JPH0959299A - Fused muts protein and its production - Google Patents

Fused muts protein and its production

Info

Publication number
JPH0959299A
JPH0959299A JP7230781A JP23078195A JPH0959299A JP H0959299 A JPH0959299 A JP H0959299A JP 7230781 A JP7230781 A JP 7230781A JP 23078195 A JP23078195 A JP 23078195A JP H0959299 A JPH0959299 A JP H0959299A
Authority
JP
Japan
Prior art keywords
protein
leu
ala
muts
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7230781A
Other languages
Japanese (ja)
Inventor
Michiyo Kumagai
道代 熊谷
Kazumasa Hikichi
一昌 引地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S R L KK
Srl KK
Original Assignee
S R L KK
Srl KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S R L KK, Srl KK filed Critical S R L KK
Priority to JP7230781A priority Critical patent/JPH0959299A/en
Publication of JPH0959299A publication Critical patent/JPH0959299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new fused protein having high reactivity with mismatched double stranded DNA and useful for detection of spot mutation of DNA by the combination of N terminal of MutS protein with a segment of N terminal side of N protein of lamda phage. SOLUTION: This new protein has the sequence of the formula and prepared by the combination of N terminal of MutS protein with a segment of N terminal side of N protein of lamda phage. This protein is highly reactive with mismatched double stranded DNA and useful for detecting spot mutation of DNA namely for the detection of the mismatched region of the double stranded DNA. This fused MutS protein is obtained by sampling the DNA from the restriction enzyme treated vector comprising the DNA coding the MutS protein, combining the terminal of N side with a synthetic DNA coding the segments of 1-33th amino acids of N terminal side of lamda phage N protein and integrating this into the vector, introducing to a host cell allowing the manifestation of the structural gene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、融合MutSタンパク
質及びその製造方法に関する。本発明の融合MutSタ
ンパク質は、DNAの点突然変異の検出、すなわち、二
本鎖DNAのミスマッチ部位の検出に有用である。
TECHNICAL FIELD The present invention relates to a fused MutS protein and a method for producing the same. The fused MutS protein of the present invention is useful for detecting point mutations in DNA, that is, for detecting mismatch sites in double-stranded DNA.

【0002】[0002]

【従来の技術】近年分子生物学が急速な発展を遂げるに
従い、様々な疾患が遺伝子の異常に起因することが明ら
かになってきた。それらは、例えば転座、大規模な欠失
等のような染色体レベルでの異常から、点突然変異や、
数塩基対の欠失によるフレームシフト等、分子レベルの
異常まで、多くの種類が挙げられる。その中でも特に分
子レベルの異常は頻度も高く、顕微鏡下での解析が困難
であるため、効果的な検出法が広く望まれている。
2. Description of the Related Art With the rapid development of molecular biology in recent years, it has become clear that various diseases are caused by genetic abnormalities. They can be point mutations, abnormalities at the chromosomal level such as translocations, large deletions, etc.
There are many types up to molecular-level abnormalities such as frame shift due to deletion of several base pairs. Of these, abnormalities at the molecular level are particularly frequent and difficult to analyze under a microscope, so that an effective detection method is widely desired.

【0003】現在点突然変異を検出する方法がいくつか
考えられている。それらのうちで最も広く用いられてい
るものは、関谷らによる「一本鎖DNA高次構造多型
(single-strand conformation polymorphism; SSCP)解
析法」であるが、これは検出できるDNAの長さが30
0bp以下であり、結果として現れるパターンも一定で
はない、等の欠点を持つ。
Several methods for detecting current point mutations have been proposed. The most widely used of these is the “single-strand DNA conformation polymorphism (SSCP) analysis method” by Sekiya et al., Which has a detectable DNA length. Is 30
It has a defect that it is 0 bp or less and the resulting pattern is not constant.

【0004】一方、二本鎖DNAのミスマッチ部位に特
異的に結合するMutSタンパク質が知られている(Pr
oc. Natl. Acad. Sci. USA, Vol.83, pp.5057-5061, Ju
ly 1986 )。本願発明者らは、先に、このMutSタン
パク質を用いてDNAの点突然変異を検出する方法を発
明し、特許出願した(特願平7−112467号)。
On the other hand, a MutS protein that binds specifically to a mismatch site of double-stranded DNA is known (Pr
oc. Natl. Acad. Sci. USA, Vol.83, pp.5057-5061, Ju
ly 1986). The present inventors previously invented a method for detecting a point mutation in DNA using this MutS protein and filed a patent application (Japanese Patent Application No. 7-112467).

【0005】[0005]

【発明が解決しようとする課題】上記検出方法におい
て、もしMutSタンパク質とミスマッチDNAとの反
応性がネイティブなMutSタンパク質よりも高いタン
パク質が存在すれば、ネイティブなMutSタンパク質
を用いる場合に比べて検出の感度を高めることができる
し、また、より少量のタンパク質で同程度の検出感度を
得ることができるので好ましい。
In the above detection method, if a protein having a higher reactivity between the MutS protein and the mismatched DNA than the native MutS protein is present, it is possible to detect the protein as compared with the case where the native MutS protein is used. It is preferable because the sensitivity can be increased and the same level of detection sensitivity can be obtained with a smaller amount of protein.

【0006】従って、本発明の目的は、ネイティブなM
utSタンパク質よりもミスマッチ二本鎖DNAとの反
応性が高い新規なタンパク質及びその製造方法を提供す
ることである。
Therefore, it is an object of the present invention to use native M
It is intended to provide a novel protein having higher reactivity with mismatched double-stranded DNA than utS protein and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本願発明者らは、鋭意研
究の結果、ネイティブなMutSタンパク質のN末端に
ラムダファージのNタンパク質のN末端側断片が結合さ
れた融合MutSタンパク質のミスマッチDNAとの反
応性が、ネイティブなMutSタンパク質とミスマッチ
DNAとの反応性よりも高いことを見出し本発明を完成
した。
Means for Solving the Problems As a result of earnest studies, the inventors of the present invention have found that the N-terminal fragment of the N protein of lambda phage is bound to the N-terminal of the native MutS protein and the mismatched DNA of the fused MutS protein. The present inventors have found that the reactivity is higher than the reactivity between native MutS protein and mismatched DNA, and completed the present invention.

【0008】すなわち、本発明は、MutSタンパク質
のN末端にラムダファージのNタンパク質のN末端側断
片が結合された融合MutSタンパク質を提供する。ま
た、本発明は、誘導時以外は検出可能な程度にその下流
の構造遺伝子を発現させないプロモーターと、該プロモ
ーターの下流に請求項1ないし4のいずれかに記載の融
合MutSタンパク質をコードするDNA配列を少なく
とも含むベクターを宿主細胞中で発現させ、該融合Mu
tSタンパク質を回収することを含む、融合MutSタ
ンパク質の製造方法を提供する。
That is, the present invention provides a fused MutS protein in which the N-terminal fragment of the Lambda phage N protein is bound to the N-terminal of the MutS protein. The present invention also relates to a promoter that does not express a structural gene downstream thereof to a detectable level except at the time of induction, and a DNA sequence encoding the fusion MutS protein according to any one of claims 1 to 4 downstream of the promoter. Expressing a vector containing at least
Provided is a method for producing a fused MutS protein, comprising recovering tS protein.

