JPH0959778A - Pretreatment for electroless plating - Google Patents

Pretreatment for electroless plating

Info

Publication number
JPH0959778A
JPH0959778A JP21313695A JP21313695A JPH0959778A JP H0959778 A JPH0959778 A JP H0959778A JP 21313695 A JP21313695 A JP 21313695A JP 21313695 A JP21313695 A JP 21313695A JP H0959778 A JPH0959778 A JP H0959778A
Authority
JP
Japan
Prior art keywords
electroless plating
coating film
powder
catalyst
pretreatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21313695A
Other languages
Japanese (ja)
Inventor
Kiyouhei Morikawa
教平 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOSAKUSHO KK
Taiyo Manufacturing Works Co Ltd
Original Assignee
TAIYO KOSAKUSHO KK
Taiyo Manufacturing Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOSAKUSHO KK, Taiyo Manufacturing Works Co Ltd filed Critical TAIYO KOSAKUSHO KK
Priority to JP21313695A priority Critical patent/JPH0959778A/en
Publication of JPH0959778A publication Critical patent/JPH0959778A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To conduct pretreatment for electroless plating good in operability and suitable for mass production by coating the desired place on the surface of the nonconductive substrate with a liq. org. binder wherein a nonconductive powder carrying a metallic catalyst is dispersed. SOLUTION: A metallic catalyst for electroless plating such as palladium is deposited on the nonconductive powder consisting of the ceramic or plastic grains having <=20μm average diameter. The powder is added and dispersed by 5-10vol.% into a liq. org. binder. The org. solvent soln. or aq. emulsion of acrylic, polyurethanic and epoxy paints, etc., is preferably use as the binder. The desired place on the surface of the base consisting of a nonconductive substrate is coated with the liq. dispersion to form a coating film. The ratio of the catalyst to the binder in the coating film is preferably controlled to <=1wt.%. As a result, a coating film wherein a catalyst is uniformly dispersed is formed, dimensional precision and weight-lightening are improved, and a lightweight high-quality electroless plating having high dimensional accuracy is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、不導電性物質に
対する無電解メッキ方法に関し、特に電磁波シールド用
導電層の形成に有用な無電解メッキの前処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for electroless plating on a non-conductive substance, and more particularly to a pre-treatment method for electroless plating useful for forming a conductive layer for electromagnetic wave shielding.

【0002】[0002]

【従来の技術】セラミックスやプラスチックス等の不導
電性物質より構成された電子機器のキャビネットやプリ
ント基板等の表面に金属層を形成する手段として、無電
解メッキ法が広く採用されている。即ち、被メッキ基板
である不導電性物質の表面に無電解メッキを活性化する
触媒を付与した後、無電解メッキ液と接触させる方法で
ある。これら触媒としては、一般に、パラジウム、プラ
チナ、金、銀、銅、ニッケル、コバルト等の各種の活性
金属粒子が使用されている。
2. Description of the Related Art Electroless plating is widely used as a means for forming a metal layer on the surface of a cabinet of electronic equipment, a printed circuit board, etc., which is made of a non-conductive material such as ceramics or plastics. That is, it is a method in which a catalyst for activating the electroless plating is applied to the surface of the non-conductive substance which is the substrate to be plated and then brought into contact with the electroless plating solution. As these catalysts, various active metal particles such as palladium, platinum, gold, silver, copper, nickel and cobalt are generally used.

【0003】ところで、この種の無電解メッキ法におい
て、メッキ層を基盤に強固に密着し担持させるには、触
媒を付与する基板の表面をエッチング等により予め粗面
化しておくことが必要であった。例えば、ABS樹脂上
に銅またはニッケルを無電解メッキするに際しては、通
常、塩化第一錫および塩化パラジウム溶液を用いて触媒
核を形成させるが、その前工程として加熱したクロム酸
−硫酸溶液中に素材を浸漬しその表面に微小凹凸を作る
所謂エッチング操作が行われている。
By the way, in this type of electroless plating method, in order to firmly adhere and support the plating layer on the substrate, it is necessary to roughen the surface of the substrate to which the catalyst is applied in advance by etching or the like. It was For example, when electrolessly plating copper or nickel on an ABS resin, a catalyst nucleus is usually formed using a stannous chloride solution and a palladium chloride solution. As a previous step, the catalyst core is formed in a heated chromic acid-sulfuric acid solution. A so-called etching operation in which a material is dipped to form fine irregularities on its surface is performed.

【0004】このような操作は、素材の種類によっては
表面に微細クラックが生じ、最悪の場合は基材としての
用をなし得ない状態にするものであった。また、任意な
場所のみにメッキすることが難しく、言い換えれば、素
材の一部を残して必要なところのみにメッキすることが
工程を複雑にし、コスト上昇を招いていた。そこで最近
は、不導電性物質からなる素材表面を予め粗面化する必
要のない無電解メッキ法が開発されている。例えば、特
公平2−62960号公報に開示されている方法は、か
かる欠点を改良すべく提案されたものであって、特定な
範囲の寸法を有する活性金属粒子を液状有機バインダー
中に比較的多量に分散させ、これを清浄な不導電性囲い
の表面に塗装するだけで、その表面に触媒性を付与する
というものである。
According to such an operation, fine cracks are generated on the surface depending on the kind of the material, and in the worst case, it cannot be used as a base material. In addition, it is difficult to plate only on an arbitrary place, in other words, leaving only a part of the material and plating only on a necessary place complicates the process and causes an increase in cost. Therefore, recently, an electroless plating method has been developed which does not require roughening the surface of a material made of a non-conductive material in advance. For example, the method disclosed in Japanese Examined Patent Publication (Kokoku) No. 2-62960 has been proposed in order to improve such a defect, and a relatively large amount of active metal particles having a specific range of dimensions in a liquid organic binder. It is to disperse the powder into the surface of the non-conductive enclosure and to apply the catalytic property to the surface of the non-conductive enclosure.

