JPH0959392A - Polyolefin-based resin composition and insulated wire and thermally contracting tube using the same - Google Patents

Polyolefin-based resin composition and insulated wire and thermally contracting tube using the same

Info

Publication number
JPH0959392A
JPH0959392A JP7213797A JP21379795A JPH0959392A JP H0959392 A JPH0959392 A JP H0959392A JP 7213797 A JP7213797 A JP 7213797A JP 21379795 A JP21379795 A JP 21379795A JP H0959392 A JPH0959392 A JP H0959392A
Authority
JP
Japan
Prior art keywords
resin composition
polyolefin
heat
electron beam
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7213797A
Other languages
Japanese (ja)
Other versions
JP3467921B2 (en
Inventor
Shinya Nishikawa
信也 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21379795A priority Critical patent/JP3467921B2/en
Publication of JPH0959392A publication Critical patent/JPH0959392A/en
Application granted granted Critical
Publication of JP3467921B2 publication Critical patent/JP3467921B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a resin composition having a specific value of gel fraction, secant modulus and dielectric constant, excellent resistance to heat deformation and flexibility without leakage current and useful for an insulated wire and a thermally contracting tube by crosslinking by irradiation of an electron beam. SOLUTION: This resin composition is crosslinked by irradiation of an electron beam and has >=76%, preferably >=80%, more preferably >=85% gel fraction, <=10kg/mm<2> , especially preferably <=5kg/mm<2> secant modulus, and <=2.4, especially preferably <=2.2 dielectric constant. As a polyolefin-based resin capable of constructing the composition, a resin having substantially linear and elastic properties is preferably used and obtained from, e.g. ethylene or about a 3-20C α-olefin by polymerizing in the presence of a catalyst composition containing a metal-coordinated complex such as metallocene and an activating cocatalyst, and has >=6C long-branched chains in an amount of 0.01-3 pieces, preferably 0.01-1 piece per 1000 pieces of C-atom constituting its main chain.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ポリオレフィン
系樹脂組成物と、それを用いた絶縁電線および熱収縮チ
ューブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyolefin resin composition, an insulated wire using the same, and a heat shrinkable tube.

【0002】[0002]

【従来の技術】絶縁電線は、合成樹脂を、押出成形等に
よって導体表面に被覆して絶縁被覆を形成することで製
造される。また上記絶縁被覆は、加熱下で外力を受けた
際に変形して絶縁性が低下したり、あるいは導体の短絡
が発生したりするのを防止すべく、その耐熱変形性を向
上するために、導体表面への被覆後に、電子線の照射に
よって架橋処理される。
2. Description of the Related Art Insulated wires are manufactured by coating a synthetic resin on the surface of a conductor by extrusion molding or the like to form an insulating coating. Further, the insulating coating, in order to improve the heat deformation resistance thereof, in order to prevent the insulation from being deteriorated and deformed when receiving an external force under heating, or to prevent a short circuit of the conductor, After coating the surface of the conductor, it is crosslinked by irradiation with an electron beam.

【0003】一方、電線接続部等の被覆に用いられる熱
収縮チューブは、押出成形等によって製造した合成樹脂
製のチューブを、熱収縮性(ヒートセット性)を付与す
るために電子線の照射によって架橋処理した後、加熱下
で径方向に拡大させ、次いでこの拡大状態を維持しつつ
急冷することで製造される。また上記架橋処理には、熱
収縮して電線接続部等を被覆した状態での、チューブの
耐熱変形性を向上する目的もある。
On the other hand, the heat-shrinkable tube used for coating the electric wire connecting portion is a synthetic resin tube manufactured by extrusion molding or the like, which is irradiated with an electron beam to impart heat-shrinkability (heat-setting property). After the crosslinking treatment, it is expanded by heating in a radial direction, and then rapidly cooled while maintaining this expanded state. The cross-linking treatment also has the purpose of improving the heat-deformation resistance of the tube when it is heat-shrinked to cover the wire connection portion and the like.

【0004】上記絶縁被覆や熱収縮チューブの材料であ
る合成樹脂としては種々のものが使用可能であるが、と
くに耐油性、耐薬品性、低温特性等が要求される絶縁被
覆や熱収縮チューブの材料としては、ポリオレフィン系
樹脂が好適に使用される。上記ポリオレフィン系樹脂と
しては、たとえば低密度ポリエチレン(LDPE)、線
状低密度ポリエチレン(L−LDPE)、超低密度ポリ
エチレン(VLDPE)等の他、樹脂に柔軟性を付与す
べくα−オレフィン以外の他のモノマーを導入した、エ
チレン−プロピレン−ジエン共重合体(EPDM)、エ
チレン−メチルアクリレート共重合体(EMA)、エチ
レン−エチルアクリレート共重合体(EEA)、エチレ
ン−酢酸ビニル共重合体(EVA)等の共重合体も好適
に使用される。
Various kinds of synthetic resins can be used as the material for the above-mentioned insulation coating and heat-shrinkable tube. In particular, the insulation coating and heat-shrinkable tube for which oil resistance, chemical resistance, low temperature characteristics, etc. are required. A polyolefin resin is preferably used as the material. Examples of the polyolefin-based resin include low-density polyethylene (LDPE), linear low-density polyethylene (L-LDPE), and ultra-low-density polyethylene (VLDPE), and other than α-olefins to impart flexibility to the resin. Ethylene-propylene-diene copolymer (EPDM), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-vinyl acetate copolymer (EVA) into which other monomers have been introduced. Copolymers such as) are also preferably used.

【0005】[0005]

【発明が解決しようとする課題】上記従来のポリオレフ
ィン系樹脂はいずれも、前記の各特性にすぐれるため、
汎用の絶縁電線や熱収縮チューブには広く使用される
が、汎用よりも一段上の、より高い耐熱変形性が要求さ
れる用途の絶縁被覆や熱収縮チューブには使用できない
という問題があった。
All of the above-mentioned conventional polyolefin resins are excellent in the above respective characteristics,
Although it is widely used for general-purpose insulated wires and heat-shrinkable tubes, it has a problem that it cannot be used for insulation coatings and heat-shrinkable tubes for applications requiring higher thermal deformation resistance than the general-purpose ones.

【0006】一般に樹脂は、電子線の照射線量を増加さ
せると架橋密度が高くなって、耐熱変形性が向上するこ
とが知られている。ポリオレフィン系樹脂もその例外で
はないが、前述した従来のポリオレフィン系樹脂の多く
は、本質的に、電子線の照射線量に対応する架橋密度が
低いため、電子線の照射線量を通常レベルよりも増加さ
せることによる耐熱変形性向上の効果に限界があり、そ
のため、かかる従来のポリオレフィン系樹脂からなる絶
縁被覆や熱収縮チューブは、より高度な耐熱変形性が要
求される用途には使用できないのである。
It is generally known that when the irradiation dose of an electron beam is increased, the resin has a higher cross-linking density and the heat distortion resistance is improved. Polyolefin resins are no exception to this rule, but many of the above-mentioned conventional polyolefin resins essentially have a low crosslink density corresponding to the electron beam irradiation dose, so the electron beam irradiation dose is increased above the normal level. There is a limit to the effect of improving the heat distortion resistance by doing so, and therefore, such conventional insulation coatings and heat shrinkable tubes made of polyolefin resin cannot be used for applications requiring higher heat distortion resistance.

