JPH0959860A - Filament nonwoven fabric and its production - Google Patents

Filament nonwoven fabric and its production

Info

Publication number
JPH0959860A
JPH0959860A JP8165299A JP16529996A JPH0959860A JP H0959860 A JPH0959860 A JP H0959860A JP 8165299 A JP8165299 A JP 8165299A JP 16529996 A JP16529996 A JP 16529996A JP H0959860 A JPH0959860 A JP H0959860A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
melting point
fiber
long
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8165299A
Other languages
Japanese (ja)
Inventor
Yasuki Terakawa
泰樹 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP8165299A priority Critical patent/JPH0959860A/en
Publication of JPH0959860A publication Critical patent/JPH0959860A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a filament nonwoven fabric excellent in bulkiness and tensile strength by thermally treating a conjugate fiber web having a spiral crimp and compris ing thermoplastic resins having the difference between melting points. SOLUTION: A crystalline polypropylene and a high-density polyethylene having a melting point which is lower than that of the crystalline polypropylene by 15 deg.C or more and having an elastic shrinkage factor which is smaller than that of the polypropylene by 1% or more are subjected to bicomponent spinning into a parallel type or eccentric sheath-core type fiber in a conjugate ratio of (60/40) to (40/60) and the spun yarn is drawn in draw ratio of >=1.2 times at a temperature lower than a melting point of the high density polyethylene and relaxed to form a conjugate fiber in which spiral crimp located on the outside is developed. Then, the conjugate fiber is bundled into two-like shape and then webbed or webbed by a spunbonding method and heat-treated by a hot air oven system or heat pressing system at a temperature not lower than the melting point of the high-density polyethylene and a temperature not higher than a softening point of the crystalline polypropylene and contact point between both fibers is fused and bound to provide the objective integrated long fiber nonwoven fabric.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱融着法で製造さ
れる不織布であって、嵩高性に優れ、かつ引張り強度の
大きな長繊維不織布に関する。さらに具体的には、衛生
資材、土木資材、農業資材、包装資材等に用いられる長
繊維不織布に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonwoven fabric produced by a heat fusion method, which is excellent in bulkiness and has a large tensile strength. More specifically, it relates to a long-fiber nonwoven fabric used for sanitary materials, civil engineering materials, agricultural materials, packaging materials and the like.

【0002】[0002]

【従来の技術】繊維自身の熱融着を利用した不織布の製
造方法には、ステープルフアイバアーからなるカードウ
エブを熱処理する方法と、長繊維ウエブを熱処理する方
法とがある。後者の方法では製造工程が簡単であるとい
う利点はあるが、得られる不織布は柔軟性に欠け、嵩高
性も劣るという欠点がある。また、熱融着法で製造さ
れ、衛生資材、土木資材等に用いられている従来の長繊
維不織布は、単一成分の繊維で構成されたものが主流で
あり、このような繊維には捲縮が発現していないので嵩
高性の劣ったものであった。単一成分の繊維にスパイラ
ル状の立体捲縮(以下、スパイラル捲縮)を発現させる
方法として、紡出された繊維に偏ったクエンチを与えな
がら引き取り、繊維内部の熱収縮の差異により捲縮を発
現させる方法(特公昭45−1649号)、あるいは繊
維断面の一定部分にのみ造核剤を配合した結晶化度の差
異による捲縮を発現させる方法(特開平5−20935
4号)が知られている。しかし、前者においては、不織
布に加工する熱処理工程で捲縮が緩和され、不織布の嵩
高性は不十分となる。また、両者共に、単一成分の繊維
であるので不織布に加工する熱処理工程として熱圧着法
しか利用できず、繊維のスパイラル捲縮を押しつぶす結
果となり、好ましい嵩高性は得られなかった。異種の熱
可塑性樹脂を並列型又は偏心鞘芯型に複合紡糸すること
により繊維にスパイラル捲縮を発現させる方法も知られ
ている(特開昭48−1471号、特開昭63−282
350号)。しかし、これらの複合繊維を用いた不織布
においては、嵩高性の向上は認められるが、引張り強度
は従来の単一成分の繊維からなる不織布と同程度(以
下)でしかなく、さらなる向上が望まれていた。
2. Description of the Related Art As a method for manufacturing a non-woven fabric utilizing heat fusion of fibers themselves, there are a heat treatment method for a card web made of staple fibers and a heat treatment method for a long fiber web. The latter method has the advantage that the manufacturing process is simple, but the nonwoven fabric obtained lacks flexibility and has poor bulkiness. Further, conventional long-fiber non-woven fabrics manufactured by the heat fusion method and used for sanitary materials, civil engineering materials, etc. are mainly composed of single-component fibers, and such fibers are not wound. Since the shrinkage did not appear, the bulkiness was inferior. As a method of expressing a spiral three-dimensional crimp (hereinafter referred to as spiral crimp) in a single-component fiber, the spun fiber is taken up while giving a biased quench, and the crimp is caused by the difference in heat shrinkage inside the fiber. A method of developing crimps (Japanese Patent Publication No. 45-1649) or a method of developing crimps due to a difference in crystallinity in which a nucleating agent is blended only in a certain portion of the fiber cross section (JP-A-5-20935)
No. 4) is known. However, in the former case, the crimps are alleviated in the heat treatment step of processing the nonwoven fabric, and the bulkiness of the nonwoven fabric becomes insufficient. Further, since both of them are fibers of a single component, only a thermocompression bonding method can be used as a heat treatment step for processing into a non-woven fabric, which results in crushing the spiral crimps of the fibers, and a preferable bulkiness cannot be obtained. There is also known a method in which a different type of thermoplastic resin is subjected to composite spinning in a parallel type or an eccentric sheath-core type to develop a spiral crimp in the fiber (JP-A-48-1471 and JP-A-63-282).
350). However, in the non-woven fabric using these composite fibers, although the improvement of the bulkiness is recognized, the tensile strength is only the same level as the conventional non-woven fabric composed of the single component fiber (the following), and further improvement is desired. Was there.