【0009】以下、本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0010】上述のように、本発明の融合MutSタン
パク質は、MutSタンパク質のN末端にラムダファー
ジのNタンパク質のN末端側断片が結合されたものであ
る。ここで、ラムダファージのNタンパク質のN末端側
断片として、例えば下記実施例で作製したもののよう
に、Nタンパク質のN末端から1番目〜33番目のアミ
ノ酸から成る断片を挙げることができるが、これよりも
多少短くても長くても、ネイティブなMutSタンパク
質よりもミスマッチDNAとの反応性が高ければよい。
なお、ここで言う、「ネイティブなMutSタンパク
質」には、下記比較例1で得られたような、天然の遺伝
子又はcDNAを利用した遺伝子工学的手法により作製
されたMutSタンパク質も含まれる。
As described above, the fused MutS protein of the present invention is obtained by ligating the N-terminal side fragment of the N protein of lambda phage to the N-terminal of the MutS protein. Here, examples of the N-terminal side fragment of the N protein of lambda phage include fragments composed of the 1st to 33rd amino acids from the N terminus of the N protein, such as those produced in the following Examples. It may be slightly shorter or longer than the native MutS protein as long as it has higher reactivity with mismatched DNA than the native MutS protein.
The “native MutS protein” referred to here also includes the MutS protein produced by a genetic engineering method using a natural gene or cDNA as obtained in Comparative Example 1 below.

【0011】MutSタンパク質のN末端とラムダファ
ージNタンパク質のN末端側断片とは直接結合されてい
てもよいが、間に他のオリゴペプチドが介在していても
よい。下記実施例で作製された融合タンパク質では、こ
のようなオリゴペプチドとしてAsn Ser Lys Val Gly Se
r から成るアミノ酸配列が含まれている。ラムダファー
ジのNタンパク質のN末端から1〜33番目のアミノ酸
配列と、その下流に上記オリゴペプチド配列と、さらに
その下流にMutSタンパク質を含む、下記実施例で作
製された融合タンパク質のアミノ酸配列が配列表の配列
番号1に示されている。
The N-terminal of the MutS protein and the N-terminal side fragment of the lambda phage N protein may be directly linked, or other oligopeptide may be interposed therebetween. In the fusion proteins produced in the examples below, Asn Ser Lys Val Gly Se was prepared as such an oligopeptide.
It contains an amino acid sequence consisting of r. The amino acid sequences of the fusion proteins prepared in the following Examples, which contain the amino acid sequences 1 to 33 from the N-terminus of the N protein of lambda phage, the above oligopeptide sequence downstream thereof, and the MutS protein further downstream thereof, are arranged. It is shown in SEQ ID NO: 1 in the row table.

【0012】なお、一般に、生理活性を有するタンパク
質を構成するアミノ酸のうち、少数のアミノ酸が置換さ
れ若しくは欠失され又は他の少数のアミノ酸が該タンパ
ク質に付加若しくは挿入された場合であっても、その生
理活性がほとんど影響を受けない場合があることは当業
者にとって周知であり、また、少数のアミノ酸の置換、
欠失、挿入及び付加は、周知の部位特異的変異により容
易に行うことができる。従って、配列番号1で示される
アミノ酸配列の少数のアミノ酸を置換し若しくは欠失し
又は他の少数のアミノ酸を挿入若しくは付加したもので
あって、ネイティブのMutSタンパク質よりもミスマ
ッチDNAとの反応性の高いものは本発明に含まれる。
なお、ここで言う、「少数のアミノ酸」とは部位特異的
変異により置換、欠失、挿入又は付加できる程度の数の
アミノ酸を意味する。
[0012] Generally, even when a small number of amino acids among amino acids constituting a protein having physiological activity are substituted or deleted or other small number of amino acids are added or inserted into the protein, It is well known to a person skilled in the art that its physiological activity may be hardly affected, and also substitution of a small number of amino acids,
Deletions, insertions and additions can be easily made by well-known site-specific mutations. Therefore, the amino acid sequence represented by SEQ ID NO: 1 has a small number of amino acids substituted or deleted, or a small number of other amino acids inserted or added, and is more reactive with mismatched DNA than the native MutS protein. High are included in the present invention.
The "minor number of amino acids" as used herein means a sufficient number of amino acids that can be substituted, deleted, inserted or added by site-specific mutation.

【0013】本発明の融合タンパク質は、プロモーター
の下流に上記本発明の融合タンパク質をコードするDN
A配列を含む組換えベクターで宿主細胞を形質転換し、
該宿主細胞中で融合タンパク質を生産させ、生産された
融合タンパク質を回収することにより得ることができ
る。これは通常の遺伝子工学的手法ではあるが、本発明
では、特定の要件を満足するプロモーターを用いる必要
がある。すなわち、誘導時以外は検出可能な程度にその
下流の構造遺伝子を発現させないプロモーターを用いる
必要がある。このことは、本願発明者が、下記比較例に
示すように種々のプロモーターを用いて行った失敗を積
み重ねることにより見出した新知見である。現在遺伝子
工学的手法に用いられているプロモーターのほとんどの
ものは、所望の遺伝子を発現させたい時に誘導をかける
が、多くのプロモーターは誘導をかけない場合であって
も下流の構造遺伝子が少しは発現する。このようなプロ
モーターを用いた場合には、発現された融合タンパク質
が不溶化したり、無活性なものに分解されたり、あるい
は融合タンパク質を産生する形質転換体が得られない。
これはおそらく、MutSタンパク質が多少毒性を有す
るので、宿主細胞が自己防衛のため、該タンパク質を不
溶化して封じ込めたり、分解して活性を持たないものに
変化させたり、あるいは細胞そのものが死滅してしまっ
たりするからであろうと考えられる。一方、誘導時のみ
その下流の構造遺伝子を発現させるプロモーターであれ
ば、この弊害はかなり軽減され、下記実施例に示すよう
に大量発現が可能になる。このようなプロモーターの例
としてはラムダファージ由来のPL プロモーター及びT
7 プロモーターを挙げることができる。
The fusion protein of the present invention comprises DN encoding the above fusion protein of the present invention downstream of the promoter.
Transforming a host cell with a recombinant vector containing the A sequence,
It can be obtained by producing a fusion protein in the host cell and recovering the produced fusion protein. Although this is an ordinary genetic engineering technique, the present invention requires the use of a promoter satisfying specific requirements. That is, it is necessary to use a promoter that does not express the structural gene downstream thereof to a detectable level except at the time of induction. This is a new finding found by the inventors of the present application by accumulating failures made by using various promoters as shown in the following comparative examples. Most of the promoters currently used in genetic engineering techniques induce induction when a desired gene is desired to be expressed, but many promoters have a small amount of downstream structural gene even if they are not induced. Express. When such a promoter is used, the expressed fusion protein is insolubilized or decomposed into an inactive one, or a transformant producing the fusion protein cannot be obtained.
This is probably because the MutS protein is somewhat toxic, so that the host cell self-protects, insolubilizing and encapsulating the protein, degrading it into an inactive one, or killing the cell itself. It is thought that it is because it gets lost. On the other hand, with a promoter that expresses a structural gene downstream thereof only upon induction, this adverse effect is considerably reduced, and large-scale expression becomes possible as shown in the Examples below. P L promoter and T from lambda phage Examples of such promoters
7 promoters can be mentioned.