【0007】また、従来のポリオレフィン系樹脂のうち
LDPE、L−LDPE等は、電子線の照射線量を通常
レベルより増加させても、上記のように耐熱変形性があ
まり向上しないだけでなく、かえって柔軟性が低下する
ため、たとえば絶縁電線の場合は狭い場所への配線作業
等が容易でなくなって、いわゆる電線のとり回し性が低
下し、また熱収縮チューブの場合は狭い場所での被覆作
業等が容易でなくなったり、あるいは電線等に対する追
従性が低下したりするという問題があった。この問題
は、樹脂に柔軟性を付与すべく他のモノマーを導入した
共重合体のうち、上記他のモノマーの割合が少ないもの
に、通常レベルより多量の電子線を照射した場合にも同
様に発生する。
Further, among conventional polyolefin resins, LDPE, L-LDPE, etc. do not only improve the heat deformation resistance as described above even if the irradiation dose of the electron beam is increased from the normal level, but rather, Since the flexibility decreases, for example, in the case of an insulated wire, wiring work in a narrow place becomes difficult, so the so-called maneuverability of the wire decreases, and in the case of a heat shrink tube, covering work in a narrow place, etc. However, there is a problem in that it is not easy, or the followability to electric wires is deteriorated. This problem also applies to the case where, in the copolymer in which other monomer is introduced to give flexibility to the resin, the one in which the ratio of the other monomer is small is irradiated with a larger amount of electron beam than the normal level. appear.

【0008】さらに上記共重合体のうちEMA、EE
A、EVA等の、分子中に極性基を有するものは、当該
極性基の作用によって誘電率が上昇するため、これを絶
縁被覆や熱収縮チューブに用いた場合には、もれ電流が
発生するおそれもあった。なお従来のポリオレフィン系
樹脂のうち、上記のように分子中に極性基を有するもの
は、トリアリルイソシアヌレート(TAIC)等の多官
能のモノマーを架橋剤として配合すれば、電子線照射時
の架橋密度を向上できることが知られているが、架橋剤
は誘電率の低下には関与しないため、上記極性基の作用
による誘電率の上昇と、それにともなうもれ電流発生の
おそれは、依然として解決されないままであった。また
架橋剤の配合によって、上記のように架橋密度は向上す
るものの、それにともなって樹脂の柔軟性が大きく低下
するおそれもあった。
Further, among the above copolymers, EMA and EE
A, EVA, and the like having a polar group in the molecule have an increased dielectric constant due to the action of the polar group, and therefore, when this is used for an insulation coating or a heat-shrinkable tube, a leakage current is generated. There was a fear. Among the conventional polyolefin resins, those having a polar group in the molecule as described above can be crosslinked at the time of electron beam irradiation by blending a polyfunctional monomer such as triallyl isocyanurate (TAIC) as a crosslinking agent. It is known that the density can be improved, but since the cross-linking agent does not contribute to the decrease in the dielectric constant, the increase in the dielectric constant due to the action of the polar group and the risk of leakage current generation accompanying it remain unsolved. Met. Although the crosslinking density is improved by blending the crosslinking agent as described above, the flexibility of the resin may be significantly reduced accordingly.

【0009】また上記TAIC等の架橋剤はEPDMの
架橋にも寄与するが、EPDM自体の架橋密度が本来的
に低いため、架橋剤を通常のレベルで配合しても、耐熱
変形性向上の効果には依然として限界があった。また架
橋剤を通常のレベルより多量に配合した場合には、当該
架橋剤がブリートするという問題もあった。この発明の
目的は、従来のポリオレフィン系樹脂ではえられない高
い耐熱変形性を有し、かつ架橋後の柔軟性にすぐれると
ともに、もれ電流が発生するおそれもないポリオレフィ
ン系樹脂組成物と、それを用いた、より高い耐熱変形性
が要求される用途に使用できる絶縁電線および熱収縮チ
ューブを提供することにある。
Further, the cross-linking agent such as TAIC also contributes to the cross-linking of EPDM, but since the cross-linking density of EPDM itself is inherently low, the effect of improving the heat distortion resistance is obtained even if the cross-linking agent is blended at a normal level. Was still limited. Further, when the cross-linking agent is blended in a larger amount than the usual level, there is a problem that the cross-linking agent is bled. An object of the present invention is to have a high heat distortion resistance that cannot be obtained with conventional polyolefin-based resins, and with excellent flexibility after crosslinking, and a polyolefin-based resin composition that does not cause leakage current, An object of the present invention is to provide an insulated wire and a heat-shrinkable tube that can be used for applications requiring higher heat distortion resistance using the same.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の、この発明のポリオレフィン系樹脂組成物は、電子線
の照射によって架橋されたものであって、ゲル分率が7
6%以上、セカントモジュラス値が10kg/mm2
下で、かつ誘電率が2.4以下であることを特徴として
いる。
The polyolefin resin composition of the present invention for solving the above-mentioned problems is one which is crosslinked by irradiation of electron beam and has a gel fraction of 7
It is characterized in that it is 6% or more, the secant modulus value is 10 kg / mm 2 or less, and the dielectric constant is 2.4 or less.

【0011】かかるこの発明のポリオレフィン系樹脂組
成物は、架橋密度の指標であるゲル分率が76%以上と
なるように高度に架橋されているため、たとえば136
℃で500gの荷重が加えられた際の加熱変形残率(加
熱変形後の寸法の、加熱変形前の寸法に対する百分率)
が45%以上という高い耐熱変形性を示す。また上記ポ
リオレフィン系樹脂組成物は、上記のように高度に架橋
した状態でも、柔軟性の指標であるセカントモジュラス
値が10kg/mm2 以下という柔軟なレベルを維持す
る。
The polyolefin resin composition of the present invention is highly crosslinked so that the gel fraction, which is an index of the crosslink density, is 76% or more.
Residual rate of heat deformation when a load of 500 g is applied at ℃ (percentage of the dimension after heat deformation to the dimension before heat deformation)
Shows a high heat distortion resistance of 45% or more. Further, the polyolefin resin composition maintains a flexible level of 10 kg / mm 2 or less in secant modulus, which is an index of flexibility, even in a highly crosslinked state as described above.

【0012】さらに上記ポリオレフィン系樹脂組成物
は、その誘電率が2.4以下であるため、もれ電流が発
生するおそれがない。よってこの発明のポリオレフィン
系樹脂組成物を絶縁被覆に用いた絶縁電線や、あるいは
この発明のポリオレフィン系樹脂組成物により形成した
熱収縮チューブは、高い耐熱変形性と柔軟性とをあわせ
持ち、しかももれ電流が発生するおそれのないものであ
り、より高い耐熱変形性が要求される用途において好適
に使用することができる。
Further, since the above-mentioned polyolefin resin composition has a dielectric constant of 2.4 or less, there is no possibility of generating leakage current. Therefore, an insulated wire using the polyolefin resin composition of the present invention as an insulating coating, or a heat-shrinkable tube formed of the polyolefin resin composition of the present invention has both high thermal deformation resistance and flexibility, and Since there is no risk of generation of electric current, it can be suitably used in applications where higher heat distortion resistance is required.