【0003】[0003]

【発明が解決しようとする課題】本発明は、熱融着法で
製造される長繊維不織布の上記の現状に鑑み、嵩高性に
優れ、かつ引張り強度の大きな長繊維不織布を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION In view of the above-mentioned present situation of long-fiber nonwoven fabrics produced by a heat fusion method, the present invention is intended to provide a long-fiber nonwoven fabric excellent in bulkiness and high in tensile strength. Is.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、複合繊維に発現するスパイラル捲縮と
繊維断面における成分の配置との関係に着目して鋭意研
究の結果、異種の熱可塑性樹脂からなり延伸によりスパ
イラル捲縮が発現した並列型又は偏心鞘芯型の複合繊維
において、捲縮の外側に低融点の熱可塑性樹脂が配置さ
れた複合繊維を用いることにより所期の目的が達成され
ることを知り、本発明を完成するに到った。即ち、本願
第1の発明は、融点の差が15℃以上ある2種類の熱可
塑性樹脂を複合紡糸して得られるスパイラル捲縮を有す
る複合長繊維からなる不織布であって、スパイラル捲縮
の外側に位置する低融点の熱可塑性樹脂の融着により繊
維同士の接点が結合されていることを特徴とする長繊維
不織布である。また、本願第2の発明は、第1の熱可塑
性樹脂と、第1の熱可塑性樹脂より15℃以上低い融点
を有し、かつ第1の熱可塑性樹脂より1%以上小さな弾
性収縮率を有する第2の熱可塑性樹脂とを、複合比を6
0/40〜40/60の範囲とし、並列型に又は第2の
熱可塑性樹脂が鞘となるように偏心鞘芯型に複合紡糸
し、得られた未延伸糸を、第2の熱可塑性樹脂の融点未
満の温度で1.2倍以上に延伸した後、第2の熱可塑性
樹脂の融点以上で第1の熱可塑性樹脂の軟化点以下の温
度で熱処理することにより繊維同士の接点を融着させる
ことを特徴とする長繊維不織布の製造方法である。
Means for Solving the Problems In order to solve the above problems, the inventors of the present invention have conducted intensive studies as a result of paying attention to the relationship between the spiral crimp expressed in the composite fiber and the arrangement of components in the fiber cross section. In a parallel type or eccentric sheath-core type composite fiber which is formed of a different kind of thermoplastic resin and exhibits spiral crimping by stretching, by using a composite fiber in which a thermoplastic resin having a low melting point is arranged outside the crimp The inventors of the present invention have completed the present invention, knowing that the above object is achieved. That is, the first invention of the present application is a non-woven fabric made of composite filaments having spiral crimps obtained by composite spinning of two kinds of thermoplastic resins having a difference in melting point of 15 ° C. or more, and the outside of the spiral crimps. The long-fiber nonwoven fabric is characterized in that the contact points of the fibers are bonded to each other by fusion bonding of the low melting point thermoplastic resin located at. The second invention of the present application has a first thermoplastic resin, a melting point lower than that of the first thermoplastic resin by 15 ° C. or more, and an elastic shrinkage ratio of 1% or more lower than that of the first thermoplastic resin. The second thermoplastic resin has a composite ratio of 6
In the range of 0/40 to 40/60, the unstretched yarns obtained by compound spinning in a parallel type or in an eccentric sheath-core type so that the second thermoplastic resin serves as a sheath are used as the second thermoplastic resin. After being drawn 1.2 times or more at a temperature lower than the melting point of, the fibers are fused together by heat treatment at a temperature not lower than the melting point of the second thermoplastic resin and not higher than the softening point of the first thermoplastic resin. A method for producing a long-fiber non-woven fabric, comprising:

【0005】以下に本願発明をさらに詳しく説明する。
複合長繊維の原料として用いられる熱可塑性樹脂とし
て、ポリプロピレン、ポリエチレン、エチレン・プロピ
レン共重合体、プロピレン・ブテン−1共重合体、エチ
レン・プロピレン・ブテン−1共重合体、エチレン・酢
酸ビニル共重合体、ポリ−4−メチルペンテン−1等の
ポリオレフイン類、不飽和カルボン酸あるいは不飽和カ
ルボン酸無水物で変性されたポリオレフイン類、ポリエ
チレンテレフタレート、ポリエチレンテレフタレート・
イソフタレート共重合体、ポリブチレンテレフタレート
等のポリエステル類、6ナイロン、66ナイロン、ナイ
ロン12等のポリアミド、熱可塑性ポリウレタン等、各
種の熱可塑性樹脂が例示できる。
The present invention will be described in more detail below.
As a thermoplastic resin used as a raw material for composite long fibers, polypropylene, polyethylene, ethylene / propylene copolymer, propylene / butene-1 copolymer, ethylene / propylene / butene-1 copolymer, ethylene / vinyl acetate copolymer Combined, polyolefins such as poly-4-methylpentene-1, polyolefins modified with unsaturated carboxylic acids or unsaturated carboxylic acid anhydrides, polyethylene terephthalate, polyethylene terephthalate.
Various thermoplastic resins such as isophthalate copolymers, polyesters such as polybutylene terephthalate, polyamides such as 6 nylon, 66 nylon, nylon 12 and thermoplastic polyurethane can be exemplified.