【0005】[0005]

【発明が解決しようとする課題】前記特公平2−629
60号公報に開示された方法では、製造時のバリ、オイ
ルやほこり等の汚染物を取り除いて素材の表面を清浄に
する以外には特別な表面処理操作を必要としないという
簡便さはあるが、その反面、ここで使用される金属粒子
は比重が高くバインダー中で沈降し易いため、常時攪拌
していないとバインダー対金属粒子の比率が変化し、塗
装した塗膜の品質にバラツキが生じてしまう。特にスプ
レー塗装に際しては、ノズルから均一に吐出しない等作
業性を阻害する原因となり、量産性に欠けるという問題
があった。
[Patent Document 1] Japanese Patent Publication No. 2-629
The method disclosed in Japanese Patent No. 60 has the convenience that no special surface treatment operation is required other than removing burrs, oil, dust, and other contaminants during manufacturing to clean the surface of the material. On the other hand, since the metal particles used here have a high specific gravity and easily settle in the binder, the ratio of the binder to the metal particles changes without constant stirring, which causes variations in the quality of the coated film. I will end up. In particular, in spray painting, there is a problem that productivity is impaired because it causes workability to be impaired by not evenly ejecting from a nozzle.

【0006】また、乾燥時において約50%以上の金属
粒子を含有する有機バインダー層を12.5ミクロン以
上の厚さに塗装するものなので、この方法を携帯電話や
パーソナルコンピューター等に適用した場合、製品の重
量が大きくなリ、また製品の寸法精度が劣るという難点
があった。
Further, since an organic binder layer containing about 50% or more of metal particles is applied to a thickness of 12.5 μm or more when dried, when this method is applied to a mobile phone, a personal computer or the like, However, the weight of the product is large and the dimensional accuracy of the product is poor.

【0007】しかして、この発明の目的は、金属粒子を
使用する場合と異なり、塗装に当って触媒が有機バイン
ダー中に沈降せず、作業性が良好で量産性に適した無電
解メッキの前処理方法を提供することにある。また、こ
の発明の他の目的は、比重が軽く、少ない触媒を均一に
分散された塗膜が形成されて、導電層の品質にバラツキ
がなく、製品の寸法精度や軽量化が有利に図れる無電解
メッキの前処理方法を提供することにある。
The object of the present invention, however, is different from the case of using metal particles, in that the catalyst does not settle in the organic binder during coating, workability is good, and electroless plating suitable for mass production is suitable. It is to provide a processing method. Another object of the present invention is to form a coating film in which the specific gravity is light and a small amount of a catalyst is uniformly dispersed, the quality of the conductive layer does not vary, and dimensional accuracy and weight reduction of the product can be advantageously achieved. It is to provide a pretreatment method for electrolytic plating.

【0008】[0008]

【課題を解決するための手段】この発明は、上記の目的
を達成するため、予め表面に無電解メッキ用金属触媒を
担持させた不導電性粉体を液状有機バインダー中に分散
させ、しかる後得られる分散液を不導電性物質よりなる
基部表面の所望の場所に塗装し塗膜を形成することを特
徴とする無電解メッキの前処理方法をその要旨とするも
のである。
In order to achieve the above object, the present invention disperses a non-conductive powder having a metal catalyst for electroless plating previously supported on a surface thereof in a liquid organic binder, and thereafter, The gist of the pretreatment method for electroless plating is characterized in that a coating film is formed by coating the obtained dispersion liquid on a desired place on the surface of a base made of an electrically non-conductive substance.

【0009】不導電性粉体の表面に担持させる無電解メ
ッキ用金属触媒としては、パラジウム、プラチナ、金、
銀、銅、ニッケル、コバルト、鉄等の各種金属であり、
中でも最もパラジウムが好ましく採用できる。
As the metal catalyst for electroless plating to be carried on the surface of the non-conductive powder, palladium, platinum, gold,
Various metals such as silver, copper, nickel, cobalt, iron,
Of these, palladium is the most preferable.

【0010】本発明で用いる不導電性粉体は、ガラス、
セラミック、鉱物等の無機粉体或いは熱可塑性樹脂や熱
硬化性樹脂等のプラスチックス粉体からなる。前記無機
粉体の具体例としては、シラスバルーン、ガラスバルー
ン、ガラスフレーク、アルミナ、シリカ、マイカ、タル
ク、ゼオライト等を例示することができる。また、プラ
スチックス粉体の例としては、ABS、ポリエステル、
ナイロン、ポリカーボネート、ポリスチレン、ポリプロ
ピレン、ポリエチレン等のプラスチックス粒体を挙げる
ことができる。これらの不導電性粉体の中で、シラスバ
ルーン、ガラスバルーン等の発泡体は見掛け比重が小さ
く、また後者の各種プラスチックス粉体も金属や無機物
に比べて比重が小さいので、メッキ製品の軽量化に寄与
しうる好適な素材である。
The non-conductive powder used in the present invention is glass,
It is made of inorganic powder such as ceramics and minerals or plastics powder such as thermoplastic resin and thermosetting resin. Specific examples of the inorganic powder include shirasu balloon, glass balloon, glass flake, alumina, silica, mica, talc, zeolite and the like. Also, examples of plastics powder include ABS, polyester,
Examples thereof include plastics particles such as nylon, polycarbonate, polystyrene, polypropylene and polyethylene. Of these non-conductive powders, foams such as shirasu balloons and glass balloons have a small apparent specific gravity, and the latter various plastics powders also have a smaller specific gravity compared to metals and inorganic substances, so the weight of plated products is light. It is a suitable material that can contribute to realization.