【0014】上記のプロモーターを用いると言う点を除
けば、本発明の融合タンパク質は通常の遺伝子工学的手
法により製造することができる。なお、下記実施例に示
すように、PL プロモーターとNタンパク質遺伝子を含
む発現ベクターが市販されているので、このような市販
のベクターのNタンパク質遺伝子内にMutSタンパク
質遺伝子を挿入することにより、所望の組換えベクター
を得ることができる。なお、MutSタンパク質遺伝子
は、その塩基配列がわかっているので、大腸菌のゲノム
DNAを鋳型としてPCRにより容易に調製することが
できる。なお、具体的な操作方法は下記実施例に詳述さ
れている。
The fusion protein of the present invention can be produced by a conventional genetic engineering method except that the above promoter is used. As shown in the following examples, expression vectors containing a P L promoter and an N protein gene are commercially available. Therefore, by inserting the MutS protein gene into the N protein gene of such a commercially available vector, the desired vector can be obtained. Can be obtained. Since the MutS protein gene has a known base sequence, it can be easily prepared by PCR using E. coli genomic DNA as a template. The specific operating method is described in detail in the examples below.

【0015】本発明の融合タンパク質は、ミスマッチ部
位を有する二本鎖DNAと特異的に結合するので、DN
Aの点突然変異の検出に用いることができる。例えば、
試料DNAと対照DNAとをアニールしてこれらのハイ
ブリッド二本鎖DNAを形成させ、これと融合タンパク
質を反応させた後、ゲル電気泳動にかけて二本鎖DNA
と融合タンパク質の結合体のバンドを形成させ、このバ
ンドを検出することにより、試料DNA中に点突然変異
が存在するか否かを知ることができる。
Since the fusion protein of the present invention specifically binds to double-stranded DNA having a mismatch site, DN
It can be used to detect A point mutations. For example,
The sample DNA and the control DNA are annealed to form these hybrid double-stranded DNAs, which are reacted with the fusion protein, and then subjected to gel electrophoresis to form the double-stranded DNAs.
By forming a band of a fusion protein conjugate with and detecting this band, it can be known whether or not a point mutation exists in the sample DNA.

【0016】[0016]

【実施例】以下、本発明を実施例及び比較例に基づきさ
らに具体的に説明する。もっとも、本発明は下記実施例
に限定されるものではない。
EXAMPLES The present invention will be described more specifically below based on Examples and Comparative Examples. However, the present invention is not limited to the following examples.

【0017】比較例1 MutSタンパク質の生産 (1) MutSタンパク質生産菌の構築(図2) 大腸菌DH5α株(Hanahan,D., J. Mol. Biol. 166:55
7 (1983))よりゲノムDNAを常法により回収した。こ
の大腸菌ゲノムDNAを鋳型としてPCRを行い、Mu
tSタンパク質遺伝子を含む2.6kbpの断片を複製
した。PCRに用いた2種類のオリゴヌクレオチドプラ
イマーの配列はそれぞれ 5'GGATCCATGAGTGCAATAGAAAAT3' 5'GAATTCTTATTACACCAGGC3' であった。PCRは市販のキットを用い、添附のマニュ
アルに従って行った。上記プライマーは、それぞれBamH
I 部位及びEco RI部位を有するので、このようにして得
られたDNA断片は、5’側にBam HI部位、3’側にEc
o RI部位を有する。
Comparative Example 1 Production of MutS Protein (1) Construction of MutS Protein-Producing Bacteria (FIG. 2) Escherichia coli DH5α strain (Hanahan, D., J. Mol. Biol. 166: 55)
7 (1983)) and the genomic DNA was recovered by a conventional method. PCR is performed using this E. coli genomic DNA as a template, and Mu
A 2.6 kbp fragment containing the tS protein gene was replicated. The sequences of the two types of oligonucleotide primers used for PCR were 5'GGATCCATGAGTGCAATAGAAAAT3 '5'GAATTCTTATTACACCAGGC3', respectively. PCR was performed using a commercially available kit according to the attached manual. The above primers are BamH
Since it has an I site and an Eco RI site, the DNA fragment thus obtained has a Bam HI site on the 5'side and an Ec on the 3'side.
o Has RI site.

【0018】市販のプラスミドベクターであるpGEX-2T
(ファルマシア社製)をBam HI及びEco RIで消化し、上
記のようにして得たMutSタンパク質遺伝子断片をpG
EX-2T のマルチクローニング部位に挿入した。得られた
組換えベクターをBam HIとPvu IIで消化し、両端にPvu
II部位、Bam HI部位、中央にXho I 部位、該Xho I 部位
と下流のBam HI部位の間にリボソーム結合部位(以下、
RBS)を有する、図2に示す二本鎖オリゴヌクレオチ
ド断片をこれに挿入した。これをPvu IIとEcoRIで消化
し、MutSタンパク質遺伝子を含むDNA断片の両端
を平滑末端化した。
Commercially available plasmid vector pGEX-2T
(Manufactured by Pharmacia) was digested with Bam HI and Eco RI, and the MutS protein gene fragment obtained as described above was digested with pG
It was inserted into the multiple cloning site of EX-2T. The resulting recombinant vector was digested with Bam HI and Pvu II and Pvu
II site, Bam HI site, Xho I site in the center, ribosome binding site between the Xho I site and the downstream Bam HI site (hereinafter,
The double-stranded oligonucleotide fragment shown in FIG. 2 having RBS) was inserted therein. This was digested with PvuII and EcoRI to make both ends of the DNA fragment containing the MutS protein gene blunt-ended.