【0013】[0013]

【発明の実施の形態】まず、この発明のポリオレフィン
系樹脂組成物について説明する。この発明のポリオレフ
ィン系樹脂組成物は、前述したように、電子線の照射に
よって架橋されたもので、そのゲル分率が76%以上、
セカントモジュラス値が10kg/mm2 以下で、かつ
誘電率が2.4以下に限定される。
BEST MODE FOR CARRYING OUT THE INVENTION First, the polyolefin resin composition of the present invention will be described. As described above, the polyolefin resin composition of the present invention is crosslinked by irradiation with an electron beam, and has a gel fraction of 76% or more,
The secant modulus value is limited to 10 kg / mm 2 or less, and the dielectric constant is limited to 2.4 or less.

【0014】電子線の照射によって架橋されたポリオレ
フィン系樹脂組成物の、架橋密度を示すゲル分率が76
%以上に限定されるのは、当該ゲル分率が76%未満で
は、ポリオレフィン系樹脂組成物の架橋密度が充分でな
く、前述したように、136℃で500gの荷重が加え
られた際の加熱変形残率が45%未満となって、耐熱変
形性が不十分となり、加熱下で外力を受けた際に変形し
やすくなるためである。
The gel fraction showing the crosslink density of the polyolefin resin composition crosslinked by electron beam irradiation is 76.
If the gel fraction is less than 76%, the crosslinking density of the polyolefin resin composition is not sufficient, and as described above, heating at the time of applying a load of 500 g at 136 ° C. This is because the residual deformation rate is less than 45%, the thermal deformation resistance becomes insufficient, and it becomes easy to deform when an external force is applied under heating.

【0015】なお上記加熱変形残率は、絶縁被覆や熱収
縮チューブの耐熱変形性を考慮すると、上記45%以上
の範囲内でもとくに50%以上であるのが好ましく、そ
れを達成するために、ポリオレフィン系樹脂組成物のゲ
ル分率は、上記範囲内でもとくに80%以上であるのが
好ましく、85%以上であるのがさらに好ましい。ま
た、電子線の照射によって架橋されたポリオレフィン系
樹脂組成物のセカントモジュラス値が10kg/mm2
以下に限定されるのは、上記セカントモジュラス値が1
0kg/mm2 を超えた場合、当該ポリオレフィン系樹
脂組成物から形成される絶縁被覆や熱収縮チューブの柔
軟性が低下して、たとえば絶縁電線の場合はとり回し性
が低下し、熱収縮チューブの場合は狭い場所での被覆作
業等が容易でなくなったり、あるいは電線等に対する追
従性が低下したりするためである。
In consideration of the thermal deformation resistance of the insulation coating and the heat shrinkable tube, the above-mentioned residual rate of heat deformation is preferably 50% or more, especially within the range of 45% or more, and in order to achieve it, Within the above range, the gel fraction of the polyolefin resin composition is preferably 80% or more, and more preferably 85% or more. In addition, the secant modulus value of the polyolefin-based resin composition crosslinked by electron beam irradiation is 10 kg / mm 2
The following is limited to the case where the secant modulus value is 1
When it exceeds 0 kg / mm 2 , the flexibility of the insulation coating and the heat-shrinkable tube formed from the polyolefin-based resin composition is reduced, and, for example, in the case of an insulated wire, the maneuverability is reduced, and This is because, in such a case, the covering work in a narrow place is not easy, or the ability to follow the electric wire is deteriorated.

【0016】なおセカントモジュラス値は、上記絶縁被
覆や熱収縮チューブのより一層の柔軟性を考慮すると、
上記範囲内でもとくに5kg/mm2 以下であるのが好
ましい。さらに、電子線の照射によって架橋されたポリ
オレフィン系樹脂組成物の誘電率が2.4以下に限定さ
れるのは、当該誘電率が2.4を超えると、ポリオレフ
ィン系樹脂により形成される絶縁被覆や熱収縮チューブ
にもれ電流が発生するためである。
The secant modulus value is, considering further flexibility of the insulating coating and the heat shrinkable tube,
Even within the above range, it is particularly preferably 5 kg / mm 2 or less. Further, the dielectric constant of the polyolefin resin composition crosslinked by electron beam irradiation is limited to 2.4 or less, when the dielectric constant exceeds 2.4, the insulating coating formed by the polyolefin resin is formed. This is because leakage current is generated in the heat shrink tube.

【0017】なお誘電率は、もれ電流発生の防止効果を
考慮すると、上記範囲内でもとくに2.2以下であるの
が好ましい。電子線の照射による架橋によって、上記の
各特性を満足するポリオレフィン系樹脂組成物を構成し
うるポリオレフィン系樹脂としては、これに限定されな
いがたとえば、特開平6−306121号公報、特表平
7−500622号公報に開示された、弾性でかつ実質
的に線状であるポリオレフィン系樹脂が好適に使用され
る。
The dielectric constant is preferably 2.2 or less in the above range, considering the effect of preventing leakage current. The polyolefin-based resin that can form the polyolefin-based resin composition satisfying the above-mentioned respective properties by crosslinking by irradiation with an electron beam is not limited to this, but is, for example, JP-A-6-306121 and JP-A-7- The elastic and substantially linear polyolefin resin disclosed in Japanese Patent No. 500622 is preferably used.

【0018】かかる弾性でかつ実質的に線状であるポリ
オレフィン系樹脂は、たとえばエチレンや炭素数3〜2
0程度のα−オレフィンをいずれか1種単独で、あるい
はエチレンと、炭素数3〜20程度のα−オレフィンと
を2種以上併用して、メタロセン等の金属配位錯体と活
性化共触媒とを含む触媒組成物の存在下で重合させるこ
とにより製造されるもので、その主鎖を構成する炭素原
子1000個当り0.01〜3個、好ましくは0.01
〜1個、より好ましくは0.5〜1個の割合で、炭素数
6以上の長分岐鎖を有するものである。
Such an elastic and substantially linear polyolefin resin is, for example, ethylene or a carbon number of 3 to 2
Approximately 0 kinds of α-olefins are used alone, or two or more kinds of ethylene and α-olefins having about 3 to 20 carbon atoms are used in combination to form a metal coordination complex such as a metallocene and an activating cocatalyst. It is produced by polymerizing in the presence of a catalyst composition containing, and is 0.01 to 3, preferably 0.01 per 1000 carbon atoms constituting the main chain.
˜1, more preferably 0.5 to 1, with a long branched chain having 6 or more carbon atoms.

【0019】上記のポリオレフィン系樹脂は、高分岐低
密度ポリエチレン(通常のLDPE)に似た加工性を有
するとともに、エチレンとα−オレフィンとをチーグラ
ー触媒によって重合させた不均一線状重合体(たとえば
L−LDPE等)と同程度の強度と靱性を備えており、
しかも前記のように、LDPEやL−LDPE、あるい
は上記L−LDPEと同様に、エチレンとα−オレフィ
ンとをチーグラー触媒によって重合させたVLDPE等
とは全く違った構造を有している。
The above-mentioned polyolefin resin has a processability similar to that of highly branched low density polyethylene (ordinary LDPE), and is a heterogeneous linear polymer obtained by polymerizing ethylene and α-olefin with a Ziegler catalyst (for example, L-LDPE, etc.) and the same strength and toughness,
Moreover, as described above, it has a completely different structure from LDPE, L-LDPE, or VLDPE in which ethylene and α-olefin are polymerized by a Ziegler catalyst, like L-LDPE.

