (specifically, the gripper 7). Then, in the furnace lid 4, at a position opposite to the DC power supply device across the electrode rod 6, that is, at a position opposite to the upper conductor 13 and the lower conductor 12 reaching the DC power supply device 10, a scrap charging port is provided. 14 is provided as close as possible to the electrode rod 6.

【0008】このスクラップ投入口14の上部には、ス
クラップ投入口14に塔体21の下端部のスクラップ排
出口22を臨ませて、シャフト式スクラップ予熱装置2
0を配設してある。塔体21の上端部には、開閉可能な
蓋23をそなえたスクラップ装入口24を設け、また塔
体21の側壁に設けた排気口25は、図示しない排気装
置に接続されている。
At the upper part of the scrap charging port 14, the scrap discharging port 22 at the lower end of the tower body 21 is made to face the scrap charging port 14, and the shaft type scrap preheating device 2 is provided.
0 is set. A scrap inlet 24 having an openable / closable lid 23 is provided at the upper end of the tower body 21, and an exhaust port 25 provided on the side wall of the tower body 21 is connected to an exhaust device (not shown).

【0009】塔体21は屈曲した角筒状を呈し、26a
はその下部に段部状に設けたスクラップ支承部、26b
はさらにその下部に設けたスクラップ下部支承部であ
る。これら各支承部上面に沿って横行自在に支持された
押出体27a,27bを、シリンダ28a,28bによ
り往復駆動する押出装置29a,29bによって、スク
ラップ支承部26上に貯留され排ガスにより予熱された
スクラップSを、スクラップ排出口22を経てスクラッ
プ投入口14内へ間歇的に供給するようにしてある。
The tower body 21 is in the shape of a bent rectangular tube, and 26a
Is a scrap bearing portion 26b provided in a stepped shape below
Is a scrap lower bearing portion provided below the scrap. Scraps stored on the scrap bearing part 26 and preheated by the exhaust gas by the pushing devices 29a and 29b that reciprocally drive the extruded bodies 27a and 27b supported along the upper surface of each of the bearing parts by the cylinders 28a and 28b. S is intermittently supplied through the scrap discharge port 22 into the scrap input port 14.

【0010】一方、炉体1の下部には、2個の直流電磁
石31,41が設けてある。直流電磁石31,41は、
磁心32,42にコイル33,43を巻装し、このコイ
ルを電磁石用直流電源装置34,44に接続してあり、
この直流電源装置は、図示しない変圧器、整流器および
切換器をそなえた、極性(正負)および供給電流量が可
変のものである。そして直流電磁石31は、上方から見
て、すなわち平面図において、電極棒6(したがって炉
底電極5)を両側からはさむ位置に、磁心32の両端部
に形成した磁極32a,32bを有し、この磁極32a
と磁極32bは、炉体1の底部に少量の空隙をおいて臨
ませてある。
On the other hand, two DC electromagnets 31, 41 are provided in the lower portion of the furnace body 1. The DC electromagnets 31 and 41 are
The coils 33 and 43 are wound around the magnetic cores 32 and 42, and the coils are connected to the electromagnet DC power supply devices 34 and 44.
This DC power supply device has a transformer (not shown), a rectifier, and a switch, and has a variable polarity (positive / negative) and a supply current amount. The DC electromagnet 31 has magnetic poles 32a and 32b formed at both ends of the magnetic core 32 at a position sandwiching the electrode rod 6 (and therefore the furnace bottom electrode 5) from both sides when viewed from above, that is, in a plan view. Magnetic pole 32a
The magnetic pole 32b faces the bottom of the furnace body 1 with a small gap.