【0019】一方、市販のベクターであるpPL−λ
(ファルマシア社製)をHpa I で消化し、先に得られた
MutSタンパク質を含むDNA断片とライゲートし、
組換えベクターpPLλ(mutS) を得た。大腸菌N4830-
1 株(ファルマシア社)を常法である塩化カルシウム法
により、pPLλ(mutS) で形質転換し、薬剤マーカー
(アンピシリン耐性)に従って形質転換株を選択し、さ
らに、調製したプラスミド(pPLλ(mutS))を制限酵
素で確認することによりMutSタンパク質高生産菌N4
830-1/pPL-λ(mutS)を選択した。
On the other hand, a commercially available vector pPL-λ
(Manufactured by Pharmacia) was digested with Hpa I and ligated with the DNA fragment containing the MutS protein obtained above,
A recombinant vector pPLλ (mutS) was obtained. E. coli N4830-
One strain (Pharmacia) was transformed with pPLλ (mutS) by the conventional calcium chloride method, a transformant strain was selected according to the drug marker (ampicillin resistance), and the prepared plasmid (pPLλ (mutS)) was selected. Of the MutS protein high-producing bacterium N4
830-1 / pPL-λ (mutS) was selected.

【0020】(2) MutSタンパク質の部分精製 N4830-1/pPL λ(mutS)の培養液を遠心し、沈殿した細胞
ペーストを公知の方法(PREPARATION OF EXTRACTS FROM
PROKARYOTES, Methods in Enzymology, Vol.182, pp.1
49-150)によりリゾチームで処理して細胞を溶解した。
得られた細胞溶解物を1時間氷冷した後、37℃で4分
間加温した。次いで23,000 gで1時間遠心し、上清に固
体の硫酸アンモニウムを最終濃度18%(w/v)又は
30%飽和となるよう添加した。沈殿画分を20mM T
ris-HCl(pH7.5)に懸濁し、部分精製MutSタンパク質
試料とした(タンパク濃度10 mg/ml) 。なお、上記沈殿
画分は約3gの大腸菌から43mg得られた。得られた
MutSタンパク質試料の一部を常法に基づきSDS−
PAGEにかけ、クマシーブリリアントブルー(CB
B)でバンドを染色した。結果を図3に示す。図3に示
されるように、N4830-1/pPL λ(mutS)による大量発現物
は、分子量的に確かにMutSタンパク質と思われ、ま
た、上記方法により90%以上に部分精製された。
(2) Partial purification of MutS protein N4830-1 / pPL λ (mutS) culture solution was centrifuged, and the precipitated cell paste was subjected to a known method (PREPARATION OF EXTRACTS FROM
PROKARYOTES, Methods in Enzymology, Vol.182, pp.1
49-150) and lysed the cells by treatment with lysozyme.
The resulting cell lysate was ice-cooled for 1 hour and then heated at 37 ° C for 4 minutes. Then, the mixture was centrifuged at 23,000 g for 1 hour, and solid ammonium sulfate was added to the supernatant so that the final concentration was 18% (w / v) or 30% saturation. 20 mM T of the precipitate fraction
It was suspended in ris-HCl (pH 7.5) and used as a partially purified MutS protein sample (protein concentration 10 mg / ml). The precipitation fraction was obtained in an amount of 43 mg from about 3 g of Escherichia coli. A part of the obtained MutS protein sample was subjected to SDS-
PAGE, Coomassie Brilliant Blue (CB
Bands were stained with B). The results are shown in FIG. As shown in FIG. 3, the large-scale expression product of N4830-1 / pPL λ (mutS) seemed to be MutS protein in terms of molecular weight, and was partially purified to 90% or more by the above method.

【0021】(3) 部分精製MutSタンパク質の活性確
認 上記のようにして部分精製されたMutSタンパク質
が、二本鎖DNAのミスマッチ部位に特異的に結合する
活性を有しているか否かをゲルシフト法により調べた。
この操作は次のように行った。
(3) Confirmation of Activity of Partially Purified MutS Protein It is determined by gel shift method whether or not the MutS protein partially purified as described above has an activity of specifically binding to a mismatch site of double-stranded DNA. Investigated by.
This operation was performed as follows.

【0022】MutSタンパク質の基質となる二本鎖D
NAを調製するため、下記の塩基配列を有する2種類の
一本鎖オリゴヌクレオチド(I)及び(II)を市販のD
NA合成機により合成した。 5'-GCA TAC GGA AGT TAA AGT GCG GAT CAT CTC TAG CCA-3' (I) 5'-TGG CTA GAG ATG ATC CGC NCT TTA ACT TCC GTA TGC-3' (II) これらのオリゴヌクレオチドは(I)の下線を引いたT
と(II)の下線を引いたNの対合部分を除き、完全に相
補的である。(I)と(II)をアニールすると、(I)
の下線を引いたTと(II)の下線を引いたNとが対合す
るが、NがAの場合(IIc)には(I)と(IIc)は完全に
相補的であり、誤対合は生じない。これを対照とした。
一方、NをGとしたもの(IIm)及びNが欠失したもの(I
Id)も調製し、これらをサンプルとして試験に供した。
(IIm)を用いた場合には、この部分のみに誤対合が生じ
る(点変異)。(IId)を用いると、(I)中の対応する
Tがループ状にはみ出した形で(I)と(IId)がハイブ
リダイズする(欠失)。なお、これらのオリゴヌクレオ
チドは、[γ−32P]ATPとT4ヌクレオチドキナー
ゼを用いて末端標識した。オリゴヌクレオチド(I)と
(IIm)、(IId)又は(IIc)を分析用緩衝液(20mM T
ris-HCl pH 7.6, 5 mM MgCl2, 0.1 mM DTT, 0.01 mM ED
TA) 中で70℃で10分間加熱し、室温まで冷却し、室
温で30分間放置することによりアニーリングし、各々
二本鎖オリゴヌクレオチドを得た。
Double-stranded D that serves as a substrate for MutS protein
To prepare NA, two types of single-stranded oligonucleotides (I) and (II) having the following base sequences were commercially available.
It was synthesized by an NA synthesizer. 5'-GCA TAC GGA AGT TAA AG T GCG GAT CAT CTC TAG CCA-3 '(I) 5'-TGG CTA GAG ATG ATC CGC N CT TTA ACT TCC GTA TGC-3' (II) These oligonucleotides are ( I) T underlined
And (II) are perfectly complementary except for the underlined N pairing. When (I) and (II) are annealed, (I)
The underlined T and (II) underlined N are paired, but when N is A, (IIc) is completely complementary to (I) and (IIc). Does not occur. This served as a control.
On the other hand, one in which N is G (IIm) and one in which N is deleted (I
Id) was also prepared and used as a sample in the test.
When (IIm) is used, mispairing occurs only in this part (point mutation). When (IId) is used, (I) and (IId) hybridize (deletion) in a form in which the corresponding T in (I) protrudes in a loop. In addition, these oligonucleotides were end-labeled using [γ- 32 P] ATP and T4 nucleotide kinase. Oligonucleotides (I) and (IIm), (IId) or (IIc) were added to the analysis buffer (20 mM T
ris-HCl pH 7.6, 5 mM MgCl 2 , 0.1 mM DTT, 0.01 mM ED
In TA), the mixture was heated at 70 ° C. for 10 minutes, cooled to room temperature, and allowed to stand at room temperature for 30 minutes for annealing to obtain double-stranded oligonucleotides.