【0006】本発明においては、融点の差が15℃以上
異な2種類の熱可塑性樹脂の組み合わせを選んで用い
る。この場合高融点の熱可塑性樹脂の弾性収縮率が低融
点の熱可塑性樹脂の弾性収縮率より1%以上大きくなる
ような紡糸条件を用いることが必要である。本発明にお
いては、複合長繊維を熱処理し、その低融点の熱可塑性
樹脂のみの融着により繊維の接点を接着させて不織布と
する。複合繊維の原料に用いる2種の熱可塑性樹脂の融
点の差が15℃未満であると、熱処理時に利用できる温
度範囲が狭くなるので好ましくない。ここで弾性収縮率
とは、引張り試験機を用いて単一成分からなる未延伸糸
を複合繊維の延伸条件と同じ延伸倍率(K)に延伸し、
直ちに荷重を解除したときの収縮率であり、下記の式で
表すことができる。 弾性収縮率S(%)=100×(KA−B)/(KA−
A) A:未延伸糸の長さ B:延伸後荷重を解除したと
きの糸の長さ 熱可塑性樹脂(a)が単一成分では紡糸できない場合、
あるいは単一成分ではK倍まで延伸できないような場合
には、延伸性の良い熱可塑性樹脂(b)の単一成分から
なる未延伸糸の弾性収縮率(S1)と、熱可塑性樹脂
(a)と熱可塑性樹脂(b)との複合繊維の未延伸糸の
弾性収縮率(Sc)とを測定し、次の式により熱可塑性
樹脂(A)の未延伸糸の弾性収縮率(S2)を求める: S2 =2Sc − S1
In the present invention, a combination of two kinds of thermoplastic resins having different melting points of 15 ° C. or more is selected and used. In this case, it is necessary to use spinning conditions such that the elastic shrinkage of the high melting point thermoplastic resin is 1% or more higher than the elastic shrinkage of the low melting point thermoplastic resin. In the present invention, the composite long fibers are heat treated, and the contact points of the fibers are adhered to each other by fusing only the low melting point thermoplastic resin to form a nonwoven fabric. If the difference between the melting points of the two types of thermoplastic resins used as the raw material of the composite fiber is less than 15 ° C., the temperature range that can be used during heat treatment is narrowed, which is not preferable. Here, the elastic shrinkage means that an undrawn yarn composed of a single component is drawn at the same draw ratio (K) as the drawing conditions of the composite fiber by using a tensile tester,
It is the contraction rate when the load is immediately released and can be expressed by the following formula. Elastic shrinkage S (%) = 100 × (KA-B) / (KA-
A) A: length of undrawn yarn B: length of yarn when the load is released after drawing When the thermoplastic resin (a) cannot be spun with a single component,
Alternatively, when the single component cannot be stretched up to K times, the elastic shrinkage (S1) of the unstretched yarn composed of the single component of the thermoplastic resin (b) having good stretchability and the thermoplastic resin (a) The elastic shrinkage (Sc) of the undrawn yarn of the composite fiber of the thermoplastic resin (b) and the thermoplastic resin (b) is measured, and the elastic shrinkage (S2) of the undrawn yarn of the thermoplastic resin (A) is obtained by the following formula. : S2 = 2Sc-S1

【0007】2種類の熱可塑性樹脂の弾性収縮率の差が
1%未満であると、複合繊維を延伸した後にも明確な捲
縮が発生せず、十分に嵩高な不織布を得ることができな
い。2種類の熱可塑性樹脂のうち高融点の熱可塑性樹脂
の弾性収縮率が低融点の弾性収縮率より小さいと、複合
繊維を延伸した後に発生する捲縮のループの外側に低融
点の熱可塑性樹脂を配置することができない。本発明で
使用する複合長繊維では、上記の基準に従って選定され
た2種の熱可塑性樹脂を、複合比60/40〜40/6
0の範囲で、並列型又は偏心鞘芯型の複合紡糸する。複
合繊維の捲縮の発生は両成分の弾性収縮率の差に基づく
ので、一方の成分が40%未満となると、明確な捲縮が
発生せず、十分に嵩高な不織布を得ることができない。
複合型式が偏心鞘芯型の場合には、低融点の熱可塑性
樹脂を鞘側に用いる。2種の熱可塑性樹脂の好ましい組
合わせとして、結晶性ポリプロピレン/ポリエチレンが
例示でき、分子量分布の広い結晶性ポリプロピレンは比
較的大きな弾性収縮率を示すので高融点の熱可塑性樹脂
として好ましく使用できる。
When the difference in elastic shrinkage between the two types of thermoplastic resins is less than 1%, no clear crimp is generated even after stretching the composite fiber, and a sufficiently bulky nonwoven fabric cannot be obtained. When the elastic contraction rate of the high melting point thermoplastic resin of the two types of thermoplastic resin is smaller than the low melting point elastic contraction rate, the low melting point thermoplastic resin is outside the crimp loop generated after stretching the composite fiber. Can not be placed. In the composite long fiber used in the present invention, two kinds of thermoplastic resins selected according to the above criteria are mixed in a composite ratio of 60/40 to 40/6.
Within the range of 0, parallel type or eccentric sheath-core type composite spinning is performed. Since the occurrence of crimp of the composite fiber is based on the difference in elastic shrinkage between the two components, if one component is less than 40%, clear crimp does not occur and a sufficiently bulky nonwoven fabric cannot be obtained.
When the composite type is an eccentric sheath-core type, a low melting point thermoplastic resin is used on the sheath side. As a preferable combination of the two kinds of thermoplastic resins, crystalline polypropylene / polyethylene can be exemplified. Crystalline polypropylene having a wide molecular weight distribution exhibits a relatively large elastic shrinkage, and thus can be preferably used as a thermoplastic resin having a high melting point.