【0011】同様に直流電磁石41は、上方から見て、
すなわち平面図において、電極棒6(したがって炉底電
極5)を両側からはさむ位置に、磁心42の両端部に形
成した磁極42a,42bを有し、この磁極42aと磁
極42bは、上記直流電磁石31とは別の位置で、炉体
1の底部に少量の空隙をおいて臨ませてある。そして直
流電磁石31の対向する両磁極32a,32bを結ぶ磁
極中心線35と、直流電磁石41の対向する両磁極42
a,42bを結ぶ磁極中心線45とは、上方から見て、
すなわち平面図において、電極棒6(したがって炉底電
極5)の中心部で所定の角度αで交叉する相互関係とな
っている。
Similarly, the DC electromagnet 41, when viewed from above,
That is, in the plan view, magnetic poles 42a and 42b formed at both ends of the magnetic core 42 are provided at positions sandwiching the electrode rod 6 (and hence the furnace bottom electrode 5) from both sides. The magnetic poles 42a and 42b are the DC electromagnet 31. At a position different from the above, a small amount of space is made to face the bottom of the furnace body 1. The magnetic pole center line 35 connecting the facing magnetic poles 32 a and 32 b of the DC electromagnet 31 and the facing magnetic poles 42 of the DC electromagnet 41.
The magnetic pole center line 45 connecting a and 42b is seen from above,
That is, in the plan view, there is a mutual relationship in which the central portion of the electrode rod 6 (and therefore the furnace bottom electrode 5) intersects at a predetermined angle α.

【0012】次に上記構成のスクラップ予熱装置付き直
流アーク炉50の作用を説明する。先ずシャフト式スク
ラップ予熱装置20において排ガス流により予熱したス
クラップS(溶解操業開始時は常温のスクラップ)を、
スクラップ投入口14を経て炉体1内に供給すれば、ス
クラップSはスクラップ投入口14の下方位置に集中的
に装入されて、該下方位置に多量に堆積した状態とな
る。なお図2および図4においては、このスクラップS
の図示は省略してある。
Next, the operation of the DC arc furnace 50 with a scrap preheating device having the above structure will be described. First, the scrap S preheated by the exhaust gas flow in the shaft type scrap preheating device 20 (scrap at room temperature at the start of melting operation) is
When the scrap S is supplied into the furnace body 1 through the scrap input port 14, the scrap S is intensively charged in the lower position of the scrap input port 14 and a large amount is accumulated in the lower position. 2 and 4, this scrap S
Is not shown.

【0013】そこで直流電源装置10により炉底電極5
と電極棒6の間に直流電圧を印加してアーク51を発生
させれば、直流電源装置10から下側導体12、炉底電
極5(炉底部に溶鋼52が存在するときはこれに加えて
溶鋼52)、電極棒6、上側導体13を経て直流電源装
置10に至る給電回路53を流れる電流により、図2に
示すように炉体1内のアーク51付近に磁束B0 が生
じ、この磁束B0 内を流れるアーク51はアーク電流と
磁束B0 とによって、フレミングの左手の法則に従う電
磁力F0 を受けて図示のように直流電源装置10と反対
側のスクラップ投入口14側に偏向するとともに、上記
アーク電流が流れる溶鋼52も電磁力F0を受けて該電
磁力方向に駆動され、溶鋼の還流作用が得られる。この
偏向したアーク51は、この偏向側に配置したスクラッ
プ投入口14の下方に多量に堆積したスクラップ堆積部
を加熱溶解させ、また該堆積部の未溶解のスクラップS
は、アーク51とスクラップ投入口14開口側の炉壁1
aとの間に介在して該炉壁の過熱を防止する。
Therefore, the DC power supply device 10 is used for the bottom electrode 5 of the furnace.
If a DC voltage is applied between the electrode and the electrode rod 6 to generate an arc 51, the DC power supply 10 causes the lower conductor 12 and the furnace bottom electrode 5 (in addition to this when molten steel 52 exists at the furnace bottom). A magnetic flux B 0 is generated in the vicinity of the arc 51 in the furnace body 1 as shown in FIG. 2 due to a current flowing through the power supply circuit 53 that reaches the DC power supply device 10 via the molten steel 52), the electrode rod 6, and the upper conductor 13, and this magnetic flux B 0 is generated. arc 51 flowing B in 0 by the arc current and the magnetic flux B 0, deflected on the opposite side the scrap inlet 14 side of the DC power supply 10 as shown by receiving electromagnetic force F 0 according to the Fleming's left-hand rule At the same time, the molten steel 52 through which the arc current flows also receives the electromagnetic force F 0 and is driven in the direction of the electromagnetic force, and the reflux action of the molten steel is obtained. The deflected arc 51 heats and melts a large amount of the scrap deposit portion below the scrap input port 14 disposed on the deflecting side, and the undissolved scrap S in the deposit portion.
Is the arc wall 51 and the furnace wall 1 on the opening side of the scrap charging port 14.
It is interposed between a and a to prevent the furnace wall from overheating.