【0023】上記MutSタンパク質試料(タンパク量
40pmol(約4μg))と、4μlのx5分析用緩衝液
(100 mM Tris-HCl pH 7.5, 50 mM MgCl2、 2.5 mM CaCl
2、 5mM DTT、 0.5 mM EDTA)、上記36bpのDNA試
料12 pmol (300 ng)、d2 Wを混合して全量を20μl
とし、30℃で20分間インキュベートした。また、同
様に調製した試料を、DNase I (濃度、25、50、1
50、300ng/μl)を加えることにより、Mut
Sタンパク質により被覆されていないオリゴヌクレオチ
ドを分解した。100 mM EDTA を加えて反応を停止させ
た。これらの試料を、ネイティブPAGEにかけた。ネ
イティブPAGEは、各試料を3μlの6xLB緩衝液
(ローディング緩衝液)と共に20%ポリアクリルアミ
ドゲル(1xTBE)にかけ、20V/cmの電圧密度で3〜
5時間電気泳動を行うことにより行った。次いで常法に
よりゲルをエチジウムブロミドで染色することによって
バンドを検出した。また、比較のため、36bpの一本
鎖DNAを用いたものについても同様に試験した(この
結果は、図4中のレーン「s」に示す)。さらに、比較
のため、pPL−λベクターのみを導入した細胞の抽出
液をMutSと同様にして調製したものも同様に試験し
た(この結果は、図4中、右側の「pPLλ」と記した
3本のレーン「m」、「d」、「c」に示す)。
The MutS protein sample (protein amount 40 pmol (about 4 μg)) and 4 μl of x5 analytical buffer (100 mM Tris-HCl pH 7.5, 50 mM MgCl 2 , 2.5 mM CaCl 2)
2 , 5 mM DTT, 0.5 mM EDTA), 12 pmol (300 ng) of the 36 bp DNA sample, and d 2 W were mixed to obtain a total volume of 20 μl.
And incubated at 30 ° C. for 20 minutes. A sample prepared in the same manner was used for DNase I (concentration, 25, 50, 1
50, 300 ng / μl)
Oligonucleotides not covered by S protein were degraded. The reaction was stopped by adding 100 mM EDTA. These samples were subjected to native PAGE. For native PAGE, each sample was run on a 20% polyacrylamide gel (1xTBE) with 3 μl of 6xLB buffer (loading buffer) at a voltage density of 20 V / cm from 3 to 3.
It was performed by performing electrophoresis for 5 hours. Then, the band was detected by staining the gel with ethidium bromide by a conventional method. For comparison, the same test was performed using a 36 bp single-stranded DNA (the results are shown in lane “s” in FIG. 4). Further, for comparison, an extract prepared from cells into which only the pPL-λ vector had been introduced was prepared in the same manner as MutS was tested in the same manner (this result is referred to as “pPLλ” on the right side in FIG. 3). Shown in lanes "m", "d", "c" of the book).

【0024】結果を図4に示す。図4から、(IIm) 又は
(IId) を用いた場合には、(IIc) を用いた場合とは異な
る位置にバンドが見られ、(IIc) を用いた場合にはこの
位置にはバンドが見られない。また、MutSタンパク
質遺伝子を含まない、pPLλベクターのみを含む細胞
から調製した試料を用いた場合も、同様にこの位置には
バンドが見られない。従って、MutSタンパク質は点
変異又は欠失を有する二本鎖オリゴヌクレオチドとのみ
結合したことがわかる。また、DNase I で処理した試料
についての結果を図5に示す。図5に示されるように、
対照である(IIc)を用いた場合には、DNase I の濃度に
従ってバンド自体が消滅していたが、(IIm)を用いた場
合には、DNase I の濃度を挙げるとバンドは低分子量側
へシフトした。このことから、MutSタンパク質はミ
スマッチを有する二本鎖DNAに結合してDNAの一部
を被覆し、この被覆された部分がDNAase Iによる分解か
ら保護されたのに対し、完全に相補的な対照の二本鎖D
NAではMutSタンパク質と結合せず、DNase I によ
ってDNAが完全に分解されてしまったことがわかる。
以上のことから、上記の方法により得られた部分精製M
utSタンパク質は、MutSタンパク質としての活性
を有していることが確認された。
The results are shown in FIG. From Figure 4, (IIm) or
When (IId) was used, a band was observed at a position different from that when (IIc) was used, and when (IIc) was used, no band was observed at this position. Also, when a sample prepared from cells containing only the pPLλ vector without the MutS protein gene was used, no band was observed at this position as well. Therefore, it can be seen that the MutS protein bound only to the double-stranded oligonucleotide having a point mutation or deletion. The results for the sample treated with DNase I are shown in FIG. As shown in FIG.
When the control (IIc) was used, the band itself disappeared according to the concentration of DNase I, but when (IIm) was used, the band moved to the lower molecular weight side when the concentration of DNase I was increased. Shifted. From this, the MutS protein binds to the double-stranded DNA having a mismatch and coats a part of the DNA, and this coated part is protected from degradation by DNAase I, while a completely complementary control is obtained. Double-stranded D
It can be seen that DNA did not bind to MutS protein in NA, and DNA was completely degraded by DNase I.
From the above, the partially purified M obtained by the above method
It was confirmed that the utS protein has activity as a MutS protein.