【0008】複合紡糸して得られた未延伸糸を延伸した
後、直ちに張力を解除することにより複合繊維にスパイ
ラル捲縮が発生する。スパイラルの曲率半径は原料樹脂
の弾性収縮率の差、ヤング率、繊度等の物性のみなら
ず、延伸温度、延伸倍率にも依存し、希望する不織布の
嵩高性の程度に応じて延伸条件(一般には室温ないし第
2の熱可塑性樹脂の融点未満の温度で、1.2〜4倍程
度)を選択する。このようにして得られた複合長繊維
は、スパイラル捲縮の外側に低融点の熱可塑性樹脂が配
置されている。本発明で使用する立体捲縮を有する複合
長繊維ウエブを得るには、前記の基準に従って選定され
た2種の熱可塑性樹脂を所定の複合比で複合紡糸し、ボ
ビンに巻取るかケンスに貯めた未延伸糸トウを所定の延
伸条件で延伸し、直ちにコンベアー上に集積すれば良
い。また、紡出された複合繊維をクエンチ装置を経由し
てフイードロールとドローロールとからなる延伸装置で
引き取り、ついでエアーサッカーで吸引し開繊しながら
コンベアアーネット上に集積する、スパンボンド方式を
使用することもできる。
The unstretched yarn obtained by the composite spinning is drawn, and then the tension is immediately released to cause spiral crimping in the composite fiber. The radius of curvature of the spiral depends not only on the physical properties such as the difference in elastic shrinkage of the raw material resins, Young's modulus, fineness, etc., but also on the stretching temperature and the stretching ratio, and depending on the desired degree of bulkiness of the nonwoven fabric, stretching conditions (generally, Is from room temperature to a temperature lower than the melting point of the second thermoplastic resin and is about 1.2 to 4 times). In the composite long fiber thus obtained, the low melting point thermoplastic resin is arranged outside the spiral crimp. In order to obtain a composite long-fiber web having a three-dimensional crimp used in the present invention, two kinds of thermoplastic resins selected according to the above criteria are composite-spun at a predetermined composite ratio and wound on a bobbin or stored in a can. The undrawn yarn tow may be drawn under predetermined drawing conditions and immediately accumulated on the conveyor. In addition, the spun-bond method is used in which the spun composite fiber is taken through a quenching device with a drawing device consisting of a feed roll and a draw roll, and then sucked with an air sucker and accumulated on a conveyor arnet while opening. You can also

【0009】本発明の長繊維不織布は、上記のスパイラ
ル捲縮を有する複合長繊維ウエブを、その低融点の熱可
塑性樹脂の融点以上、高融点の熱可塑性樹脂の軟化点以
下の温度で熱処理して得られる。熱処理には、エンボス
ロール等の加熱圧着装置、あるいは熱風循環式のサクシ
ョンドライヤーあるいは赤外線加熱等の加熱装置を使用
することができる。熱処理により繊維同士はその接点に
おいて低融点の熱可塑性樹脂の融着により固定される
が、本願発明で用いる複合長繊維はスパイラル捲縮の外
側に低融点の熱可塑性樹脂が配置されているので、繊維
同士が互いに低融点の熱可塑性樹脂で接触することにな
り、同種の熱可塑性樹脂の融着により繊維同士が固定さ
れるので、引張り強度の大きな不織布が得られる。加熱
圧着装置を用いた熱処理の場合は、スパイラル捲縮の外
側に配置された低融点の熱可塑性樹脂の軟化点に近い温
度を熱処理温度として採用できるので、高融点熱可塑性
樹脂は熱により軟化したり変形したりすること無く、嵩
高で柔軟な不織布を得ることができる。スパイラル捲縮
の内側に低融点の熱可塑性樹脂が配置された複合繊維で
は、十分な強度の不織布を得るには、高融点の熱可塑性
樹脂が軟化するように、より高温で熱処理する必要があ
り、不織布の風合いが硬くなる。
In the long-fiber nonwoven fabric of the present invention, the composite long-fiber web having the above-described spiral crimp is heat-treated at a temperature not lower than the melting point of the low-melting thermoplastic resin and not higher than the softening point of the high-melting thermoplastic resin. Obtained. For the heat treatment, a thermocompression bonding device such as an embossing roll, a hot-air circulating suction dryer, or a heating device such as infrared heating can be used. By heat treatment, the fibers are fixed at their contact points by fusion bonding of the low melting point thermoplastic resin, but the composite long fibers used in the present invention have the low melting point thermoplastic resin disposed outside the spiral crimp, The fibers come into contact with each other by the thermoplastic resin having a low melting point, and the fibers are fixed by fusion of the thermoplastic resins of the same kind, so that a nonwoven fabric having a high tensile strength can be obtained. In the case of heat treatment using a thermocompression bonding device, a temperature close to the softening point of the low melting point thermoplastic resin placed outside the spiral crimp can be adopted as the heat treatment temperature, so the high melting point thermoplastic resin is softened by heat. A bulky and flexible non-woven fabric can be obtained without being deformed or deformed. In the case of a composite fiber in which a low melting point thermoplastic resin is arranged inside the spiral crimp, in order to obtain a nonwoven fabric with sufficient strength, it is necessary to perform heat treatment at a higher temperature so that the high melting point thermoplastic resin softens. , The texture of the non-woven fabric becomes hard.