【0014】このように先ずスクラップ投入口14を、
電極棒6をはさんで直流電源装置10と反対側の位置に
設けることにより、給電回路53を流れる電流によるア
ーク51の自己偏向を有効に利用し、該偏向したアーク
51によりスクラップ投入口14下方のスクラップ堆積
部を加熱溶解するので、上記の偏向のみにより良好な溶
解速度が得られる場合は、アーク偏向のための他のエネ
ルギを必要とせず、また下記の追加偏向をおこなう場合
も、アーク偏向のためのエネルギーは少なくて済むので
ある。
In this way, first, the scrap inlet 14 is
By disposing the electrode rod 6 at a position opposite to the DC power supply device 10 by sandwiching it, the self-deflection of the arc 51 by the current flowing through the power feeding circuit 53 is effectively utilized, and the deflected arc 51 lowers the scrap inlet 14 below. Since the scrap deposition part of is melted by heating, no other energy for arc deflection is required when a good melting rate can be obtained only by the above deflection, and the arc deflection is also performed when the following additional deflection is performed. It requires less energy for.

【0015】一方上記のアーク電流によるアークの偏向
方向は、スクラップ投入口14の中心線14a上に限ら
れ、またその偏向量はアーク電流によって決まり、この
アーク電流はスクラップの溶解条件により決まるため、
前記偏向量は任意に調節することができない。そこで、
スクラップSの堆積量によってさらに大きくアーク51
を偏向させ、あるいは図2において左右方向にアーク5
1を偏向させる場合は、スクラップ溶解状況やアーク発
生状況をITVで監視するなどして、直流電磁石31,
41を用いて下記のようにアーク51の追加偏向をおこ
なう。
On the other hand, the arc deflection direction due to the above arc current is limited to the center line 14a of the scrap inlet 14, and the deflection amount is determined by the arc current, which is determined by the melting condition of the scrap.
The amount of deflection cannot be adjusted arbitrarily. Therefore,
Larger arc 51 depending on the amount of scrap S deposited
Or deflect the arc 5 in the left-right direction in FIG.
In the case of deflecting 1, the DC electromagnet 31,
Additional deflection of the arc 51 is performed using 41 as follows.

【0016】すなわち、直流電磁石31のコイル33に
電磁石用直流電源装置34により直流電流を流すと、磁
極32a(図2ではN極)と磁極32b(図2ではS
極)との間に磁束B1 が生じ、同様に直流電磁石41に
電磁石用直流電源装置44により直流電流を流すと磁極
42a(図2ではN極)と磁極42b(図2ではS極)
との間に磁束B2 が生じ、これらの合成磁束B3 が、ア
ーク51付近に生じる。これによって、アーク51はこ
の合成磁束B3 による前記と同様なフレミングの左手の
法則に従う電磁力F3 を受けて、該電磁力F3 の方向に
偏向し、溶鋼も同方向に駆動される。
That is, when a DC current is applied to the coil 33 of the DC electromagnet 31 by the electromagnet DC power supply 34, the magnetic pole 32a (N pole in FIG. 2) and the magnetic pole 32b (S in FIG. 2).
A magnetic flux B 1 is generated between the magnetic pole 42a and the magnetic pole 42a. Similarly, when a direct current is applied to the DC electromagnet 41 by the electromagnet DC power supply device 44, the magnetic pole 42a (N pole in FIG. 2) and the magnetic pole 42b (S pole in FIG. 2)
And a magnetic flux B 2 is generated between them and the magnetic flux B 3 is generated near the arc 51. Thereby, the arc 51 receives the electromagnetic force F 3 in accordance with the similar to Fleming's left hand rule by the synthetic magnetic flux B 3, deflected in the direction of the electric force F 3, the molten steel is also driven in the same direction.