【0025】(4) MutSタンパク質の精製 N4830-1/pPL λ(mutS)培養液1リットルを遠心し、上記
(2) と同様にして細胞溶解した。溶解物を遠心し、固体
の硫酸アンモニウムを終濃度18%(w/v)に加えて
遠心し、沈殿を20mM Tris-HCl (pH 7.5)に溶解し
た。この時のタンパク量(Bio Rad 社製クマシー試薬に
より、BSAを標準として測定)は1376.6μgで
あった。次いで、これを緩衝液A(20 mM KPO4, 1 mM E
DTA, 1 mMPMSF, 10 mM 2ME, 0.1 M KCl, pH 7.5) に対
して透析し、ヘパリン−セファロースカラム(1x13
cm、ファルマシア社製)にかけた。カラムを緩衝液A
で洗浄し、KClの0.1→1M直線勾配で溶出した。
これを常法によりネイティブPAGEにかけ、97kD
のバンドを回収した。この時のタンパク量は176.5
μgであった。次いでこれをヒドロキシアパタイトカラ
ム(1.5 x 8.5 cm) にかけ、緩衝液(20 mM KPO4, 0.1
mM EDTA, 1 mM PMSF, 10 mM 2ME, 0.2 M KCl)でカラム
を洗浄した後、リン酸カリウムの0.02→0.2M直
線勾配で溶出し、ネイティブPAGEにかけ、97kD
のバンドを回収した。この時のタンパク量は78.3μ
gであった。
(4) Purification of MutS protein 1 liter of N4830-1 / pPL λ (mutS) culture solution was centrifuged and
The cells were lysed in the same manner as (2). The lysate was centrifuged, solid ammonium sulfate was added to a final concentration of 18% (w / v), the mixture was centrifuged, and the precipitate was dissolved in 20 mM Tris-HCl (pH 7.5). At this time, the amount of protein (measured by Coomassie reagent manufactured by Bio Rad with BSA as a standard) was 1376.6 μg. Then, add this to buffer A (20 mM KPO 4 , 1 mM E
It was dialyzed against DTA, 1 mM PMSF, 10 mM 2ME, 0.1 M KCl, pH 7.5), and heparin-Sepharose column (1 × 13).
cm, manufactured by Pharmacia). Buffer the column with buffer A
And washed with 0.1% 1M linear gradient of KCl.
This is subjected to native PAGE by a conventional method, and 97 kD
Bands were collected. The amount of protein at this time is 176.5
It was μg. It was then loaded onto a hydroxyapatite column (1.5 x 8.5 cm) and buffered (20 mM KPO 4 , 0.1 mM).
After washing the column with mM EDTA, 1 mM PMSF, 10 mM 2ME, 0.2 M KCl), elution was carried out with a 0.02 → 0.2 M linear gradient of potassium phosphate and subjected to native PAGE to obtain 97 kD.
Bands were collected. The amount of protein at this time is 78.3μ
g.

【0026】(5) MutSタンパク質の活性測定 MutSタンパク質は、下記反応式[I]に示すように
反応する。
(5) Activity measurement of MutS protein MutS protein reacts as shown in the following reaction formula [I].

【0027】[0027]

【化1】 Embedded image

【0028】上記反応式[I]の平衡定数Kdは、下記
式[II]で表される。
The equilibrium constant Kd of the above reaction formula [I] is represented by the following formula [II].

【0029】[0029]

【化2】 Embedded image

【0030】上記のオリゴヌクレオチド(I)及び(I
I)を用い(G−Tミスマッチ)、ゲルシフトアッセイ
により、上記部分精製MutSタンパク質のKd値を求
めた。この操作は具体的に次のように行った。比較例1
(3) で得た、32P標識した二本鎖DNA0.1pmol
と、上記部分精製MutSタンパク質0.1μg〜5μ
g(約1〜50pmol)と、50mMNaCl、1m
Mのジチオスレイトール(DTT)と1mMのポリフェ
ニルメタンスルホニルフロリド(PMSF)とを10m
M Tris−HCl(pH7.5)緩衝液中に含む溶
液(15μl)を4℃で30分間インキュベートし、次
いで6%PAGE(非変性)にかけ、バンドをオートラ
ジオグラフィーで検出した。上記式[II]において[D
NA]=[MutS−DNA]のとき、Kd≒[Mut
S]となり、おおよそのKd値が推定できる(この推定
方法は常用されており、Methods in Enzymology 208, 1
03-117 (Academic Press Inc.)に記載されている)こと
から、このバンドのパターンの中でMutS−DNAの
「バンドの強さ」とゲルの下部に泳動していた「遊離D
NAのバンドの強さ」が等しくなっているレーンのMu
tS濃度を求め、Kd値を推定した。その結果、Kd値
は約3.3x10-6であった。
The above oligonucleotides (I) and (I
Using I) (GT mismatch), the Kd value of the partially purified MutS protein was determined by gel shift assay. This operation was specifically performed as follows. Comparative Example 1
0.1 pmol of 32 P-labeled double-stranded DNA obtained in (3)
And 0.1 μg to 5 μ of the partially purified MutS protein
g (about 1 to 50 pmol), 50 mM NaCl, 1 m
M dithiothreitol (DTT) and 1 mM polyphenylmethanesulfonyl fluoride (PMSF) 10m
A solution (15 μl) in M Tris-HCl (pH 7.5) buffer was incubated for 30 minutes at 4 ° C., then subjected to 6% PAGE (non-denaturing) and bands were detected by autoradiography. In the above formula [II], [D
When NA] = [MutS-DNA], Kd≈ [Mut
S], and an approximate Kd value can be estimated (this estimation method is commonly used, and Methods in Enzymology 208 , 1
03-117 (Academic Press Inc.)), the "band intensity" of MutS-DNA and the "free D" that migrated to the bottom of the gel in the pattern of this band.
Mu in the lane with the same NA band strength "
The tS concentration was obtained and the Kd value was estimated. As a result, the Kd value was about 3.3 × 10 −6 .

【0031】実施例1 (1) 融合MutSタンパク質の調製(図1) pPL−λ(ファルマシア社製)ベクターをSma I で消
化し、次いでそのままライゲートすることにより2つの
Sma I 部位に挟まれた領域(Bam HI部位を含む)を削除
した。次いで、このベクターをHpa I で切断し、図1に
示す配列を有する合成オリゴDNAリンカーとアニール
し、ライゲートした。この合成オリゴDNAリンカーは
Asn Ser Lys Val Gly Ser のアミノ酸配列をコードする
領域を含み、中央にBam HI部位を有し、パリンドローム
になっている。次いで、得られたベクターをBam HIで消
化し、一方、比較例1(1) で作製したpPL-λ(mutS)をBa
mHIで消化し、これらをアニールしてライゲートした。
得られたベクター(MutSタンパク質の上流にAsn Se
r Lys Val Gly Ser から成るオリゴペプチド、さらにそ
の上流にラムダファージのNタンパクのN末端から第3
3番目のアミノ酸までから成るペプチドが結合された融
合MutSタンパク質(F9と命名)を発現する)で比
較例1(1) と同様にして大腸菌N4830-1 株(ファルマシ
ア社製)を形質転換し、形質転換株N4830-1/pPL-λ(F9)
を得た。
Example 1 (1) Preparation of Fusion MutS Protein (FIG. 1) The pPL-λ (Pharmacia) vector was digested with Sma I and then ligated as it was to obtain two
The region flanked by Sma I sites (including the Bam HI site) was deleted. This vector was then cut with Hpa I, annealed with a synthetic oligo DNA linker having the sequence shown in Figure 1 and ligated. This synthetic oligo DNA linker
It contains a region encoding the amino acid sequence of Asn Ser Lys Val Gly Ser, has a Bam HI site in the center, and is a palindrome. Then, the obtained vector was digested with Bam HI, while the pPL-λ (mutS) prepared in Comparative Example 1 (1) was digested with Ba
After digestion with mHI, these were annealed and ligated.
The resulting vector (Asn Se was added upstream of the MutS protein)
An oligopeptide composed of r Lys Val Gly Ser, and further upstream from the N-terminal end of the N-protein of lambda phage
Escherichia coli N4830-1 strain (Pharmacia) was transformed with the fused MutS protein (named F9) to which a peptide consisting of up to the third amino acid was bound, in the same manner as in Comparative Example 1 (1), Transformed strain N4830-1 / pPL-λ (F9)
I got

【0032】(2) F9の部分精製物の調製 比較例1(2) と同様な操作によりF9の部分精製物(た
だし、タンパク濃度は5〜10mg/ml)を得た。
(2) Preparation of partially purified F9 product By the same procedure as in Comparative Example 1 (2), a partially purified product of F9 (however, the protein concentration was 5 to 10 mg / ml) was obtained.