【0010】熱風循環式のサクションドライヤーは、長
繊維ウエブに圧力をかけることなく十分な熱量を供給で
きるので、嵩高な不織布を高速で製造するのに好まし
い。この場合も、複合長繊維はスパイラル捲縮の外側に
低融点の熱可塑性樹脂が配置されているので、繊維同士
が互いに低融点の熱可塑性樹脂で接触することになり、
同種の熱可塑性樹脂の融着により繊維同士が固定される
ので、引張り強度の大きな不織布が得られる。低融点の
熱可塑性樹脂が融解する温度まで加熱された場合、高融
点の熱可塑性樹脂には延伸時の歪の緩和に伴う僅かな収
縮が発生するが、低融点の熱可塑性樹脂には融解の伴う
大きな収縮が発生し、その結果複合繊維のスパイラル捲
縮の外側に高融点の熱可塑性樹脂が配置されるようにス
パイラルが逆転する動きが発生する。このような繊維の
動きにより、繊維間の接触・接着点が増加し、強度の大
きな不織布が得られる。また、繊維同士は接着点間で引
張り合うので、嵩高性の減少は小さい。スパイラル捲縮
の内側に低融点の熱可塑性樹脂が配置された複合繊維を
サクションドライヤーで熱処理すると、低融点の熱可塑
性樹脂に発生する融解の伴う大きな収縮力により、複合
繊維のスパイラル捲縮は小さくなり、不織布の嵩高性が
損なわれ、低融点の熱可塑性樹脂同士による接着点も少
なくなることから不織布強度も小さくなる。
The hot air circulation type suction dryer can supply a sufficient amount of heat without applying pressure to the long fiber web, and is therefore preferable for producing bulky nonwoven fabric at high speed. Also in this case, since the composite long fibers have the low melting point thermoplastic resin arranged outside the spiral crimp, the fibers are in contact with each other by the low melting point thermoplastic resin,
Since the fibers are fixed by fusion bonding of the same kind of thermoplastic resin, a nonwoven fabric having high tensile strength can be obtained. When the low-melting point thermoplastic resin is heated to a melting temperature, the high-melting point thermoplastic resin causes a slight shrinkage due to relaxation of strain during stretching, but the low-melting point thermoplastic resin does not melt. As a result, a large shrinkage occurs, and as a result, a spiral reverse movement occurs so that the high melting point thermoplastic resin is arranged outside the spiral crimp of the composite fiber. Such movement of the fibers increases the number of points of contact / adhesion between the fibers, resulting in a nonwoven fabric having high strength. Further, since the fibers are pulled together at the bonding points, the decrease in bulkiness is small. When a composite fiber in which a low melting point thermoplastic resin is placed inside the spiral crimp is heat treated by a suction dryer, the spiral shrinkage of the composite fiber is small due to the large shrinking force accompanying the melting generated in the low melting point thermoplastic resin. Therefore, the bulkiness of the non-woven fabric is impaired and the number of adhesion points between the low melting point thermoplastic resins is reduced, so that the non-woven fabric strength is also reduced.

【0011】[0011]

【発明の効果】本願発明の長繊維不織布は、原料繊維と
してスパイラル捲縮の外側に低融点の熱可塑性樹脂が配
置された複合長繊維を使用して得られたものであるの
で、従来の長繊維不織布と同程度以上の引張り強度を有
すると共に、従来の長繊維不織布にはない嵩高性を有
し、紙おむつの表面材等の衛生材料、ジオテキスタイ
ル、包装材料、バッキング材料等に好ましく使用でき
る。
EFFECTS OF THE INVENTION Since the long-fiber nonwoven fabric of the present invention is obtained by using a composite long fiber in which a thermoplastic resin having a low melting point is arranged outside a spiral crimp as a raw material fiber, It has a tensile strength equal to or higher than that of a fibrous nonwoven fabric, and has a bulkiness not found in conventional long-fiber nonwoven fabrics, and can be preferably used for sanitary materials such as surface materials of paper diapers, geotextiles, packaging materials, backing materials and the like.

【0012】[0012]