【0020】上記の、弾性でかつ実質的に線状であるポ
リオレフィン系樹脂の具体例としては、これに限定され
ないがたとえば、米国ダウケミカル社(the Dow
Chemical Co.)製の商品名「AFFIN
ITY(アフィニティー)」シリーズ、および商品名
「ENGAGE(エンゲージ)」シリーズがあげられ
る。上記両シリーズはともに、エチレンと1−オクテン
との共重合体であり、それぞれ、オクテン分の割合の違
い等によって種々のグレードのものが提供されている。
Specific examples of the above-mentioned elastic and substantially linear polyolefin resin are not limited to these, but include, for example, The Dow Chemical Company (USA).
Chemical Co. ) Product name "AFFIN
The TY (affinity) series and the brand name "ENGAGE" series are listed. Both of the above series are copolymers of ethylene and 1-octene, and various grades are provided depending on the difference in the proportion of octene and the like.

【0021】そのうち、この発明にとくに好適に使用さ
れるものとしては、たとえば商品名AFFINITY
PF1140〔オクテン分14.5重量%、メルトイン
デックス(MI)値1.6、密度0.895〕、AFF
INITY PL1880〔オクテン分12重量%、メ
ルトインデックス(MI)値1、密度0.902〕、E
NGAGE CL8001〔オクテン分25重量%、メ
ルトインデックス(MI)値0.5、密度0.86
8〕、ENGAGE CL8002〔オクテン分24重
量%、MI値1、密度0.870〕、ENGAGE C
L8003〔オクテン分18重量%、MI値1、密度
0.885〕等があげられる。これらのポリオレフィン
系樹脂はMI値が低く加工性にすぐれるため、絶縁電線
や熱収縮チューブの製造が容易である。またこれらのポ
リオレフィン系樹脂は、比較的低密度であるため絶縁電
線や熱収縮チューブを軽量化できるという利点もある。
Among them, those which are particularly preferably used in the present invention include, for example, the trade name AFFINITY.
PF1140 [octene content 14.5% by weight, melt index (MI) value 1.6, density 0.895], AFF
INITY PL1880 [octene content 12% by weight, melt index (MI) value 1, density 0.902], E
NGAGE CL8001 [octene content 25% by weight, melt index (MI) value 0.5, density 0.86
8], ENGAGE CL8002 [octene content 24% by weight, MI value 1, density 0.870], ENGAGE C
L8003 [octene content 18% by weight, MI value 1, density 0.885] and the like. Since these polyolefin-based resins have a low MI value and excellent workability, it is easy to manufacture insulated wires and heat-shrinkable tubes. Further, since these polyolefin-based resins have a relatively low density, there is an advantage that the insulated electric wire and the heat-shrinkable tube can be lightened.

【0022】上記の、弾性でかつ実質的に線状であるポ
リオレフィン系樹脂は、前記のようにエチレンおよびα
−オレフィンを原料としており、分子中に極性基を有し
ないため、誘電率が2.4以下という低誘電率を示す。
また上記ポリオレフィン系樹脂は、後述する実施例の記
載からも明らかなように、電子線の照射線量を、通常レ
ベルである100kGyの2倍の200kGy以上とす
ることで、前述したゲル分率76%以上の高い架橋密度
に架橋させ、かつその際の加熱変形残率を45%以上と
することが可能である。しかも上記ポリオレフィン樹脂
は、上記のような高架橋状態でも、セカントモジュラス
値が10kg/mm2 以下であって、柔軟性にすぐれて
いる。
The above-mentioned elastic and substantially linear polyolefin resin is, as described above, ethylene and α.
-Since it uses olefin as a raw material and has no polar group in the molecule, it has a low dielectric constant of 2.4 or less.
Further, as is clear from the description of the examples described later, the above polyolefin-based resin has an electron beam irradiation dose of 200 kGy or more, which is twice the normal level of 100 kGy, so that the gel fraction is 76%. It is possible to crosslink to such a high crosslink density and to set the heat deformation residual rate at that time to 45% or more. Moreover, the polyolefin resin has a secant modulus value of 10 kg / mm 2 or less even in the above highly crosslinked state, and is excellent in flexibility.

【0023】つぎに、この発明の絶縁電線について説明
する。この発明の絶縁電線は、導体の表面に、上記この
発明のポリオレフィン系樹脂組成物からなるか、または
上記ポリオレフィン系樹脂組成物を含み、かつ難燃性が
付与された絶縁被覆が形成されたものである。ここでい
うポリオレフィン系樹脂組成物を含み、かつ難燃性が付
与された絶縁被覆とは、この発明のポリオレフィン系樹
脂組成物をベースポリマーとし、従来公知の種々の添加
剤が配合されて難燃性が付与された絶縁被覆を指す。
Next, the insulated wire of the present invention will be described. The insulated electric wire of the present invention is one in which the surface of the conductor is formed of the above-mentioned polyolefin resin composition of the present invention, or includes the above polyolefin resin composition, and an insulating coating having flame retardancy is formed. Is. Insulating coating containing a polyolefin resin composition and having flame retardancy is a flame-retardant by using the polyolefin resin composition of the present invention as a base polymer and incorporating various conventionally known additives. It refers to an insulating coating with imparted properties.

【0024】導体としては、銅、軟銅、銀、ニッケルめ
っき軟銅、すずめっき軟銅等の、従来公知の導体材料か
らなるものが、いずれも使用可能である。絶縁被覆に難
燃性を付与すべく配合される添加剤としては、これに限
定されないがたとえば酸化防止剤、難燃剤、充てん剤等
があげられる。これら添加剤の配合量は、従来と同程度
でよい。
As the conductor, any of the conventionally known conductor materials such as copper, annealed copper, silver, nickel-plated annealed copper and tin-plated annealed copper can be used. The additives to be added to impart flame retardancy to the insulating coating include, but are not limited to, for example, antioxidants, flame retardants, fillers and the like. The compounding amounts of these additives may be the same as those in the related art.

【0025】こられの添加剤を配合すると絶縁被覆は、
誘電率が若干上昇し、かつ柔軟性がわずかに低下する傾
向を示すが、従来のポリオレフィン系樹脂において同じ
配合を実施した場合よりも誘電率は低く、柔軟性は良好
である。上記絶縁電線は、従来と同様にして製造するこ
とができる。すなわち電子線を照射して架橋する前のポ
リオレフィン系樹脂を含む成形材料を、押出成形等によ
って導体の表面に被覆した後、電子線を照射して上記ポ
リオレフィン系樹脂を架橋させればよい。
When these additives are blended, the insulation coating becomes
Although the dielectric constant tends to slightly increase and the flexibility tends to slightly decrease, the dielectric constant is lower and the flexibility is better than in the case where the same composition is used in the conventional polyolefin-based resin. The insulated wire can be manufactured in a conventional manner. That is, the surface of the conductor may be coated by extrusion molding or the like with a molding material containing a polyolefin resin before being irradiated with an electron beam to be crosslinked, and then the polyolefin resin may be crosslinked with an electron beam.