【0017】そしてアーク放電中は前述の給電回路53
の導体配置による電磁力F0 が生じているので、結局ア
ーク51は、電磁力F3 とF0 の合成電磁力Fを受け
て、該合成電磁力方向に偏向し、溶鋼52も同方向に駆
動される。なおこの合成電磁力Fは、上記磁束B0 と合
成磁束B3 との総合成磁束による電磁力ということもで
きる。
During the arc discharge, the above-mentioned power supply circuit 53 is provided.
Since the electromagnetic force F 0 is generated due to the conductor arrangement, the arc 51 eventually receives the combined electromagnetic force F of the electromagnetic forces F 3 and F 0 and is deflected in the combined electromagnetic force direction, and the molten steel 52 also moves in the same direction. Driven. The combined electromagnetic force F can also be referred to as an electromagnetic force generated by the total combined magnetic flux of the magnetic flux B 0 and the combined magnetic flux B 3 .

【0018】このように直流電磁石31,41に供給す
る直流電流の極性と電流量を調節することにより、合成
電磁力Fの方向および大きさは自由に変えることがで
き、アーク51を所望の方向に所望量だけ偏向させて、
スクラップSを溶け残りのない状態で短時間で効率よく
溶解でき、また溶鋼52がスクラップ方向に還流される
のでスクラップの溶解が促進されるとともに、溶鋼各部
の温度が均一化され、合金を添加した場合の溶鋼成分が
均一化され、さらに溶鋼とスラグ間の精錬反応が促進さ
れるのである。
By adjusting the polarity and the amount of the DC current supplied to the DC electromagnets 31 and 41 in this manner, the direction and magnitude of the combined electromagnetic force F can be freely changed, and the arc 51 can be directed in a desired direction. Deflect the desired amount to
The scrap S can be efficiently melted in a short time in a state where there is no unmelted residue, and since the molten steel 52 is refluxed in the scrap direction, the melting of the scrap is promoted, the temperature of each portion of the molten steel is made uniform, and the alloy is added. In this case, the molten steel components are made uniform, and the refining reaction between the molten steel and the slag is promoted.

【0019】次にスクラップSの溶解が終了し、溶鋼面
がフラットになった昇温期においては、給電回路53の
導体配置とアーク電流値によって決まる前記電磁力F0
により、アーク51が大きくスクラップ投入口14側に
偏向して炉壁1aを局部損傷させるおそれがあるので、
そのときは図4に示すように直流電磁石31,41への
供給電流量および極性を調節して、磁束B0 とほぼ同じ
大きさで反対向きの合成磁束B3 を生じさせ、前記電磁
力F0 とほぼ同じ大きさで反対向きの電磁力F3 が生じ
るようにすれば、アーク51は偏向することなく電極棒
6のほぼ直下(鉛直)方向に形成されるので、これによ
って炉壁1aの局部損傷を防止できるのである。
Next, during the temperature rising period when the melting of the scrap S is completed and the molten steel surface becomes flat, the electromagnetic force F 0 determined by the conductor arrangement of the power feeding circuit 53 and the arc current value.
As a result, the arc 51 may be largely deflected toward the scrap charging port 14 side to locally damage the furnace wall 1a.
At that time, as shown in FIG. 4, the amount and polarity of the current supplied to the DC electromagnets 31 and 41 are adjusted to generate a composite magnetic flux B 3 having substantially the same magnitude as the magnetic flux B 0 but in the opposite direction. If an electromagnetic force F 3 having substantially the same magnitude as 0 and in the opposite direction is generated, the arc 51 is formed substantially directly below (vertically) the electrode rod 6 without being deflected. Local damage can be prevented.