【実施例】本発明を実施例及び比較例によって更に具体
的に説明する。なお、各例において物性の評価は以下の
方法で行った。 弾性収縮率:単一成分からなる未延伸糸及び複合繊維の
未延伸糸を、引張り試験機を用いてつかみ間隔10c
m、引張り速度10cm/min、で実施例及び比較例
と同じ倍率(K)に延伸し、直ちに同じ速度でもとのつ
かみ間隔まで戻したとき、引張り荷重がゼロになる点の
繊維長(c)を測定し、以下の式により弾性収縮率
(s)を算出する。 弾性収縮率S(%)=100×(10K−c)/(10
K−10) S2 =2Sc − S1 スパイラル捲縮の成分配置:複合繊維から、そのスパイ
ラル捲縮の一周期分の長さを切り取り、これがひとつの
円になるように2枚のカバーグラスで夾み、ホットステ
ージを装備した光学顕微鏡を使い、低融点の熱可塑性樹
脂が融解する状況を観察して判別する。 捲縮数:無張力状態で連続したスパイラル捲縮10個分
の繊維を切り取り、これの直線長さL(cm)を測定
し、次の式により捲縮数を算出する: 捲縮数(個/インチ)=10×2.54/L 不織布の比容積:縦横各10cmの試験片4枚を積み重
ね、その上におなじ大きさで重量が200gの板を乗せ
た状態で、試験片4枚分の厚みD(cm)を測定し、別
途測定したこの4枚の試験片の総重量W1(g)とか
ら、以下の式により算出する: 不織布の比容積(cm3 /g)=100・D/W1 不織布の引張り強度:不織布の製造機械方向(MD)及
びこれと直角方向(CD)に切り取った長さ20cm、
幅5cmの試験片(重量=W2)を、引張り試験機を用
いて、つかみ間隔10cm、引張り速度10cm/mi
nで最大荷重強力P(g)を測定し、以下の式により不
織布目付けによる補正をして引張り強度を算出する: 引張り強度(g/(cm・g/m2))=P/500W2 相乗平均強度=(MD強度・CD強度)1/2 実施例1〜5、比較例1〜4 実施例及び比較例の不織布に使用した原料長繊維の製造
条件及び繊維の性質を表1に示した。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples. In each example, the evaluation of physical properties was performed by the following methods. Elastic shrinkage ratio: Unstretched yarn composed of a single component and unstretched yarn of a composite fiber were gripped with a tensile tester at an interval of 10c.
Fiber length (c) at a point where the tensile load becomes zero when the sample is drawn at the same magnification (K) as in the examples and comparative examples at m and a pulling speed of 10 cm / min and immediately returned to the original gripping interval at the same speed. Is measured, and the elastic contraction rate (s) is calculated by the following formula. Elastic shrinkage S (%) = 100 × (10K-c) / (10
K-10) S2 = 2Sc-S1 Spiral crimp component arrangement: Cut a length of one cycle of the spiral crimp from the composite fiber, and enclose it with two cover glasses so that it becomes one circle. Using an optical microscope equipped with a hot stage, observe the situation where the low melting point thermoplastic resin melts and make a distinction. Number of crimps: 10 continuous spiral crimps in a tensionless state are cut out, the linear length L (cm) of the fibers is measured, and the number of crimps is calculated by the following formula: Number of crimps (number /Inch)=10×2.54/L Specific volume of non-woven fabric: 4 test pieces of 10 cm each in length and width are stacked, and 4 pieces of test pieces with the same size and a weight of 200 g are placed on the test pieces. The thickness D (cm) of the non-woven fabric is measured and calculated from the separately measured total weight W1 (g) of these four test pieces by the following formula: Specific volume of non-woven fabric (cm 3 / g) = 100 · D / W1 Tensile strength of non-woven fabric: length of the non-woven fabric cut in the machine direction (MD) and the direction perpendicular to this (CD) 20 cm,
Using a tensile tester, a test piece having a width of 5 cm (weight = W2) was held at a gripping interval of 10 cm and a pulling speed of 10 cm / mi.
The maximum load strength P (g) is measured with n and the tensile strength is calculated by correcting the basis weight of the nonwoven fabric according to the following formula: Tensile strength (g / (cm · g / m 2 )) = P / 500W 2 Geometric mean Strength = (MD strength / CD strength) 1/2 Examples 1 to 5, Comparative Examples 1 to 4 Table 1 shows the production conditions and the properties of the raw filaments used in the nonwoven fabrics of Examples and Comparative Examples.

【0013】[0013]

【表1】 [Table 1]