【0011】これら不導電性粉体の形状は特に制限され
ず、粒状、板状、フレーク状、針状等のいかなる形状の
ものでもよいが、市販のプラスチックス粉体について
は、通常、粒状体として供給されるところ、かかる形状
の不導電性粉体を使用するに当っては平均粒子径が20
μm 以下のもの、特に2〜10μm の範囲のものを選定
し使用するのが好ましい。また、ガラス、セラミック
ス、鉱物等の無機粉体については、粒状よりも板状、フ
レーク状、針状のものが多いが、この種の粉体も最長方
向の寸法が20μm 以下であることが望ましい。
The shape of these non-conductive powders is not particularly limited, and may be any shape such as granular, plate-like, flake-like, needle-like, etc. The average particle diameter of the non-conductive powder having such a shape is 20
It is preferable to select and use those having a size of less than or equal to μm, particularly those in the range of 2 to 10 μm. In addition, many inorganic powders such as glass, ceramics, and minerals are plate-like, flake-like, and acicular, rather than granular, and the powders of this kind also preferably have a longest dimension of 20 μm or less. .

【0012】これらの不導電性粉体の表面に予め無電解
メッキ用金属触媒を担持させる方法としては、各種粉体
への無電解メッキの前処理方法としてすでに公知の技
術、例えば、メッキ技術, Vol.5,No.5,1〜10,1992,特開
昭59−182961号公報等の刊行物に開示されてい
る粉体表面への触媒性付与技術のみならず、プリント配
線板のスルーホールめっきやプラスチック等の不導体の
触媒化技術として最近開発が進んでいるアルカリ性触媒
付与プロセス等をすべて採用することができる。
As a method of preliminarily supporting a metal catalyst for electroless plating on the surface of these non-conductive powders, a technique already known as a pretreatment method for electroless plating on various powders, for example, a plating technique, Vol.5, No.5, 1-10, 1992, technology for imparting catalytic property to powder surface disclosed in publications such as Japanese Patent Laid-Open No. 59-182961, and through holes of printed wiring boards It is possible to adopt all the alkaline catalyst application processes which have been recently developed as a technique for catalyzing nonconductors such as plating and plastics.

【0013】具体的には、塩化第一錫−塩化パラジウム
の酸性溶液を用いて粉体の表面にパラジウムを担持させ
る方法や、水素化ホウ素化合物−塩化パラジウム−界面
活性剤よりなる中性溶液を用いて粉体の表面にパラジウ
ムを担持させる方法、有機パラジウム錯化物を含むアル
カリ性水溶液で処理したのちホウ素系還元剤で還元する
方法(アルカリ−アクチベーション法)、或いは金属捕
捉性の表面処理剤を用いて表面処理した粉体をパラジウ
ムイオンを含む溶液と接触させてその表面にパラジウム
イオンを担持させ、しかる後還元する方法(有機物被覆
−触媒付与法)など適宜使用することが可能である。こ
のようにして触媒性を付与された粉体は水洗、乾燥され
た後、適当な液状有機バインダー中に体積分率で少なく
とも5〜10%の範囲で添加し攪拌して分散される。従
って、比重の大きい粉体ほど重量分率は大きくなる。
Specifically, a method of supporting palladium on the surface of the powder using an acidic solution of stannous chloride-palladium chloride, or a neutral solution consisting of a borohydride compound-palladium chloride-surfactant is used. A method of supporting palladium on the surface of the powder by using it, a method of treating with an alkaline aqueous solution containing an organopalladium complex and then reducing with a boron-based reducing agent (alkali-activation method), or using a surface-treating agent having a metal-trapping property It is possible to appropriately use a method of bringing the surface-treated powder into contact with a solution containing palladium ions to carry the palladium ions on the surface thereof, and then performing reduction (organic material coating-catalyst applying method). The powder thus imparted with the catalytic property is washed with water and dried, and then added to an appropriate liquid organic binder in a volume fraction of at least 5 to 10% and stirred to be dispersed. Therefore, the weight fraction increases as the specific gravity of the powder increases.

【0014】この発明で用いる液状有機バインダーとし
ては、触媒性を付与された粉体並びに塗装面に対し十分
な親和性を有するものであって、粉体の均一な分散を可
能とし、かつ不導電性基部表面と強固に固着する薄肉に
して強靭な塗膜の形成能を有するものであればいづれも
使用できるが、本発明において好適なものはアクリル系
塗料、ポリウレタン系塗料、エポキシ系塗料である。こ
れらの塗料は、それ自体が揮発性有機溶剤型ないし水性
エマルジョン型の組成物として比較的容易に入手でき、
ガラス、セラミックス等の無機材料或いはABS樹脂、
ポリエステル樹脂、ポリカーボネート樹脂などの有機材
料に対する表面塗料としてすぐれた機能を発揮し得るも
のであればよい。また、これらの塗料の代わりに印刷用
インキを用いることも可能であり、これを用いるとプリ
ント基板等の導電パターンの形成に好ましく適用し得
る。
The liquid organic binder used in the present invention has a sufficient affinity for the powder to which the catalytic property is imparted and the coated surface, allows the powder to be uniformly dispersed, and is non-conductive. Any one can be used as long as it has the ability to form a thin and tough coating film that firmly adheres to the surface of the flexible base, but acrylic paints, polyurethane paints, and epoxy paints are preferred in the present invention. . These paints themselves are relatively easily available as volatile organic solvent type or aqueous emulsion type compositions,
Inorganic materials such as glass and ceramics or ABS resin,
Any material capable of exhibiting an excellent function as a surface coating for organic materials such as polyester resin and polycarbonate resin may be used. It is also possible to use a printing ink in place of these paints, and this can be preferably applied to the formation of a conductive pattern on a printed circuit board or the like.