【0033】(3) F9部分精製物の活性 比較例1(5) と同様にして、F9部分精製物の活性を測
定したところ、Kd値は約1.3x10-7であった。こ
のことから、本発明の融合タンパク質の活性は、比較例
1で作製したネイティブのMutSタンパク質に比べ、
ミスマッチDNAとの結合能が25倍高いことがわか
る。
(3) Activity of partially purified F9 product The activity of the partially purified F9 product was measured in the same manner as in Comparative Example 1 (5). As a result, the Kd value was about 1.3 × 10 -7 . From this, the activity of the fusion protein of the present invention is higher than that of the native MutS protein prepared in Comparative Example 1.
It can be seen that the binding ability with mismatched DNA is 25 times higher.

【0034】比較例2 市販の発現ベクターであるpGEX−2T(ファルマシ
ア社製)のマルチクローニング部位のBamHI/Ec
oRI部位に、比較例1と同様に調製したMutSタン
パク質遺伝子を挿入した。pGEX−2Tベクターは、
tacプロモーター及びその下流にグルタチオン−S−
トランスフェラーゼ(GTS)の構造遺伝子(発現産物
の分子量は約26kD)を持ち、組み込まれた遺伝子産
物はグルタチオン−S−トランスフェラーゼとの融合タ
ンパク質として生産される。なお、宿主としては大腸菌
DH5αを用い、IPTGで発現誘導した。
Comparative Example 2 BamHI / Ec at the multicloning site of pGEX-2T (Pharmacia), a commercially available expression vector.
The MutS protein gene prepared in the same manner as in Comparative Example 1 was inserted into the oRI site. The pGEX-2T vector is
The tac promoter and its downstream glutathione-S-
It has a structural gene for transferase (GTS) (the molecular weight of the expression product is about 26 kD), and the integrated gene product is produced as a fusion protein with glutathione-S-transferase. Escherichia coli DH5α was used as a host and expression was induced by IPTG.

【0035】このGTS−MutS融合タンパク質を発
現させた大腸菌DH5αを比較例1と同様にして溶解す
ると、この融合タンパク質はほとんどが不溶画分に見出
された。この不溶性タンパク質は6Mグアニジン塩酸で
可溶化したが、透析によってグアニジン塩酸濃度を低下
させると再び不溶化し、活性の有無を検討することはで
きなかった。
When E. coli DH5α expressing this GTS-MutS fusion protein was dissolved in the same manner as in Comparative Example 1, most of this fusion protein was found in the insoluble fraction. This insoluble protein was solubilized with 6 M guanidine hydrochloric acid, but when the concentration of guanidine hydrochloric acid was lowered by dialysis, it was insolubilized again, and it was not possible to examine the activity.

【0036】比較例3 市販の発現ベクターであるpEX(クローンテック社
製)のマルチクローニング部位のBamHI/XbaI
部位に、比較例1と同様に調製したMutSタンパク質
遺伝子を挿入した。なお、pEXは、ラムダPR プロモ
ーターを温度感受性のcIリプレッサーで制御するもの
であり、ラムダcro-β−ガラクトシダーゼ遺伝子(産物
の分子量は約120kD)を有する。発現は熱誘導によ
って行い、挿入遺伝子産物はラムダcro-β−ガラクトシ
ダーゼとの融合タンパク質として得られる。宿主として
は、大腸菌N4830−1を用いた。
Comparative Example 3 BamHI / XbaI at the multiple cloning site of the commercially available expression vector pEX (manufactured by Clontech).
The MutS protein gene prepared in the same manner as in Comparative Example 1 was inserted into the site. Incidentally, pEX is for controlling the lambda P R promoter cI repressor temperature-sensitive, lambda cro-beta-galactosidase gene (molecular weight product of about 120 kD) with a. Expression is carried out by heat induction and the inserted gene product is obtained as a fusion protein with lambda cro-β-galactosidase. E. coli N4830-1 was used as a host.

【0037】この融合タンパク質を発現させた大腸菌N
4830−1を比較例1と同様にして溶解すると、比較
例2と同様、不溶画分に分画され活性の測定を行うこと
はできなかった。また、抗β−ガラクトシダーゼ抗体を
用いてウェスタン解析を行ったところ、この融合タンパ
ク質は大腸菌内でかなり分解されていることがわかっ
た。また、少量ながら、既に誘導前から発現しているこ
とも示された。
E. coli N expressing this fusion protein
When 4830-1 was dissolved in the same manner as in Comparative Example 1, it was fractionated into an insoluble fraction as in Comparative Example 2, and the activity could not be measured. Moreover, when Western analysis was performed using an anti-β-galactosidase antibody, it was found that this fusion protein was considerably degraded in E. coli. It was also shown that it was already expressed before induction, although in a small amount.

【0038】比較例4 市販の発現ベクターであるpSE380(インビトロジ
ェン社製)のマルチクローニング部位中のBamHI部
位に比較例1と同様に調製したMutSタンパク質遺伝
子を挿入し、かつ、その上流のNcoI部位と該Bam
HI部位との間にMet Gly Ser Ser Arg Gln Gly Ser の
アミノ酸をコードするオリゴヌクレオチドリンカーを挿
入した。なお、pSE380は、プロモーターとしてt
acプロモーターを有し、IPTGで誘導をかける。宿
主としての大腸菌DH5αを上記の組換えベクターで形
質転換した。その結果、得られた31個のコロニー全て
において、目的とする挿入とは逆方向にMutSタンパ
ク質遺伝子が入った構造の組換えベクターが見出され
た。そこで強制的に正しい方向に遺伝子を挿入すること
を目的として、マルチクローニング部位のBamHI部
位とSpeI部位との間にMutSタンパク質遺伝子を
挿入し、大腸菌DH5αを形質転換した。ところが、今
度は全く形質転換株が得られなかった。この実験を数回
繰り返し行ったが、全て同じ結果が得られた。この結果
は、誘導をかける前にごく僅かに発現されるMutSタ
ンパク質の毒性のために、望ましい方向でMutSタン
パク質遺伝子が入った大腸菌は淘汰されてしまうことを
示唆している。
Comparative Example 4 The MutS protein gene prepared in the same manner as in Comparative Example 1 was inserted into the BamHI site in the multicloning site of the commercially available expression vector pSE380 (manufactured by Invitrogen), and the upstream NcoI site was inserted. The Bam
An oligonucleotide linker encoding the amino acid of Met Gly Ser Ser Arg Gln Gly Ser was inserted between it and the HI site. In addition, pSE380 is a promoter
It has an ac promoter and is induced by IPTG. E. coli DH5α as a host was transformed with the above recombinant vector. As a result, in all of the 31 colonies obtained, a recombinant vector having a structure containing the MutS protein gene in the opposite direction to the intended insertion was found. Therefore, for the purpose of forcibly inserting the gene in the correct direction, the MutS protein gene was inserted between the BamHI site and the SpeI site of the multicloning site, and Escherichia coli DH5α was transformed. However, this time, no transformed strain was obtained. This experiment was repeated several times and all gave the same results. This result suggests that E. coli harboring the MutS protein gene in the desired direction will be culled due to the toxicity of the MutS protein, which is only slightly expressed prior to induction.