【0014】結晶性ポリプロピレンと高密度ポリエチレ
ンとを組み合わせて複合紡糸し、機械延伸した実施例1
〜3の繊維には、スパイラル捲縮の外側に低融点成分で
ある高密度ポリエチレンが配置された好ましいスパイラ
ル捲縮が発現していた。 実施例2においては、実施例
1と同様の紡糸・延伸条件で製造されたが捲縮数の多い
複合繊維が得られ、このことは分子量分布が広い(Q値
が大きい)結晶性ポリプロピレンを使用したことに起因
すると考えられる。実施例2と同じ原料を、同様の紡糸
温度と延伸条件として得られた実施例3の複合繊維で
は、高密度ポリエチレンが配置された好ましいスパイラ
ル捲縮が発現していたが、複合形式を偏心鞘芯型とした
ことにより捲縮数が少なくなった。しかし、延伸条件を
代えることにより、捲縮数の多い偏心鞘芯型複合繊維を
得ることができた(実施例4)。結晶性ポリプロピレン
の単一成分からなる繊維(比較例1)では、実施例1と
同様の延伸を与えてもスパイラル捲縮は発現しなかっ
た。実施例1と同様な条件で押出し、エアーサッカーで
直接紡糸し機械延伸を与えなかった比較例2において
は、低融点成分である高密度ポリエチレンが内側に配置
されたスパイラル捲縮が発現していた。結晶性ポリプロ
ピレンの押し出し温度を高くした以外は実施例1と同様
に紡糸・延伸して得られた比較例3の複合繊維では、弾
性収縮率の差が小さくなり、スパイラル捲縮の発現が著
しく不良であった。表1に示した各種の長繊維のウエブ
を、熱風循環式加熱炉または加熱エンボスロールにより
熱処理加工して不織布を得た。加工条件と不織布物性を
表2に示した。
Example 1 in which crystalline polypropylene and high-density polyethylene were combined and spun together and mechanically stretched
In the fibers of Nos. 3 to 3, a preferable spiral crimp in which high-density polyethylene, which is a low-melting component, is arranged outside the spiral crimp, was exhibited. In Example 2, a composite fiber produced under the same spinning / drawing conditions as in Example 1 but having a large number of crimps was obtained, which uses crystalline polypropylene having a wide molecular weight distribution (large Q value). It is thought that this is due to what was done. In the conjugate fiber of Example 3 obtained by using the same raw material as in Example 2 under the same spinning temperature and drawing conditions, a preferable spiral crimp in which high-density polyethylene was arranged was developed, but the conjugate type was changed to an eccentric sheath. The number of crimps was reduced by using the core type. However, by changing the drawing conditions, an eccentric sheath-core type composite fiber with a large number of crimps could be obtained (Example 4). In the fiber composed of a single component of crystalline polypropylene (Comparative Example 1), the spiral crimp did not appear even when the same stretching as in Example 1 was applied. In Comparative Example 2, which was extruded under the same conditions as in Example 1, directly spun with air sucker and not subjected to mechanical stretching, a spiral crimp having a high-density polyethylene, which is a low-melting point component, arranged inside was developed. . In the composite fiber of Comparative Example 3 obtained by spinning and drawing in the same manner as in Example 1 except that the extrusion temperature of the crystalline polypropylene was increased, the difference in elastic shrinkage was small, and the expression of spiral crimp was extremely poor. Met. The webs of various long fibers shown in Table 1 were heat-treated by a hot air circulation type heating furnace or a heating embossing roll to obtain a nonwoven fabric. The processing conditions and the physical properties of the non-woven fabric are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】結晶性ポリプロピレンの単一成分からなる
比較例1の不織布は、他のいずれの例と比較しても嵩高
性及び強度のいずれもが劣っている。実施例1と同様の
素材・加工条件で作られた比較例2−1の不織布は、実
施例1の不織布と比較して嵩高性(厚さ・比容積)及び
不織布強度が劣る。これは、弾性収縮率の大きな成分で
ある結晶性ポリプロピレンがスパイラル捲縮の外側に配
置されていたこと、及び接着性成分である高密度ポリエ
チレンがスパイラル捲縮の内側に配置されていたことに
よると考えられる。加熱エンボスロールで加工された実
施例2−2の不織布は、実施例2−1の不織布と比較し
て嵩高性では劣るが、強度では優れている。また、同じ
く加熱エンボスロールで加工された比較例2−2と比較
すれば、嵩高性及び強度のいずれにおいても優れてい
る。実施例1とは素材が異なるが、弾性収縮率の差及び
スパイラル捲縮の構造が本願発明の要件を満たしている
実施例3及び4の不織布も、実施例1と同程度以上の良
い性能を示す。これと比較して、上記本願発明の要件を
満たさない比較例3の不織布は嵩高性及び強度のいずれ
においても劣ったものである。
The nonwoven fabric of Comparative Example 1 consisting of a single component of crystalline polypropylene is inferior in bulkiness and strength as compared with any other examples. The non-woven fabric of Comparative Example 2-1 made with the same materials and processing conditions as in Example 1 is inferior in bulkiness (thickness / specific volume) and non-woven fabric strength to the non-woven fabric of Example 1. This is because the crystalline polypropylene, which is a component having a large elastic shrinkage ratio, was placed outside the spiral crimp, and the high-density polyethylene, which is an adhesive component, was placed inside the spiral crimp. Conceivable. The nonwoven fabric of Example 2-2 processed with the hot embossing roll is inferior in bulkiness to the nonwoven fabric of Example 2-1, but is excellent in strength. Further, as compared with Comparative Example 2-2 which was also processed by the heating embossing roll, it is excellent in both bulkiness and strength. The non-woven fabrics of Examples 3 and 4 whose material is different from that of Example 1 but the difference in elastic shrinkage and the structure of the spiral crimp satisfy the requirements of the invention of the present application also show good performance equal to or higher than that of Example 1. Show. In comparison, the non-woven fabric of Comparative Example 3 which does not meet the requirements of the present invention is inferior in both bulkiness and strength.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 融点の差が15℃以上ある2種類の熱可
塑性樹脂を複合紡糸して得られるスパイラル捲縮を有す
る複合長繊維からなる不織布であって、スパイラル捲縮
の外側に位置する低融点の熱可塑性樹脂の融着により繊
維同士の接点が結合されていることを特徴とする長繊維
不織布。
1. A non-woven fabric composed of composite filaments having spiral crimps obtained by composite spinning of two kinds of thermoplastic resins having a difference in melting point of 15 ° C. or more, which is low outside the spiral crimps. A long-fiber non-woven fabric characterized in that the contact points of the fibers are bonded together by fusion bonding of a thermoplastic resin having a melting point.
【請求項2】 複合長繊維の複合形式が、並列型又は偏
心鞘芯型である請求項1に記載の長繊維不織布。
2. The continuous fiber non-woven fabric according to claim 1, wherein the composite type of the composite long fibers is a parallel type or an eccentric sheath-core type.
【請求項3】 第1の熱可塑性樹脂と、第1の熱可塑性
樹脂より15℃以上低い融点を有し、かつ第1の熱可塑
性樹脂より1%以上小さな弾性収縮率を有する第2の熱
可塑性樹脂とを、複合比を60/40〜40/60の範
囲とし、並列型に又は第2の熱可塑性樹脂が鞘となるよ
うに偏心鞘芯型に複合紡糸し、得られた未延伸糸を、第
2の熱可塑性樹脂の融点未満の温度で1.2倍以上に延
伸した後、第2の熱可塑性樹脂の融点以上で第1の熱可
塑性樹脂の軟化点以下の温度で熱処理することにより繊
維同士の接点を融着させることを特徴とする長繊維不織
布の製造方法。
3. A first thermoplastic resin, and a second heat having a melting point lower than that of the first thermoplastic resin by 15 ° C. or more and an elastic shrinkage ratio lower than that of the first thermoplastic resin by 1% or more. An undrawn yarn obtained by composite spinning with a plastic resin in a parallel ratio in the range of 60/40 to 40/60 and in an eccentric sheath-core type so that the second thermoplastic resin serves as a sheath. Is drawn 1.2 times or more at a temperature lower than the melting point of the second thermoplastic resin, and then heat treated at a temperature not lower than the melting point of the second thermoplastic resin and not higher than the softening point of the first thermoplastic resin. A method for producing a long-fiber non-woven fabric, characterized in that the points of contact between the fibers are fused by means of.
【請求項4】 第1の熱可塑性樹脂として結晶性ポリプ
ロピレンを用い、第2の熱可塑性樹脂として高密度ポリ
エチレンを用いる請求項3に記載の長繊維不織布の製造
方法。
4. The method for producing a long-fiber nonwoven fabric according to claim 3, wherein crystalline polypropylene is used as the first thermoplastic resin, and high-density polyethylene is used as the second thermoplastic resin.
【請求項5】 熱処理が、熱風オーブン方式により行わ
れる請求項3に記載の長繊維不織布の製造方法。
5. The method for producing a long fiber non-woven fabric according to claim 3, wherein the heat treatment is performed by a hot air oven method.
【請求項6】 熱処理が、熱圧着方式により行われる請
求項3に記載の長繊維不織布の製造方法。
6. The method for producing a long-fiber nonwoven fabric according to claim 3, wherein the heat treatment is performed by a thermocompression bonding method.
JP8165299A 1995-06-06 1996-06-05 Filament nonwoven fabric and its production Pending JPH0959860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8165299A JPH0959860A (en) 1995-06-06 1996-06-05 Filament nonwoven fabric and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-164749 1995-06-06
JP16474995 1995-06-06
JP8165299A JPH0959860A (en) 1995-06-06 1996-06-05 Filament nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH0959860A true JPH0959860A (en) 1997-03-04