【0020】また溶解後の出鋼に先立って溶鋼52上の
溶融スラグを排出する際は、合成電磁力F3 をスラグ排
出口3の方向に向けることにより、該方向に駆動される
溶鋼流によって溶融スラグの排出を促進でき、スラグ排
出時間を短縮化することもできる。
Further, when the molten slag on the molten steel 52 is discharged prior to the tapping after melting, by directing the synthetic electromagnetic force F 3 toward the slag discharge port 3, a molten steel flow driven in that direction is used. The discharge of the molten slag can be promoted, and the slag discharge time can be shortened.

【0021】次に図5はこの発明の他の実施形態を示
し、シャフト式スクラップ予熱装置60の形式が異なる
他は、前記実施形態と同構成を有するものであり、図1
と同一部分には同一符号を付してその詳細な説明は省略
する。シャフト式スクラップ予熱装置60の塔体61は
直筒状を呈し、下部に開閉自在なブロッキング部材であ
るゲート62をそなえている。ゲート62は、対向する
塔体側壁に沿って配置した水平方向に延びる回動軸63
に、耐熱鋼製のフィンガー64を小間隔をおいて並設固
着した一対のフォーク65,65を、回動軸63を回動
駆動するフォーク駆動装置(図示を省略する)により開
閉駆動する構成を有する。そして実線図示のようにフィ
ンガー64がほぼ水平となるように塔体61内へ突出さ
せた状態で、スクラップSを保持して排ガス流による予
熱をおこない、鎖線66で示すように下方へ傾動駆動す
ることにより、予熱後のスクラップSを所望量だけスク
ラップ投入口14から炉内へ投入するものである。
Next, FIG. 5 shows another embodiment of the present invention, which has the same structure as the above embodiment except that the type of the shaft type scrap preheating device 60 is different.
The same parts as those of the above are denoted by the same reference numerals, and detailed description thereof will be omitted. The tower body 61 of the shaft-type scrap preheating device 60 has a straight cylindrical shape, and has a gate 62 that is a blocking member that can be opened and closed at the bottom. The gate 62 is a rotating shaft 63 arranged along the side wall of the tower which extends in the horizontal direction and extends in the horizontal direction.
In addition, a pair of forks 65, 65 in which heat-resistant steel fingers 64 are fixed in parallel at a small interval are opened and closed by a fork drive device (not shown) that rotationally drives the rotary shaft 63. Have. Then, as shown by the solid line, with the fingers 64 protruding into the tower 61 so that they are substantially horizontal, the scrap S is retained and preheated by the exhaust gas flow, and tilted downward as shown by the chain line 66. As a result, a desired amount of preheated scrap S is charged into the furnace from the scrap charging port 14.

【0022】そしてこのシャフト式スクラップ予熱装置
60をそなえたスクラップ予熱装置付き直流アーク炉7
0においても、炉内に投入されたスクラップSに対する
アーク51の偏向作用および溶鋼52の還流作用として
は、前記実施形態と同じ作用が得られる。
A DC arc furnace 7 with a scrap preheater equipped with this shaft type scrap preheater 60
Even at 0, the same action as that of the above-described embodiment can be obtained as the deflection action of the arc 51 and the reflux action of the molten steel 52 with respect to the scrap S charged into the furnace.