【0026】絶縁電線における、絶縁被覆の厚みや導体
の径等はとくに限定されず、いずれも絶縁電線の規格等
に適合させた寸法とすればよい。上記この発明の絶縁電
線は、この発明のポリオレフィン系樹脂組成物により構
成された絶縁被覆を有するため、高い耐熱変形性を有す
るとともに、柔軟でとり回し性がよく、しかも誘電率が
低くもれ電流が発生しないという、すぐれた特性を有し
ている。
In the insulated wire, the thickness of the insulating coating, the diameter of the conductor, etc. are not particularly limited, and any dimensions may be adapted to the standard of the insulated wire. Since the insulated wire of the present invention has an insulating coating composed of the polyolefin resin composition of the present invention, it has high thermal deformation resistance, is flexible and has good maneuverability, and has a low dielectric constant and leakage current. It has an excellent property that no

【0027】つぎに、この発明の熱収縮チューブについ
て説明する。この発明の熱収縮チューブは、前記この発
明のポリオレフィン系樹脂組成物からなるか、または上
記ポリオレフィン系樹脂組成物を含み、かつ難燃性が付
与されたものである。ここでいう、ポリオレフィン系樹
脂組成物を含み、かつ難燃性が付与された熱収縮チュー
ブは、この発明のポリオレフィン系樹脂組成物をベース
ポリマーとし、従来公知の種々の添加剤が配合されて難
燃性が付与されたものである。
Next, the heat shrinkable tube of the present invention will be described. The heat-shrinkable tube of the present invention is made of the polyolefin-based resin composition of the present invention or contains the above-mentioned polyolefin-based resin composition and is imparted with flame retardancy. Here, the heat-shrinkable tube containing the polyolefin-based resin composition and imparted with flame retardancy has the polyolefin-based resin composition of the present invention as the base polymer and is difficult to be mixed with various conventionally known additives. It has been given flammability.

【0028】チューブに難燃性を付与すべく配合される
添加剤としては、先の絶縁電線において例示したのと同
様の添加剤があげられる。これら添加剤の配合量は、従
来と同程度でよい。こられの添加剤を配合すると熱収縮
チューブは、誘電率が若干上昇し、かつ柔軟性がわずか
に低下する傾向を示すが、従来のポリオレフィン系樹脂
において同じ配合を実施した場合よりも誘電率は低く、
柔軟性は良好である。
Examples of the additives to be added to the tube to impart flame retardancy include the same additives as those exemplified in the insulated wire. The compounding amounts of these additives may be the same as those in the related art. When these additives are compounded, the heat-shrinkable tube tends to have a slightly increased dielectric constant and a slight decrease in flexibility, but the dielectric constant is lower than that in the case where the same composition was used in the conventional polyolefin resin. Low,
Flexibility is good.

【0029】上記熱収縮チューブは、従来と同様にして
製造することができる。すなわち電子線を照射して架橋
する前のポリオレフィン系樹脂を含む成形材料を、押出
成形等によってチューブ状に成形した後、このチューブ
に電子線を照射してポリオレフィン系樹脂を架橋させ
る。つぎに上記チューブを、ポリオレフィン系樹脂の融
点以上の温度で加熱しつつ、その内部に圧縮空気を送り
込む等してチューブを所定の径に膨らませた後、速やか
に冷却すると熱収縮チューブが製造される。
The heat-shrinkable tube can be manufactured in a conventional manner. That is, a molding material containing a polyolefin resin before being irradiated with an electron beam to be cross-linked is molded into a tube by extrusion molding or the like, and then this tube is irradiated with an electron beam to cross-link the polyolefin resin. Next, while heating the tube at a temperature equal to or higher than the melting point of the polyolefin-based resin, the compressed air is blown into the tube to expand the tube to a predetermined diameter, and then rapidly cooled to produce a heat-shrinkable tube. .

【0030】上記熱収縮チューブは、この発明のポリオ
レフィン系樹脂組成物により構成されるため柔軟であ
り、狭い場所での被覆作業等が容易であるとともに、電
線等に対する追従性がよい。また上記熱収縮チューブ
は、前述したように架橋密度が高いので、ポリオレフィ
ン系樹脂の融点以上に加熱して熱収縮させる際の収縮応
力が高く、したがって電線接続部等に、従来の熱収縮チ
ューブよりも高い締めつけ力で密着することができる。
しかも熱収縮後のチューブは、高い耐熱変形性を有する
とともに、誘電率が低くもれ電流が発生しないという、
すぐれた特性を有している。
The heat-shrinkable tube, which is made of the polyolefin resin composition of the present invention, is flexible, can be easily covered in a narrow space, and has good followability to electric wires. Further, the heat-shrinkable tube has a high crosslink density as described above, and therefore has a high shrinkage stress when heat-shrinked by heating it to a temperature higher than the melting point of the polyolefin-based resin. Even with a high tightening force, it can be adhered.
Moreover, the tube after heat shrinkage has high thermal deformation resistance, low dielectric constant and no leakage current.
It has excellent characteristics.

【0031】[0031]

【実施例】以下にこの発明を、実施例、比較例に基づい
て説明する。 実施例1 押出成形機(30mmφ)を用いて、外径0.81mm
φの導体の表面に、エチレン−1−オクテン共重合体
(EO、前出の商品名「ENGAGE CL800
3」、オクテン分18重量%)からなる、厚み0.4m
mの絶縁被覆を形成した。
The present invention will be described below with reference to examples and comparative examples. Example 1 Using an extruder (30 mmφ), an outer diameter of 0.81 mm
On the surface of the conductor of φ, ethylene-1-octene copolymer (EO, trade name “ENGAGE CL800
3 ", 18% by weight of octene), thickness 0.4 m
m insulation coating was formed.

【0032】そして上記絶縁被覆に、電子線加速器を用
いて、加速電圧1.5MVの条件で電子線を照射して架
橋させて、電子線の照射線量が200kGy、300k
Gyおよび400kGyである3種の絶縁電線を製造し
た。 実施例2 絶縁被覆の材料として、オクテン分が12重量%である
エチレン−1−オクテン共重合体(EO、前出の商品
名「AFFINITY PL1880」)を使用したこ
と以外は、実施例1と同様にして3種の絶縁電線を製造
した。 実施例3 絶縁被覆の材料として、オクテン分が14.5重量%で
あるエチレン−1−オクテン共重合体(EO、前出の
商品名「AFFINITY PF1140」)を使用し
たこと以外は、実施例1と同様にして3種の絶縁電線を
製造した。 比較例1〜10 絶縁被覆の材料として下記のポリオレフィン系樹脂を使
用したこと以外は、実施例1と同様にして、それぞれ3
種ずつの絶縁電線を製造した。
Then, an electron beam accelerator is used to irradiate the insulating coating with an electron beam under the condition of an accelerating voltage of 1.5 MV to crosslink, and the irradiation dose of the electron beam is 200 kGy, 300 k.
Three types of insulated wire were manufactured, which are Gy and 400 kGy. Example 2 The same as Example 1 except that an ethylene-1-octene copolymer having an octene content of 12% by weight (EO, trade name “AFFINITY PL1880” described above) was used as the material for the insulating coating. Then, three types of insulated electric wires were manufactured. Example 3 Example 1 was repeated, except that an ethylene-1-octene copolymer having an octene content of 14.5% by weight (EO, trade name “AFFINITY PF1140” described above) was used as the material for the insulating coating. Three types of insulated wires were manufactured in the same manner as in. Comparative Examples 1 to 10 In the same manner as in Example 1 except that the following polyolefin-based resin was used as the material for the insulating coating, each 3
Each type of insulated wire was manufactured.