【0015】これらの塗料の粉体分散液を基部表面に塗
装する方法としては、スプレー法、刷毛塗り、漬浸法な
ど慣用の塗装手段を適宜使用することができる。また、
その際にはベンジンやシンナーなどの揮発性希釈剤を添
加してそれぞれの塗装法に好適な粘度に調節することも
可能である。いづれにせよ、乾燥後に得られる塗膜は1
〜10μm の厚さを有し、連続した被膜として形成され
ることが肝要である。こうすれば、平均粒子径10μm
以下の不導電性粉体については、好ましくは20〜50
%の体積を占有する粉体が2次元的に連結して配列され
た、少なくとも一層からなる触媒層が形成されることに
なる。換言すれば、本発明に係る塗膜の厚さは10μ以
上である必要はない。
As a method for coating the powder dispersion of these coating materials on the surface of the base, a conventional coating means such as a spray method, a brush coating method or a dipping method can be appropriately used. Also,
In that case, it is also possible to add a volatile diluent such as benzine or thinner to adjust the viscosity suitable for each coating method. In any case, the coating film obtained after drying is 1
It is important to form a continuous film having a thickness of 10 μm. By doing this, the average particle size is 10 μm
For the following non-conductive powder, preferably 20 to 50
%, A powder layer occupying two-dimensionally is arranged in a two-dimensional array to form a catalyst layer consisting of at least one layer. In other words, the thickness of the coating film according to the present invention does not need to be 10 μ or more.

【0016】基部を構成する不導電性物質としては、A
BS樹脂、ポリエステル樹脂、ポリカーボネート樹脂、
ポリウレタン樹脂、ポリプロピレン樹脂等のプラスチッ
クス或いはこれらの樹脂を繊維で強化した繊維強化プラ
スチックスが使用される。ところで、この発明で用いる
液状有機バインダーは、前記の通り、これらのプラスチ
ックスとは十分な親和性を有するので、表面が清浄でさ
えあれば、塗装に当ってエッチング等の余分な表面処理
は一切必要でない。
The non-conductive substance forming the base is A
BS resin, polyester resin, polycarbonate resin,
Plastics such as polyurethane resin and polypropylene resin or fiber reinforced plastics obtained by reinforcing these resins with fibers are used. By the way, since the liquid organic binder used in the present invention has a sufficient affinity with these plastics as described above, as long as the surface is clean, no extra surface treatment such as etching is required for coating. Not necessary.

【0017】本発明においては、上記の通り、液状有機
バインダーを介して不導電性基部の表面に無電解メッキ
用触媒層を形成するに当り、触媒金属をこれより比重の
軽い不導電性粉体の表面に担持させて液状有機バインダ
ー中に分散させ、しかる後、該分散液を基部表面に塗装
するようにしたので、従来法における金属粒子と異な
り、塗装に当って触媒が沈降しない安定な分散液が得ら
れ、スプレー塗装に際しても作業性が良好で生産性が向
上する。特に、プラスチックス粉体は有機バインダーを
構成する合成樹脂とほぼ同等の比重を有し、かつ有機バ
インダーとの親和性も高いので、均一な浮遊状態を長く
保持し得る。
In the present invention, as described above, in forming the catalyst layer for electroless plating on the surface of the non-conductive base through the liquid organic binder, the catalyst metal is a non-conductive powder having a specific gravity lighter than that. Supported on the surface and dispersed in a liquid organic binder, and then the dispersion was coated on the surface of the base, so unlike the conventional metal particles, a stable dispersion in which the catalyst does not settle during coating. A liquid is obtained, which has good workability even during spray coating and improves productivity. In particular, since the plastics powder has a specific gravity almost equal to that of the synthetic resin constituting the organic binder and has a high affinity with the organic binder, a uniform floating state can be maintained for a long time.

【0018】また、この発明においては、粉体表面に担
持される金属触媒は粒子径1〜100 mμのコロイド状
粒子であり、平均粒子径が10μm のプラスチック粉体
に比べれば100分の1以下と小さい。したがって、同
じサイズの金属粒子を使用する場合に比べれば触媒量が
少なくてすみ、またこれを表面積の大きい粉体表面に均
一に担持させたので、コスト並びにパフォーマンスの両
面において有利な触媒層が形成される。
Further, in the present invention, the metal catalyst supported on the powder surface is colloidal particles having a particle size of 1 to 100 mμ, which is 1/100 or less as compared with the plastic powder having an average particle size of 10 μm. And small. Therefore, compared with the case of using metal particles of the same size, the amount of catalyst is small, and since it is uniformly supported on the surface of the powder having a large surface area, a catalyst layer advantageous in terms of both cost and performance is formed. To be done.