【0023】この発明は上記各実施形態に限定されるも
のではなく、たとえばシャフト式スクラップ予熱装置と
しては、図1におけるスクラップ下部支承部26bおよ
び押出装置29bを省略したものや、図5における傾動
式のゲート62を上下に複数段設けたもの、この傾動式
のゲート62のかわりに火格子構造のシャッタを引戸方
式に左右に開閉駆動する形式のゲートを用いたもの、あ
るいはゲートを省略し直筒状の塔体の下端をスクラップ
投入口14に直接開口させたものなど、上記以外の各形
式の装置を用いてもよい。
The present invention is not limited to the above-described embodiments. For example, as a shaft type scrap preheating device, the scrap lower bearing portion 26b and the extruding device 29b in FIG. 1 are omitted, and the tilt type scrap preheating device in FIG. With a plurality of gates 62 vertically arranged, instead of the tilting type gate 62, a grate type shutter is used to open and close the door in a sliding door system, or the gate is omitted and the gate is omitted. Other types of devices other than the above may be used, such as a device in which the lower end of the column body is directly opened to the scrap charging port 14.

【0024】また直流電磁石の磁極は、炉体の大きさや
形状によっては、炉体の側壁下部に、または炉体の側壁
下部と底部にわたって、臨ませる配置としてもよいし、
また磁極の先端部を炉体1の側壁および底部を構成する
壁体内に、該壁体を貫通しない程度に挿入あるいは埋設
してもよい。さらに直流電磁石の磁心は、炉体の側壁外
方など、炉底下方以外の位置を通す構成としてもよい。
Depending on the size and shape of the furnace body, the magnetic poles of the DC electromagnet may be arranged so as to face the lower side wall of the furnace body or the lower side wall and the bottom of the furnace body.
Further, the tip end of the magnetic pole may be inserted or embedded in the wall body forming the side wall and the bottom of the furnace body 1 so as not to penetrate the wall body. Furthermore, the magnetic core of the DC electromagnet may be configured to pass through a position other than below the bottom of the furnace, such as outside the side wall of the furnace body.

【0025】[0025]

【発明の効果】以上説明したようにこの発明によれば、
直流電磁石に供給する直流電流の極性と電流量を調節す
ることにより、アークを所望の方向に所望量だけ偏向さ
せることができ、大形の炉で予熱装置からのスクラップ
が炉内に広範囲にわたって堆積する場合でも、スクラッ
プを溶け残りのない状態で短時間で効率よく溶解でき、
またスクラップ溶解後はアークを電極棒直下方向に形成
させることにより、炉壁の局部損傷も防止できる。また
アークの偏向とともに溶鋼が電磁力によりスクラップ方
向に還流されるので、スクラップの溶解が促進されると
ともに溶鋼各部の温度および合金を添加した場合の溶鋼
成分が均一化され、溶鋼とスラグ間の精錬反応が促進さ
れ、上記の迅速溶解とあいまって生産性が向上する。
As described above, according to the present invention,
By adjusting the polarity and the amount of direct current supplied to the DC electromagnet, the arc can be deflected in the desired direction by the desired amount, and in large furnaces, scrap from the preheater accumulates extensively in the furnace. Even if you do, you can efficiently dissolve the scrap in a short time without leaving any residue,
Further, after the scrap is melted, the arc is formed in the direction directly below the electrode rod, whereby local damage on the furnace wall can be prevented. In addition, as the molten steel is circulated in the scrap direction by the electromagnetic force as the arc is deflected, the melting of the scrap is promoted, the temperature of each molten steel and the molten steel components when alloys are added are homogenized, and the refining between the molten steel and the slag is performed. The reaction is accelerated, and the productivity is improved in combination with the above rapid dissolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施形態を示すスクラップ予熱装
置付き直流アーク炉の縦断面図である。
FIG. 1 is a vertical sectional view of a DC arc furnace with a scrap preheating device showing an embodiment of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図2のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 2;

【図4】アークを電極棒直下に形成させている状態を示
す図1のA−A線断面図である。
FIG. 4 is a cross-sectional view taken along the line AA of FIG. 1 showing a state in which an arc is formed immediately below an electrode rod.