【0033】 比較例1:EEA(エチルアクリレート分7重量%) 比較例2:EEA(エチルアクリレート分18重量
%) 比較例3:EVA(酢酸ビニル分5重量%) 比較例4:EVA(酢酸ビニル分18重量%) 比較例5:EMA(メチルアクリレート分10重量
%) 比較例6:EMA(メチルアクリレート分18重量
%) 比較例7:LDPE(密度0.918) 比較例8:L−LDPE(密度0.92) 比較例9:VLDPE(密度0.89) 比較例10:EPDM(エチレン分70重量%) 比較例11 絶縁被覆の材料として、前記比較例2で使用したのと同
じEEA90重量部に、多官能モノマーであるTAI
C10重量部を配合したものを使用したこと以外は、実
施例1と同様にして3種の絶縁電線を製造した。 比較例12 絶縁被覆の材料として、前記比較例10で使用したのと
同じEPDM90重量部に、多官能モノマーであるTA
IC10重量部を配合したものを使用したこと以外は、
実施例1と同様にして3種の絶縁電線を製造した。
Comparative Example 1: EEA (ethyl acrylate content 7% by weight) Comparative Example 2: EEA (ethyl acrylate content 18% by weight) Comparative Example 3: EVA (vinyl acetate content 5% by weight) Comparative Example 4: EVA (vinyl acetate content) 18% by weight) Comparative Example 5: EMA (10% by weight of methyl acrylate) Comparative Example 6: EMA (18% by weight of methyl acrylate) Comparative Example 7: LDPE (density 0.918) Comparative Example 8: L-LDPE ( Density 0.92) Comparative Example 9: VLDPE (Density 0.89) Comparative Example 10: EPDM (Ethylene content 70% by weight) Comparative Example 11 90 parts by weight of the same EEA used in Comparative Example 2 as a material for the insulating coating. Is a polyfunctional monomer, TAI
Three kinds of insulated electric wires were manufactured in the same manner as in Example 1 except that the one containing 10 parts by weight of C was used. Comparative Example 12 As a material for the insulating coating, 90 parts by weight of the same EPDM used in Comparative Example 10 was used, and TA as a polyfunctional monomer was used.
Other than using a mixture of 10 parts by weight of IC,
Three types of insulated electric wires were manufactured in the same manner as in Example 1.

【0034】上記各実施例、比較例で製造した絶縁電線
について、以下の各試験を行い、その特性を評価した。 ゲル分率測定 実施例、比較例で製造したそれぞれ3種の絶縁電線から
絶縁被覆をはく離して長さ100mmの試験片を作製
し、その重量を抽出前重量(g)として秤量した。つぎ
にこの試験片を、液温を130℃に保持した、上記抽出
前重量の約50倍量のキシレンに24時間、浸漬した
後、上記液をろ過し、ろ紙上に残ったゲル分を80℃で
24時間乾燥してキシレンを除去した。そして上記ゲル
分の乾燥後の重量を抽出乾燥後重量(g)として秤量し
て、この抽出乾燥後重量(g)と前記抽出前重量(g)
とから下記式によりゲル分率(%)を求め、絶縁被覆の
架橋密度を評価した。
The following tests were conducted on the insulated wires produced in the above-mentioned Examples and Comparative Examples to evaluate their characteristics. Gel Fraction Measurement A test piece having a length of 100 mm was prepared by removing the insulating coating from each of the three types of insulated wires produced in Examples and Comparative Examples, and the weight thereof was weighed as the weight before extraction (g). Next, this test piece was immersed in xylene at a liquid temperature of 130 ° C. in an amount of about 50 times the weight before extraction for 24 hours, and then the liquid was filtered to remove the gel content remaining on the filter paper to 80%. Xylene was removed by drying at 24 ° C. for 24 hours. Then, the weight of the gel portion after drying is weighed as the weight after extraction and drying (g), and the weight after extraction and drying (g) and the weight before extraction (g)
From the above, the gel fraction (%) was determined by the following formula, and the crosslink density of the insulating coating was evaluated.

【0035】[0035]

【数1】 [Equation 1]

【0036】誘電率測定 実施例、比較例で製造したそれぞれ3種の絶縁電線のう
ち、電子線の照射線量が400kGyのものについて、
絶縁被覆の外周に幅5cmのすず箔を巻きつけた。そし
てこのすず箔と電線の導体との間の誘電率(ε)を、イ
ンピーダンスアナライザ(横河ヒューレットパッカード
社製の4262A LCR METER)を用いて、1
kHz、500Vの条件で測定して、絶縁被覆の電気特
性を評価した。 セカントモジュラス値測定 実施例、比較例で製造したそれぞれ3種の絶縁電線のう
ち、電子線の照射線量が400kGyのものから絶縁被
覆をはく離して長さ100mmの試験片を作製した。そ
してこの試験片を、インストロン引張試験機を用いて引
張速度50mm/分の速度で長さ方向に引っ張った際の
2%伸長時の抗張力を測定し、それを50倍してセカン
トモジュラス値(kg/mm2 )を求めて、絶縁被覆の
柔軟性を評価した。 耐熱変形性試験 実施例、比較例で製造したそれぞれ3種の絶縁電線の外
径を加熱変形前外径(mm)として測定した後、136
℃で60分間、加熱した。次に、上記加熱直後の絶縁電
線を平盤上に載置し、その上に直径9.5mmφの金属
棒を直交するように重ねて、荷重500gで60分間、
加圧した後、絶縁電線の、金属棒と平盤とで挟まれて変
形した部分の短径方向の寸法を加熱変形後外径(mm)
として測定した。そして、上記加熱変形前外径(mm)
および加熱変形後外径(mm)と、導体の外径(mm)
とから、下記式により絶縁電線の加熱変形残率(%)を
求めて、絶縁被覆の耐熱変形性を評価した。
Dielectric Constant Measurement Among the three types of insulated wires produced in each of the Examples and Comparative Examples, one having an electron beam irradiation dose of 400 kGy
A 5 cm-wide tin foil was wrapped around the outer periphery of the insulating coating. Then, the dielectric constant (ε) between the tin foil and the conductor of the electric wire was measured by using an impedance analyzer (4262A LCR METER manufactured by Yokogawa Hewlett-Packard Co.).
The electrical characteristics of the insulating coating were evaluated by measurement under the conditions of kHz and 500V. Second Modulus Value Measurement Of the three types of insulated electric wires produced in each of the examples and comparative examples, the insulating coating was peeled off from the one having an electron beam irradiation dose of 400 kGy to produce a test piece having a length of 100 mm. Then, the tensile strength at 2% elongation when this test piece was pulled in the longitudinal direction at a pulling speed of 50 mm / min using an Instron tensile tester was measured and multiplied by 50 to obtain a secant modulus value ( kg / mm 2 ) was calculated to evaluate the flexibility of the insulating coating. Heat Deformation Test 136 After measuring the outer diameter of each of the three types of insulated wires produced in Examples and Comparative Examples as the outer diameter before heating deformation (mm), 136
Heat at 60 ° C. for 60 minutes. Next, the insulated electric wire immediately after the heating is placed on a flat plate, and a metal rod having a diameter of 9.5 mmφ is laid on the flat plate so as to cross at right angles, and a load of 500 g is applied for 60 minutes.
After pressurizing, the dimension of the insulated wire sandwiched between the metal rod and the flat plate and deformed is the outer diameter (mm) after heat deformation
Was measured. Then, the outer diameter before the heat deformation (mm)
And outer diameter after heating deformation (mm) and outer diameter of conductor (mm)
From the above, the heat deformation residual rate (%) of the insulated wire was obtained by the following formula, and the heat deformation resistance of the insulating coating was evaluated.