【0019】更に、この発明においては、触媒を担持し
た粉体が塗膜中で相互に連続して少なくとも一層の触媒
層を形成するように、粉体の粒子径、バインダー中の粉
体の体積割合を調節したので、直接に無電解メッキが可
能であり、品質にバラツキのない導電層が形成される。
但し、アクリル系塗料のように、塗膜の素材によっては
表面の親水化処理を行う方が更に好ましい結果が得られ
る場合もある。また、比重が小さい塗膜を厚さ10μm
以下と薄く形成するので、製品の軽量化が有利に図れ
る。
Further, according to the present invention, the particle size of the powder and the volume of the powder in the binder are adjusted so that the powder carrying the catalyst continuously forms at least one catalyst layer in the coating film. Since the ratio is adjusted, electroless plating can be directly performed, and a conductive layer having uniform quality can be formed.
However, depending on the material of the coating film, such as acrylic paint, it may be possible to obtain a more preferable result by subjecting the surface to hydrophilic treatment. Also, a coating film with a small specific gravity is 10 μm thick.
Since it is formed as thin as the following, the weight of the product can be advantageously reduced.

【0020】[0020]

【発明の実施の形態】上記のようにして、予め平均粒子
径が20μm 以下、好ましくは2〜10μmの範囲にあ
るセラミックス粒子或いはプラスチックス粒子からなる
不導電性粉体の表面に無電解メッキ用金属触媒を担持さ
せ、これを液状有機バインダー中に分散させ、得られる
分散液を不導電性物質よりなる電子部品等の基部成形体
表面の所望の場所に塗装し、該表面に触媒性のある塗膜
を形成した。ついで、苛性ソーダ溶液でリンスして表面
を親水化したのち、銅およびニッケルの無電解メッキ浴
中に順次浸漬することにより優れた性能を有する無電解
メッキ製品を得た。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, for electroless plating on the surface of a non-conductive powder consisting of ceramic particles or plastics particles having an average particle size of 20 μm or less, preferably in the range of 2 to 10 μm. A metal catalyst is supported, this is dispersed in a liquid organic binder, and the resulting dispersion is applied to a desired place on the surface of a base molded article such as an electronic component made of a non-conductive substance, and the surface has a catalytic property. A coating film was formed. Then, after rinsing with a caustic soda solution to make the surface hydrophilic, it was successively immersed in an electroless plating bath of copper and nickel to obtain an electroless plated product having excellent performance.

【0021】[0021]

【実施例】つぎに、実施例に基づいてこの発明の特徴を
より詳細に説明する。
EXAMPLES Next, the features of the present invention will be described in more detail based on examples.

【0022】実施例1 平均粒子径5μm の寸法を有するカオリン粒末(比重
3.0)をパラジウム−アミン錯体を含むアルカリ性水溶
液の触媒付与剤(アトテック ジャパンKK製、商品
名:アクチベータ ネオガント)中に浸漬した後、水素
化ホウ素ナトリウムで還元することにより、該カオリン
粉体の表面にパラジウム触媒を担持させた。この場合,
カオリン上に担持された触媒濃度は 3.5 mg/g (0.35%)
であった。ついで、トルエン、キシレン、メチルイソブ
チルケトン(MIBK)等を含むシンナーに少量の硬化剤と
アクリル樹脂を約10重量%溶解させた溶液に、上記カ
オリン粉体を30重量%の割合で添加し、攪拌して塗料
化した。
Example 1 Kaolin powder having a mean particle size of 5 μm (specific gravity
3.0) is immersed in a catalyst-providing agent (made by Atotech Japan KK, trade name: Activator Neogant) of an alkaline aqueous solution containing a palladium-amine complex, and then reduced with sodium borohydride to give a surface of the kaolin powder. A palladium catalyst was supported. in this case,
The concentration of catalyst supported on kaolin is 3.5 mg / g (0.35%)
Met. Then, the above kaolin powder is added at a ratio of 30% by weight to a solution in which a small amount of a curing agent and an acrylic resin are dissolved in a thinner containing toluene, xylene, methyl isobutyl ketone (MIBK) or the like at a ratio of 30% by weight and stirred. And made into paint.

【0023】この塗料をエアスプレー方式にてABS樹
脂よりなる被塗物成形品(基部)表面の一部または全面
に塗布して、乾燥後の平均厚さが5μm になるように塗
膜を形成し、約60℃で30分間乾燥する。ついで、1
0%苛性ソーダ溶液を用いて50℃で3分間リンスして
表面を親水化し、よく水洗したのち、該成型品を無電解
銅メッキ溶中に45℃で30分間浸漬処理して、水洗
し、更に、無電解ニッケル溶中に55℃で10分間浸漬
処理して、水洗し、乾燥してメッキ製品を得た。
This paint is applied to a part or the whole of the surface of the article to be coated (base) made of ABS resin by an air spray method to form a coating film so that the average thickness after drying is 5 μm. And dried at about 60 ° C. for 30 minutes. Then 1
After rinsing with 0% caustic soda solution for 3 minutes at 50 ° C. to make the surface hydrophilic and thoroughly washing with water, the molded product is immersed in electroless copper plating solution at 45 ° C. for 30 minutes, and washed with water. A plating product was obtained by immersing in electroless nickel melt at 55 ° C. for 10 minutes, washing with water and drying.