【図5】この発明の他の実施形態を示す図1相当図であ
る。
FIG. 5 is a view corresponding to FIG. 1 showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…炉体、4…炉蓋、5…炉底電極、6…電極棒、10
…直流電源装置、12…下側導体、13…上側導体、1
4…スクラップ投入口、20…シャフト式スクラップ予
熱装置、21…塔体、24…スクラップ装入口、25…
排気口、31…直流電磁石、32…磁心、32a…磁
極、32b…磁極、34…電磁石用直流電源装置、35
…磁極中心線、41…直流電磁石、42…磁心、42a
…磁極、42b…磁極、44…電磁石用直流電源装置、
45…磁極中心線、50…スクラップ予熱装置付き直流
アーク炉、60…シャフト式スクラップ予熱装置、61
…塔体、62…ゲート、70…スクラップ予熱装置付き
直流アーク炉。
1 ... Furnace body, 4 ... Furnace lid, 5 ... Furnace bottom electrode, 6 ... Electrode rod, 10
... DC power supply device, 12 ... lower conductor, 13 ... upper conductor, 1
4 ... scrap input port, 20 ... shaft type scrap preheating device, 21 ... tower body, 24 ... scrap charging port, 25 ...
Exhaust port, 31 ... DC electromagnet, 32 ... Magnetic core, 32a ... Magnetic pole, 32b ... Magnetic pole, 34 ... DC power supply device for electromagnet, 35
... magnetic pole center line, 41 ... DC electromagnet, 42 ... magnetic core, 42a
... magnetic pole, 42b ... magnetic pole, 44 ... DC power supply device for electromagnet,
45 ... Magnetic pole center line, 50 ... DC arc furnace with scrap preheating device, 60 ... Shaft type scrap preheating device, 61
… Tower, 62… Gate, 70… DC arc furnace with scrap preheater.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉体の底部に設けた炉底電極と、前記炉
体に被せられた炉蓋を貫通して前記炉体内に挿入された
1本の電極棒とを、導体を介して直流電源装置に接続し
た直流アーク炉において、前記炉蓋には、前記電極棒を
はさんで前記直流電源装置と反対側の位置にスクラップ
投入口を設け、上部にスクラップ装入口をそなえ排気装
置に接続されたシャフト式スクラップ予熱装置を、前記
スクラップ投入口の上部に設けるとともに、前記炉体の
下部には、上方から見て前記電極棒を両側からはさむ位
置に磁極を有する直流電磁石を2個、前記磁極を前記炉
体の側壁下部および/または底部に臨ませかつ対向する
両磁極を結ぶ各直流電磁石の磁極中心線を上方から見て
交叉させた状態で、配設し、これらの直流電磁石を、そ
れぞれ極性および電流量可変の電磁石用直流電源装置に
接続したことを特徴とするスクラップ予熱装置付き直流
アーク炉。
1. A furnace bottom electrode provided at the bottom of a furnace body and a single electrode rod inserted into the furnace body through a furnace lid covered with the furnace body are connected to a direct current through a conductor. In a DC arc furnace connected to a power supply device, a scrap charging port is provided on the furnace lid at a position opposite to the DC power supply device with the electrode rod sandwiched between them, and a scrap charging port is provided on the upper part to connect to an exhaust device. The shaft type scrap preheating device described above is provided at the upper part of the scrap charging port, and two DC electromagnets having magnetic poles at positions sandwiching the electrode rod from both sides when viewed from above are provided at the lower part of the furnace body. The direct current electromagnets are arranged in such a manner that the magnetic poles are exposed to the lower part and / or the bottom part of the side wall of the furnace body and the center lines of the direct current electromagnets connecting the opposite magnetic poles are crossed when viewed from above, and these direct current electromagnets are provided, Polar and electric respectively A DC arc furnace with a scrap preheating device, characterized by being connected to a DC power supply device for a variable flow electromagnet.
JP23331195A 1995-08-18 1995-08-18 Dc arc furnace with scrap preheating device Pending JPH0961065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23331195A JPH0961065A (en) 1995-08-18 1995-08-18 Dc arc furnace with scrap preheating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23331195A JPH0961065A (en) 1995-08-18 1995-08-18 Dc arc furnace with scrap preheating device

Publications (1)