【0037】[0037]

【数2】 [Equation 2]

【0038】以上の結果を、実施例、比較例で使用した
架橋前の樹脂の、加熱温度190℃、荷重2.16kg
におけるメルトインデックス値(MI値、g/10
分)、および密度の測定結果とともに、表1〜表4に示
す。
The above results show that the resins before crosslinking used in Examples and Comparative Examples had a heating temperature of 190 ° C. and a load of 2.16 kg.
Melt index value (MI value, g / 10
Min) and the measurement results of the density are shown in Tables 1 to 4.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】上記各表に示した実施例、比較例のうち、
ポリオレフィン系樹脂としてEEA、EVA、E
MAを使用した比較例1,2,4〜6の絶縁電線は
いずれも、電子線の照射線量を400kGyまで増加さ
せてもゲル分率が76%に達せず、また加熱変形残率も
低いことから、耐熱変形性が不十分であることがわかっ
た。また上記各比較例の絶縁電線はいずれも、分子中の
極性基の影響によって誘電率が高く、もれ電流が発生す
るおそれが高いものであることもわかった。さらに各比
較例のうち、極性基を有するモノマーの割合が少ないE
EA、EMAを使用した比較例1,5の絶縁電線
は、セカントモジュラス値が10kg/mm2 を超えて
おり、柔軟性が不十分であることもわかった。
Of the examples and comparative examples shown in the above tables,
EEA, EVA, E as polyolefin resin
In the insulated wires of Comparative Examples 1, 2, 4 to 6 using MA, the gel fraction does not reach 76% even when the irradiation dose of the electron beam is increased to 400 kGy, and the residual rate of heating deformation is also low. From this, it was found that the heat distortion resistance was insufficient. It was also found that all of the insulated wires of the above-mentioned comparative examples have a high dielectric constant due to the influence of polar groups in the molecule, and there is a high possibility that leakage current will occur. Furthermore, in each of the comparative examples, the proportion of the monomer having a polar group is small E
It was also found that the insulated electric wires of Comparative Examples 1 and 5 using EA and EMA had a secant modulus value of more than 10 kg / mm 2 , and the flexibility was insufficient.

【0044】また、ポリオレフィン系樹脂としてEVA
を使用した比較例3の絶縁電線は、電子線の照射線量
を300kGyまで増加させると加熱変形残率が45%
に達し、さらに400kGyまで増加させるとゲル分率
が76%を超えることから、耐熱変形性については、電
子線の照射線量を増加することで十分に改善できるが、
セカントモジュラス値が10kg/mm2 を超えること
から、柔軟性の点で不十分であり、しかも誘電率が高い
ことから、もれ電流が発生するおそれが高いものである
ことがわかった。
EVA as a polyolefin resin
The insulated wire of Comparative Example 3 in which the heating deformation residual rate was 45% when the irradiation dose of the electron beam was increased to 300 kGy
And the gel fraction exceeds 76% when further increasing to 400 kGy, the heat distortion resistance can be sufficiently improved by increasing the irradiation dose of the electron beam,
It was found that the secant modulus value was more than 10 kg / mm 2 , the flexibility was insufficient, and the dielectric constant was high, so that the leakage current was likely to occur.

【0045】ポリオレフィン系樹脂としてLDPE、L
−LDPE、VLDPE、EPDMを使用した比較例7
〜10の絶縁電線はいずれも、分子中に極性基を有しな
いため誘電率が低く、もれ電流が発生するおそれはなか
ったが、いずれも、電子線の照射線量を400kGyま
で増加させてもゲル分率が76%に達せず、また加熱変
形残率も低いことから、耐熱変形性が不十分であること
がわかった。また上記各比較例のうちLDPE、L−L
DPEを使用した比較例7,8の絶縁電線はいずれも、
セカントモジュラス値が10kg/mm2 を超えてお
り、柔軟性が不十分であることもわかった。
LDPE, L as polyolefin resin
Comparative Example 7 using LDPE, VLDPE and EPDM
All of the insulated wires of Nos. 10 to 10 had a low dielectric constant because they did not have a polar group in the molecule, and there was no fear that leakage current was generated, but in any case, even if the irradiation dose of the electron beam was increased to 400 kGy. Since the gel fraction did not reach 76% and the residual rate of thermal deformation was low, it was found that the thermal deformation resistance was insufficient. In addition, among the comparative examples above, LDPE and LL
The insulated wires of Comparative Examples 7 and 8 using DPE are
The secant modulus value exceeded 10 kg / mm 2 , and it was also found that the flexibility was insufficient.

【0046】ポリオレフィン樹脂として比較例2で使用
したのと同じEEAを使用し、かつ架橋剤としてのT
AICを配合した比較例11の絶縁電線は、電子線の照
射線量が200kGyの段階ですでにゲル分率が76%
を超え、さらに400kGyまで増加させると加熱変形
残率が45%を超えることから、耐熱変形性について
は、電子線の照射線量を増加することで十分に改善でき
るが、誘電率が高いことから、もれ電流が発生するおそ
れが高いものであることがわかった。また上記比較例1
1と先の比較例2とを比べると、ゲル分率の増加量に比
してセカントモジュラス値が著しく増加しており、TA
ICの配合によって柔軟性が大きく低下することがわか
った。
The same EEA as used in Comparative Example 2 was used as the polyolefin resin, and T as the crosslinking agent was used.
The insulated wire of Comparative Example 11 containing AIC had a gel fraction of 76% when the electron beam irradiation dose was 200 kGy.
Since the heat deformation residual rate exceeds 45% when the temperature is further increased to more than 400 kGy, the heat distortion resistance can be sufficiently improved by increasing the irradiation dose of the electron beam, but since the dielectric constant is high, It was found that there is a high possibility that leakage current will occur. In addition, Comparative Example 1 above
Comparing No. 1 with Comparative Example 2 described above, the secant modulus value is remarkably increased as compared with the increase amount of the gel fraction.
It has been found that the flexibility of the IC is significantly reduced by blending it.

【0047】また上記TAICを、比較例10で使用し
たのと同じEPDMに配合した比較例12の絶縁電線
は、柔軟性および誘電率については問題ないが、電子線
の照射線量を400kGyまで増加させてもゲル分率が
76%に達せず、また加熱変形残率も低いことから、耐
熱変形性が不十分であることがわかった。これに対し、
実施例1〜3の絶縁電線はいずれも、電子線の照射線量
が200kGyの段階ですでにゲル分率が76%を超え
ているとともに、加熱変形残率が45%を超えているこ
とから、耐熱変形性にすぐれることが確認された。また
上記各実施例の絶縁電線はいずれも、セカントモジュラ
ス値が10kg/mm2 以下であることから、高い柔軟
性を有しており、とり回し性が良好であることも確認さ
れた。さらに上記各実施例の絶縁電線はいずれも誘電率
が低いことから、もれ電流が発生するおそれのないもの
であることも確認された。
The insulated wire of Comparative Example 12 in which the above TAIC was mixed with the same EPDM as used in Comparative Example 10 had no problem in flexibility and dielectric constant, but the irradiation dose of electron beam was increased to 400 kGy. However, the gel fraction did not reach 76%, and the residual rate of thermal deformation was low, indicating that the thermal deformation resistance was insufficient. In contrast,
In each of the insulated wires of Examples 1 to 3, the gel fraction already exceeds 76% at the irradiation dose of the electron beam of 200 kGy and the residual heating deformation rate exceeds 45%. It was confirmed that it has excellent heat distortion resistance. It was also confirmed that the insulated wires of each of the above Examples have a secant modulus value of 10 kg / mm 2 or less, and thus have high flexibility and good maneuverability. Further, it was also confirmed that the insulated wires of each of the above-mentioned examples have a low dielectric constant, and therefore there is no possibility of generating leakage current.