【0024】得られたメッキ製品の性能は下記の通りで
ある。 塗膜の厚み … 平均5μm 銅メッキの厚さ … 1μm ニッケルメッキの厚さ… 0.5μm 表面抵抗(測定器:三菱油化KK製、ラレスタ MPCテスタ
ー) … 5 mΩ RFIシールド性(測定法:アドバンテスト法に準拠) 周波数(MHz) 30 100 200 300 減衰率(dB) 58 68 74 75 ヒートショック試験(80℃と−30℃に各1時間づつ、3
回繰り返し放置し、その前後の状態を観察する) …
異常なし 耐湿性(60℃、湿度95%の雰囲気中に168 時間放置し、
その前後の状態を観察する)
… 異常なし
The performance of the obtained plated product is as follows. Coating thickness: Average 5μm Copper plating thickness: 1μm Nickel plating thickness: 0.5μm Surface resistance (Measuring instrument: Mitsubishi Yuka KK, Laresta MPC tester): 5mΩ RFI shielding property (Measuring method: Advantest Frequency (MHz) 30 100 200 300 300 Attenuation (dB) 58 68 74 75 Heat shock test (80 ° C and -30 ° C for 1 hour each, 3
Repeatedly leave it alone and observe the condition before and after that ...
No abnormality Moisture resistance (Leave in an atmosphere of 60 ° C, 95% humidity for 168 hours,
Observe the condition before and after that)
… No abnormality

【0025】実施例2 平均粒子径6μm のシリカ粒末(比重 2.6)をγ−アミ
ノプロピルトリエトキシシランを含むメタノール溶液に
室温で浸漬し、十分攪拌しながら110℃で2時間加熱
・乾燥して、その表面にアミノ基を含む有機化合物を金
属捕捉剤として被覆させた。ついで、実施例1と同様に
してアルカリ性触媒付与剤で処理し,得られた粉体をシ
ンナー溶液中のアクリル共重合樹脂分100重量部当た
り40重量部の割合で添加し、攪拌して塗料化した。こ
の塗料を使用してポリカーボネート樹脂よりなる成型品
に適用して表面塗膜を形成し、無電解メッキを施した。
Example 2 Silica grain powder having an average particle diameter of 6 μm (specific gravity 2.6) was immersed in a methanol solution containing γ-aminopropyltriethoxysilane at room temperature, and heated and dried at 110 ° C. for 2 hours with sufficient stirring. The surface was coated with an organic compound containing an amino group as a metal scavenger. Then, it was treated with an alkaline catalyst-imparting agent in the same manner as in Example 1, and the resulting powder was added at a ratio of 40 parts by weight per 100 parts by weight of the acrylic copolymer resin content in the thinner solution, and stirred to form a paint. did. This paint was applied to a molded product made of a polycarbonate resin to form a surface coating film, and electroless plating was performed.

【0026】得られたメッキ製品につき、実施例1と同
様の方法により測定された性能は下記の通りである。 塗膜の厚さ … 平均7μm 銅メッキの厚さ … 2μm ニッケルメッキの厚さ… 0.5μm 表面抵抗 … 5 mΩ RFIシールド性 周波数(MHz) 30 100 200 300 減衰率(dB) 60 70 77 76
The performance of the obtained plated product measured by the same method as in Example 1 is as follows. Thickness of coating film: average 7 μm Copper plating thickness: 2 μm Nickel plating thickness: 0.5 μm Surface resistance: 5 mΩ RFI shielding property Frequency (MHz) 30 100 200 200 300 Attenuation rate (dB) 60 70 77 77 76

【0027】実施例3 平均粒子径4μm の硫酸バリウム(比重 4.5)をγ−ア
ミノプロピルトリエトキシシランを含むメタノール溶液
に室温で浸漬し、十分攪拌しながら110℃で2時間加
熱・乾燥して、その表面にアミノ基を含む有機化合物を
金属捕捉剤として被覆させた。ついで、実施例1と同様
にしてアルカリ性触媒付与剤で処理し,得られた粉体を
アクリル系水性エマルジョン塗料中に樹脂分100重量
部当たり40重量部添加・攪拌して分散させた。この分
散液をポリカーボネート樹脂よりなる成型品の表面にス
プレーして塗膜を形成し、その表面に無電解メッキを施
した。
Example 3 Barium sulfate (specific gravity: 4.5) having an average particle diameter of 4 μm was immersed in a methanol solution containing γ-aminopropyltriethoxysilane at room temperature, and heated and dried at 110 ° C. for 2 hours with sufficient stirring, The surface was coated with an organic compound containing an amino group as a metal scavenger. Then, it was treated with an alkaline catalyst-imparting agent in the same manner as in Example 1, and 40 parts by weight of 100 parts by weight of the resin component was added to the resulting acrylic aqueous emulsion paint and stirred to disperse it. This dispersion was sprayed on the surface of a molded product made of a polycarbonate resin to form a coating film, and the surface was electroless plated.

【0028】得られたメッキ製品につき、実施例1と同
様にして塗膜とメッキ層の厚み、並びに表面抵抗値を測
定した。結果は下記の通りである。 塗膜の厚さ … 平均5μm 銅メッキの厚さ … 1μm ニッケルメッキの厚さ… 0.5μm 表面抵抗 … 7 mΩ
For the obtained plated product, the thickness of the coating film and the plated layer and the surface resistance value were measured in the same manner as in Example 1. The results are as follows. Thickness of coating film: average 5 μm Copper plating thickness: 1 μm Nickel plating thickness: 0.5 μm Surface resistance: 7 mΩ

【0029】実施例4 親水化させた平均粒子径6μm のナイロン粉末(比重
1.1)をポリエチレングリコールモノ−P−ノニルフ
ェニルエーテル等の界面活性剤の入った水溶液に分散さ
せ、その後、実施例2と同様にして、該ナイロン粉末の
表面にパラジウム触媒を担持させた。ついで、アクリル
共重合樹脂の10%シンナー溶液に、該ナイロン粉末を
アクリル共重合樹脂分100重量部当たり10重量部の
割合で添加し、攪拌して塗料化した。この塗料を、AB
S樹脂成形品の表面にスプレーして塗膜を形成したの
ち、その表面に無電解メッキを施した。
Example 4 Hydrophilized nylon powder having an average particle size of 6 μm (specific gravity 1.1) was dispersed in an aqueous solution containing a surfactant such as polyethylene glycol mono-P-nonylphenyl ether, and then the example. In the same manner as in 2, a palladium catalyst was supported on the surface of the nylon powder. Then, the nylon powder was added to a 10% thinner solution of an acrylic copolymer resin at a ratio of 10 parts by weight per 100 parts by weight of the acrylic copolymer resin content, and stirred to form a coating material. This paint, AB
After spraying on the surface of the S resin molded product to form a coating film, electroless plating was applied to the surface.