Publication Number Publication Date
JPH0961065A true JPH0961065A (en) 1997-03-07

Family

ID=16953146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23331195A Pending JPH0961065A (en) 1995-08-18 1995-08-18 Dc arc furnace with scrap preheating device

Country Status (1)

Country Link
JP (1) JPH0961065A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072253A1 (en) * 2005-12-20 2007-06-28 Frederik Petrus Greyling Compensation system and method for arc skewing for a dc arc furnace
CN110312908A (en) * 2017-02-10 2019-10-08 Abb瑞士股份有限公司 Furnace module for metal manufacturing process

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072253A1 (en) * 2005-12-20 2007-06-28 Frederik Petrus Greyling Compensation system and method for arc skewing for a dc arc furnace
AU2006327784B2 (en) * 2005-12-20 2010-08-05 Greyling, Frederick Petrus Compensation system and method for arc skewing for a DC arc furnace
AP2309A (en) * 2005-12-20 2011-10-31 Frederik Petrus Greyling Compensation system and method for arc skewing fora DC arc furnace.
CN110312908A (en) * 2017-02-10 2019-10-08 Abb瑞士股份有限公司 Furnace module for metal manufacturing process
US20190390908A1 (en) * 2017-02-10 2019-12-26 Abb Schweiz Ag Furnace Assembly For A Metal-Making Process
JP2020505579A (en) * 2017-02-10 2020-02-20 アーベーベー・シュバイツ・アーゲー Furnace assembly for metal manufacturing process
KR20200139276A (en) * 2017-02-10 2020-12-11 에이비비 슈바이쯔 아게 Furnace assembly for a metal-making process
US10921060B2 (en) 2017-02-10 2021-02-16 Abb Schweiz Ag Furnace assembly for a metal-making process
EP3580512B1 (en) 2017-02-10 2021-03-31 ABB Schweiz AG Furnace assembly for a metal-making process
EP3848656A1 (en) 2017-02-10 2021-07-14 ABB Schweiz AG Furnace assembly for a metal-making process
US11543182B2 (en) 2017-02-10 2023-01-03 Abb Schweiz Ag Furnace assembly for a metal-making process
CN117367098A (en) * 2017-02-10 2024-01-09 Abb瑞士股份有限公司 Furnace assembly for metal manufacturing process

Similar Documents

Publication Publication Date Title
JPS6128914B2 (en)
KR100261516B1 (en) Process and device for melting scrap
JPH0961065A (en) Dc arc furnace with scrap preheating device
JPH06300449A (en) Dc arc furnace
CN114729781A (en) Method for stirring liquid metal in electric arc furnace
JPH0961064A (en) Dc arc furnace with scrap preheating device
KR20010079989A (en) Direct-current arc furnace comprising a centric charging shaft for producing steel and a method therefor
US3857697A (en) Method of continuously smelting a solid material rich in iron metal in an electric arc furnace
WO2021090546A1 (en) Electrolytic smelting furnace and electrolytic smelting method
JP7026693B2 (en) Reactor assembly for metal manufacturing process
JPH0972517A (en) Waste melting apparatus
JP2002372379A (en) Opening/closing device of delivery gate employing conductive refractories
JPH0361318B2 (en)
JP3494493B2 (en) Electrode structure of electric melting furnace
JPH08134524A (en) Dc arc furnace provided with scrap preheating device
JPH03181786A (en) Dc arc furnace
JPH07332863A (en) Dc electric furnace
JP2610044B2 (en) Downflow nozzle of melting furnace
RU2088674C1 (en) Method of conducting smelting in three-electrode arc furnace
KR100728869B1 (en) Method for alloying metal using discharge energy of three-phase alternating current and device thereof
DE3471228D1 (en) Metallurgical melting process, and direct current arc furnace therefor
USRE13186E (en) P xibod
SU732645A1 (en) Electric ore furnace
US3007986A (en) Coreless induction furnace
JPH07286708A (en) Waste melting apparatus