【0048】[0048]

【発明の効果】以上、詳述したようにこの発明によれ
ば、従来のポリオレフィン系樹脂ではえられない高い耐
熱変形性を有し、かつ架橋後の柔軟性にすぐれるととも
に、もれ電流が発生するおそれもないポリオレフィン系
樹脂組成物と、それを用いた、上記各特性にすぐれるた
め、より高い耐熱変形性が要求される用途に使用できる
絶縁電線および熱収縮チューブがえられる。
As described above in detail, according to the present invention, the resin has a high heat distortion resistance which cannot be obtained by the conventional polyolefin resin, has excellent flexibility after crosslinking, and has a leakage current. A polyolefin-based resin composition that is unlikely to be generated, and an insulated wire and a heat-shrinkable tube using the same that can be used in applications requiring higher thermal deformation resistance because of excellent properties described above.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電子線の照射によって架橋されたポリオレ
フィン系樹脂組成物であって、ゲル分率が76%以上、
セカントモジュラス値が10kg/mm2 以下で、かつ
誘電率が2.4以下であることを特徴とするポリオレフ
ィン系樹脂組成物。
1. A polyolefin resin composition crosslinked by electron beam irradiation, having a gel fraction of 76% or more,
A polyolefin resin composition having a secant modulus value of 10 kg / mm 2 or less and a dielectric constant of 2.4 or less.
【請求項2】導体表面に、請求項1記載のポリオレフィ
ン系樹脂組成物からなる絶縁被覆が形成されていること
を特徴とする絶縁電線。
2. An insulated wire, wherein an insulating coating made of the polyolefin resin composition according to claim 1 is formed on the surface of the conductor.
【請求項3】導体表面に、請求項1記載のポリオレフィ
ン系樹脂組成物を含み、かつ難燃性が付与された絶縁被
覆が形成されていることを特徴とする絶縁電線。
3. An insulated wire, characterized in that an insulating coating containing the polyolefin resin composition according to claim 1 and having flame retardancy is formed on the surface of the conductor.
【請求項4】請求項1記載のポリオレフィン系樹脂組成
物からなることを特徴とする熱収縮チューブ。
4. A heat-shrinkable tube comprising the polyolefin-based resin composition according to claim 1.
【請求項5】請求項1記載のポリオレフィン系樹脂組成
物を含み、かつ難燃性が付与されていることを特徴とす
る熱収縮チューブ。
5. A heat-shrinkable tube containing the polyolefin-based resin composition according to claim 1 and imparted with flame retardancy.
JP21379795A 1995-08-22 1995-08-22 Polyolefin-based resin composition, insulated wire and heat-shrinkable tube using the same Expired - Lifetime JP3467921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21379795A JP3467921B2 (en) 1995-08-22 1995-08-22 Polyolefin-based resin composition, insulated wire and heat-shrinkable tube using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21379795A JP3467921B2 (en) 1995-08-22 1995-08-22 Polyolefin-based resin composition, insulated wire and heat-shrinkable tube using the same

Publications (2)

Publication Number Publication Date
JPH0959392A true JPH0959392A (en) 1997-03-04
JP3467921B2 JP3467921B2 (en) 2003-11-17

Family

ID=16645212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21379795A Expired - Lifetime JP3467921B2 (en) 1995-08-22 1995-08-22 Polyolefin-based resin composition, insulated wire and heat-shrinkable tube using the same

Country Status (1)

Country Link
JP (1) JP3467921B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070903B2 (en) 2001-04-27 2006-07-04 Mitsubishi Heavy Industries, Ltd. Coating formulation for printing plate precursor, printing plate precursor, printing press, fabrication process of printing plate, and regeneration process of printing plate
JP2010109121A (en) * 2008-10-30 2010-05-13 Tokai Rubber Ind Ltd Dielectric film, actuator using the same, sensor, and transducer
WO2014098100A1 (en) * 2012-12-18 2014-06-26 住友電気工業株式会社 Electrical cable
CN113621195A (en) * 2021-08-20 2021-11-09 四川天邑康和通信股份有限公司 Heat-shrinkable tape substrate material, glass fiber reinforced heat-shrinkable tape substrate and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070903B2 (en) 2001-04-27 2006-07-04 Mitsubishi Heavy Industries, Ltd. Coating formulation for printing plate precursor, printing plate precursor, printing press, fabrication process of printing plate, and regeneration process of printing plate
JP2010109121A (en) * 2008-10-30 2010-05-13 Tokai Rubber Ind Ltd Dielectric film, actuator using the same, sensor, and transducer
WO2014098100A1 (en) * 2012-12-18 2014-06-26 住友電気工業株式会社 Electrical cable
US9349505B2 (en) 2012-12-18 2016-05-24 Sumitomo Electric Industries, Ltd. Electric cable
US9818505B2 (en) 2012-12-18 2017-11-14 Sumitomo Electric Industries, Ltd. Electric cable
CN113621195A (en) * 2021-08-20 2021-11-09 四川天邑康和通信股份有限公司 Heat-shrinkable tape substrate material, glass fiber reinforced heat-shrinkable tape substrate and preparation method thereof

Also Published As

Publication number Publication date
JP3467921B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
JPH09296083A (en) Flame-retardant electric wire and cable
TWI224607B (en) Tree resistant cable
US20130161059A1 (en) New composition and use thereof
AU2001244605B2 (en) Electrically insulating resin composition and electric wire or cable both coatedtherewith
EP2630187A1 (en) A semiconductive polyolefin composition which contains epoxy-groups
NO832147L (en) Semiconductor THERMOPLASTIC MATERIAL RESISTANT TO HEAT DISTORTION
JPH10168248A (en) Flame-retardant resin composition and insulated wire, shielded wire and covering tube using the same
JP3467921B2 (en) Polyolefin-based resin composition, insulated wire and heat-shrinkable tube using the same
JP7247881B2 (en) insulated wire
JP7433296B2 (en) Ethylene-based polymer composition containing triorganophosphine
JP2001236830A (en) Cladding material for electric wire and electric cable using the same
JP2003160702A (en) Flame-retardant resin composition and insulated electric wire using the same
JP2727670B2 (en) Method for producing crosslinked molded article
CN114008127B (en) Ethylene-based polymer compositions containing triorganoaminophosphines
JPH08185712A (en) Electric wire and cable
JPS6112738A (en) Mixture for semiconductive layer
JPH03149250A (en) Heat-resistant resin composition
JPH0959413A (en) Polyolefinic resin foam, wire insulated therewith and heat-shrinking tube made thereof
JPH07116333B2 (en) Heat resistant resin composition
JP2013035944A (en) Crosslinked resin composition, wire and cable using the same
JP3133144B2 (en) High insulator made of ethylene copolymer or its composition and power cable using the same
EP0319199A1 (en) Elastomeric compositions
JPS5980439A (en) Preparation of crosslinked molded article
JP3195025B2 (en) High insulator made of ethylene polymer composition and power cable using the same
JPH06283055A (en) Heat-resisting and radiation-resisting wire and cable

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term