【0030】このメッキ製品につき同様にして測定され
た性能は下記の通りである。 塗膜の厚さ … 平均7μm 銅メッキの厚さ … 1μm ニッケルメッキの厚さ… 0.5μm 表面抵抗 … 6 mΩ
The performances measured in the same manner for this plated product are as follows. Thickness of coating film: average 7 μm Copper plating thickness: 1 μm Nickel plating thickness: 0.5 μm Surface resistance: 6 mΩ

【0031】実施例5 表面を平均粒子径0.3μm の酸化チタンで被覆したナ
イロン粉末(平均粒子径6μm 、比重1.2)を使用し
た以外は、実施例2と同様にしてパラジウム触媒を付与
して塗料化し、この塗料を使用してポリカーボネート樹
脂成型品の表面に塗膜を形成し、無電解メッキを施し
た。
Example 5 A palladium catalyst was applied in the same manner as in Example 2 except that nylon powder whose surface was coated with titanium oxide having an average particle size of 0.3 μm (average particle size 6 μm, specific gravity 1.2) was used. Then, a coating film was formed on the surface of the polycarbonate resin molded article using this coating material, and electroless plating was performed.

【0032】この場合、得られたメッキ製品の性能は下
記の通りである。 塗膜の厚さ … 平均7μm 銅メッキの厚さ … 1μm ニッケルメッキの厚さ… 0.5μm 表面抵抗 … 5 mΩ
In this case, the performance of the obtained plated product is as follows. Thickness of coating film: average 7μm Copper plating thickness: 1μm Nickel plating thickness: 0.5μm Surface resistance: 5mΩ

【0033】実施例6 実施例4と同様にして、ノニオン系界面活性剤に分散さ
せた平均粒子径6μmのナイロン粉末の表面にγ−アミ
ノプロピルトリエトキシシランを被覆させたのち、これ
を塩化パラジウムとポリエチレングリコールモノ−P−
ノニルフェニルエーテル(界面活性剤)および水素化ホ
ウ素ナトリウム(還元剤)よりなるほぼ中性のコロイド
水溶液中に分散させて、該ナイロン粉体の表面にパラジ
ウム触媒を吸着担持させた。ついで、アクリル共重合樹
脂の10%シンナー溶液に、該ナイロン粉末をアクリル
共重合樹脂分100重量部当たり10重量部の割合で添
加し、攪拌して塗料化した。この塗料を、ABS樹脂成
形品の表面にスプレーして塗膜を形成し、その表面に無
電解メッキを施した。
Example 6 In the same manner as in Example 4, the surface of nylon powder having an average particle diameter of 6 μm dispersed in a nonionic surfactant was coated with γ-aminopropyltriethoxysilane, and then this was palladium chloride. And polyethylene glycol mono-P-
A palladium catalyst was adsorbed and supported on the surface of the nylon powder by dispersing it in an almost neutral colloidal aqueous solution containing nonylphenyl ether (surfactant) and sodium borohydride (reducing agent). Then, the nylon powder was added to a 10% thinner solution of an acrylic copolymer resin at a ratio of 10 parts by weight per 100 parts by weight of the acrylic copolymer resin content, and stirred to form a coating material. This paint was sprayed on the surface of an ABS resin molded product to form a coating film, and the surface was electroless plated.

【0034】この場合、得られたメッキ製品の性能は下
記の通りである。 塗膜の厚さ … 平均7μm 銅メッキの厚さ … 1μm ニッケルメッキの厚さ… 0.5μm 表面抵抗 … 4 mΩ
In this case, the performance of the obtained plated product is as follows. Thickness of coating ・ ・ ・ Average 7μm Thickness of copper plating ・ ・ ・ 1μm Thickness of nickel plating ・ ・ ・ 0.5μm Surface resistance ・ ・ ・ 4 mΩ

【0035】[0035]