Family

ID=26489739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8165299A Pending JPH0959860A (en) 1995-06-06 1996-06-05 Filament nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH0959860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005537404A (en) * 2002-08-30 2005-12-08 キンバリー クラーク ワールドワイド インコーポレイテッド Method for forming a three-dimensional fiber on a web
JP2006283268A (en) * 2005-03-09 2006-10-19 Kao Corp Nonwoven fabric
JP2006316399A (en) * 2005-04-12 2006-11-24 Daiwabo Co Ltd Thermally adhesive conjugated fiber and its production method, and nonwoven fabric using the same
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production
JP2020158949A (en) * 2016-05-18 2020-10-01 ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ Method for making spunbonded high loft nonwoven web

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732357B2 (en) 2000-09-15 2010-06-08 Ahlstrom Nonwovens Llc Disposable nonwoven wiping fabric and method of production
JP2005537404A (en) * 2002-08-30 2005-12-08 キンバリー クラーク ワールドワイド インコーポレイテッド Method for forming a three-dimensional fiber on a web
KR101007443B1 (en) * 2002-08-30 2011-01-12 킴벌리-클라크 월드와이드, 인크. Method of forming a 3-dimensional fiber into a web
JP2006283268A (en) * 2005-03-09 2006-10-19 Kao Corp Nonwoven fabric
JP4566142B2 (en) * 2005-03-09 2010-10-20 花王株式会社 Non-woven
JP2006316399A (en) * 2005-04-12 2006-11-24 Daiwabo Co Ltd Thermally adhesive conjugated fiber and its production method, and nonwoven fabric using the same
JP2020158949A (en) * 2016-05-18 2020-10-01 ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ Method for making spunbonded high loft nonwoven web
US11021821B2 (en) 2016-05-18 2021-06-01 Fibertex Personal Care A/S Method for making a spunbonded high loft nonwoven web

Similar Documents

Publication Publication Date Title
EP0747521B1 (en) Continuous fiber nonwoven and method for producing the same
JP4820211B2 (en) Self-extensible thermoadhesive conjugate fiber and method for producing the same
EP2390389B1 (en) Hot-melt adhesive polyester conjugate fiber
KR100954704B1 (en) Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
KR100890322B1 (en) Stretchable multiple-component nonwoven fabrics and methods for preparing
JPH0137505B2 (en)
JPH02127553A (en) Stretchable non-woven fabric and production thereof
WO2005021850A1 (en) Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric
JPH1088460A (en) Nonwoven fabric of conjugated filament and its production
JP2007204901A (en) Heat-bonding conjugated fiber and method for producing the same
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
JPH07258951A (en) Nonwoven fabric and its production
JP4856435B2 (en) Thermal adhesive composite fiber and method for producing the same
JPH0959860A (en) Filament nonwoven fabric and its production
JPH01260051A (en) Fiber web
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP4000424B2 (en) Long fiber nonwoven fabric and method for producing the same
JP2769180B2 (en) Non-woven sheet with anisotropic heat shrink properties
JPH09291457A (en) Laminated nonwoven fabric of conjugate long fiber
JPH03269154A (en) Production of bulky long-fiber nonwoven fabric
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP2741113B2 (en) Method for manufacturing stretchable nonwoven fabric
JP3528792B2 (en) Thermal adhesive conjugate fiber, method for producing the same, and fiber molded body using the same
JP4513838B2 (en) Long fiber nonwoven fabric and method for producing the same
JP2549893B2 (en) Thermoadhesive conjugate fiber and non-woven fabric using the same