【発明の効果】上記の通り、本発明に係る無電解メッキ
の前処理工程においては、塗装に当たって金属触媒が沈
降しにくい安定な分散液が得られ、かつ基盤表面のエッ
チング操作が不要なので、触媒付与工程の作業性が良好
で生産性が向上すると共に、塗膜の品質にバラツキがな
く、寸法精度の高い製品が得られる。また、粒子径が数
mμの金属触媒を粉体表面に担持させ、ほぼ粉体厚みの
触媒層としたので、材料コストの軽減と製品の軽量化が
同時に達成される。
As described above, in the pretreatment step of the electroless plating according to the present invention, a stable dispersion liquid in which the metal catalyst is unlikely to settle during coating is obtained, and the operation of etching the substrate surface is unnecessary. The workability of the applying step is good and the productivity is improved, and the product with high dimensional accuracy and uniform quality of the coating film can be obtained. Also, the particle size is several
Since a metal catalyst of mμ is supported on the surface of the powder to form a catalyst layer having a substantially powder thickness, material cost reduction and product weight reduction can be achieved at the same time.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 予め表面に無電解メッキ用金属触媒を担
持させた不導電性粉体を液状有機バインダー中に分散さ
せ、しかる後得られる分散液を不導電性物質よりなる基
部表面の所望の場所に塗装し塗膜を形成することを特徴
とする無電解メッキの前処理方法。
1. A non-conductive powder having a metal catalyst for electroless plating previously supported on the surface is dispersed in a liquid organic binder, and the resulting dispersion is then formed on the surface of the base of the non-conductive material in a desired amount. A pretreatment method for electroless plating, which comprises applying a coating film to a place to form a coating film.
【請求項2】 前記無電解メッキ用金属触媒がパラジウ
ムである請求項1記載の無電解メッキの前処理方法。
2. The pretreatment method for electroless plating according to claim 1, wherein the metal catalyst for electroless plating is palladium.
【請求項3】 塗膜中の有機バインダーに対するパラジ
ウム触媒の比率が1重量%以下である請求項2記載の無
電解メッキの前処理方法。
3. The pretreatment method for electroless plating according to claim 2, wherein the ratio of the palladium catalyst to the organic binder in the coating film is 1% by weight or less.
【請求項4】 不導電性粉体が平均粒子径20μm 以下
のセラミックス粒子或いはプラスチックス粒子である請
求項1、2乃至3記載の無電解メッキの前処理方法。
4. The pretreatment method for electroless plating according to claim 1, 2 or 3, wherein the non-conductive powder is ceramic particles or plastic particles having an average particle diameter of 20 μm or less.
【請求項5】 請求項1記載の液状有機バインダーが有
機溶剤溶液型或いは水性エマルジョン型のアクリル系塗
料、ポリウレタン系塗料又はエポキシ系塗料からなる無
電解メッキの前処理方法。
5. A pretreatment method for electroless plating, wherein the liquid organic binder according to claim 1 is an organic solvent solution type or aqueous emulsion type acrylic paint, polyurethane paint or epoxy paint.
【請求項6】 請求項1記載の基部を構成する不導電性
物質がABS樹脂、ポリエステル樹脂、ポリカーボネー
ト樹脂、ポリスチレン樹脂、ポリプロピレン樹脂等のプ
ラスチックス或いはこれらの繊維強化プラスチックスか
らなる無電解メッキの前処理方法。
6. A non-electroconductive material constituting the base according to claim 1, which is made of plastic such as ABS resin, polyester resin, polycarbonate resin, polystyrene resin, polypropylene resin or the like, or electroless plating made of these fiber reinforced plastics. Pretreatment method.
JP21313695A 1995-08-22 1995-08-22 Pretreatment for electroless plating Pending JPH0959778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21313695A JPH0959778A (en) 1995-08-22 1995-08-22 Pretreatment for electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21313695A JPH0959778A (en) 1995-08-22 1995-08-22 Pretreatment for electroless plating

Publications (1)

Publication Number Publication Date
JPH0959778A true JPH0959778A (en) 1997-03-04

Family

ID=16634178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21313695A Pending JPH0959778A (en) 1995-08-22 1995-08-22 Pretreatment for electroless plating

Country Status (1)

Country Link
JP (1) JPH0959778A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758923B2 (en) 2005-08-18 2010-07-20 Hitachi Maxell Ltd. Method of producing a metallized molded article utilizing a pressurized fluid containing a metal complex
JP2015229788A (en) * 2014-06-05 2015-12-21 奥野製薬工業株式会社 Composition for forming electroless plating underlayer
US10883177B2 (en) 2016-03-25 2021-01-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Plated fiber-reinforced member and plating method for fiber-reinforced member

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758923B2 (en) 2005-08-18 2010-07-20 Hitachi Maxell Ltd. Method of producing a metallized molded article utilizing a pressurized fluid containing a metal complex
US8911828B2 (en) 2005-08-18 2014-12-16 Hitachi Maxell, Ltd. Method of producing molded article
JP2015229788A (en) * 2014-06-05 2015-12-21 奥野製薬工業株式会社 Composition for forming electroless plating underlayer
US10883177B2 (en) 2016-03-25 2021-01-05 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Plated fiber-reinforced member and plating method for fiber-reinforced member

Similar Documents

Publication Publication Date Title
US7842636B2 (en) Catalyst composition and deposition method
US6375866B1 (en) Method for applying a conductive paint coating and articles made thereby
US8575057B2 (en) UV curable catalyst compositions
CN1481448A (en) Plating method of metal film on surface of polymer
JP5458366B1 (en) Coating composition for electroless plating
KR100887251B1 (en) Method for manufacturing conductive pattern material
US4719145A (en) Catalytic process and systems
JP2001271171A (en) Electroless plating treating method and pretreating agent
JP3279713B2 (en) A method for improving the adhesion of electrolessly plated metal layers.
CN106119818A (en) A kind of method of inorganic powder surface chemical plating and thin film thereof
US4888209A (en) Catalytic process and systems
JPS61210183A (en) Method for providing metal film to surface of polymer
JPH05140756A (en) Hydroprimer for metal treatment of surface of base material
KR910009982B1 (en) Catalytic process and systems
JPH0344149B2 (en)
JPH0959778A (en) Pretreatment for electroless plating
JPH0238108B2 (en)
JP2003277941A (en) Electroless plating method and pretreating agent
JP2001271172A (en) Pretreating agent for plating and plating method
JPS60110893A (en) Treatment of plastic article to provide electric conductivity
JP2822775B2 (en) Manufacturing method of plating base
JPS59129765A (en) Formation of conductor circuit by electroless silver plating
JP2020117799A (en) Method for manufacturing plated article
JPH042636A (en) Electroless plating of flaky glass
JP2006066581A (en) Method of manufacturing conductive pattern material