【0039】[0039]

【発明の効果】本発明により、ミスマッチDNAとの結
合性がネイティブのMutSタンパク質よりも高い新規
な融合タンパク質及びその製造方法が提供された。本発
明の融合タンパク質を用いることにより、DNAの点突
然変異を高感度に検出することができる。
INDUSTRIAL APPLICABILITY The present invention provides a novel fusion protein having a higher binding property to mismatched DNA than the native MutS protein and a method for producing the fusion protein. By using the fusion protein of the present invention, a point mutation of DNA can be detected with high sensitivity.

【0040】[0040]

【配列表】[Sequence list]

配列番号 : 1 配列の長さ : 892 配列の型 :アミノ酸 配列 Met Asp Ala Gln Thr Arg Arg Arg Glu Arg Arg Ala Glu Lys Gln Ala 1 5 10 15 Gln Trp Lys Ala Ala Asn Pro Leu Leu Val Gly Val Ser Ala Lys Pro 20 25 30 Val Asn Ser Lys Val Gly Ser Met Ser Ala Ile Glu Asn Phe Asp Ala 35 40 45 His Thr Pro Met Met Gln Gln Tyr Leu Arg Leu Lys Ala Gln His Pro 50 55 60 Glu Ile Leu Leu Phe Tyr Arg Met Gly Asp Phe Tyr Glu Leu Phe Tyr 65 70 75 80 Asp Asp Ala Lys Arg Ala Ser Gln Leu Leu Asp Ile Ser Leu Thr Lys 85 90 95 Arg Gly Ala Ser Ala Gly Glu Pro Ile Pro Met Ala Gly Ile Pro Tyr 100 105 110 His Ala Val Glu Asn Tyr Leu Ala Lys Leu Val Asn Gln Gly Glu Ser 115 120 125 Val Ala Ile Cys Glu Gln Ile Gly Asp Pro Ala Thr Ser Lys Gly Pro 130 135 140 Val Glu Arg Lys Val Val Arg Ile Val Thr Pro Gly Thr Ile Ser Asp 145 150 155 160 Glu Ala Leu Leu Gln Glu Arg Gln Asp Asn Leu Leu Ala Ala Ile Trp 165 170 175 Gln Asp Ser Lys Gly Phe Gly Tyr Ala Thr Leu Asp Ile Ser Ser Gly 180 185 190 Arg Phe Arg Leu Ser Glu Pro Ala Asp Arg Glu Thr Met Ala Ala Glu 195 200 205 Leu Gln Arg Thr Asn Pro Ala Glu Leu Leu Tyr Ala Glu Asp Phe Ala 210 215 220 Glu Met Ser Leu Ile Glu Gly Arg Arg Gly Leu Arg Arg Arg Pro Leu 225 230 235 240 Trp Glu Phe Glu Ile Asp Thr Ala Arg Gln Gln Leu Asn Leu Gln Phe 245 250 255 Gly Thr Arg Asp Leu Val Gly Phe Gly Val Glu Asn Ala Pro Arg Gly 260 265 270 Leu Cys Ala Ala Gly Cys Leu Leu Gln Tyr Ala Lys Asp Thr Gln Arg 275 280 285 Thr Thr Leu Pro His Ile Arg Ser Ile Thr Met Glu Arg Glu Gln Asp 290 295 300 Ser Ile Ile Met Asp Ala Ala Thr Arg Arg Asn Leu Glu Ile Thr Gln 305 310 315 320 Asn Leu Ala Gly Gly Ala Glu Asn Thr Leu Ala Ser Val Leu Asp Cys 325 330 335 Thr Val Thr Pro Met Gly Ser Arg Met Leu Lys Arg Trp Leu His Met 340 345 350 Pro Val Arg Asp Thr Arg Val Leu Leu Glu Arg Gln Gln Thr Ile Gly 355 360 365 Ala Leu Gln Asp Phe Thr Ala Gly Leu Gln Pro Val Leu Arg Gln Val 370 375 380 Gly Asp Leu Glu Arg Ile Leu Ala Arg Leu Ala Leu Arg Thr Ala Arg 385 390 395 400 Pro Arg Asp Leu Ala Arg Met Arg His Ala Phe Gln Gln Leu Pro Glu 405 410 415 Leu Arg Ala Gln Leu Glu Thr Val Asp Ser Ala Pro Val Gln Ala Leu 420 425 430 Arg Glu Lys Met Gly Glu Phe Ala Glu Leu Arg Asp Leu Leu Glu Arg 435 440 445 Ala Ile Ile Asp Thr Pro Pro Val Leu Val Arg Asp Gly Gly Val Ile 450 455 460 Ala Ser Gly Tyr Asn Glu Glu Leu Asp Glu Trp Arg Ala Leu Ala Asp 465 470 475 480 Gly Ala Thr Asp Tyr Leu Glu Arg Leu Glu Val Arg Glu Arg Glu Arg 485 490 495 Thr Gly Leu Asp Thr Leu Lys Val Gly Phe Asn Ala Val His Gly Tyr 500 505 510 Tyr Ile Gln Ile Ser Arg Gly Gln Ser His Leu Ala Pro Ile Asn Tyr 515 520 525 Met Arg Arg Gln Thr Leu Lys Asn Ala Glu Arg Tyr Ile Ile Pro Glu 530 535 540 Leu Lys Glu Tyr Glu Asp Lys Val Leu Thr Ser Lys Gly Lys Ala Leu 545 550 555 560 Ala Leu Glu Lys Gln Leu Tyr Glu Glu Leu Phe Asp Leu Leu Leu Pro 565 570 575 His Leu Glu Ala Leu Gln Gln Ser Ala Ser Ala Leu Ala Glu Leu Asp 580 585 590 Val Leu Val Asn Leu Ala Glu Arg Ala Tyr Thr Leu Asn Tyr Thr Cys 595 600 605 Pro Thr Phe Ile Asp Lys Pro Gly Ile Arg Ile Thr Glu Gly Arg His 610 615 620 Pro Val Val Glu Gln Val Leu Asn Glu Pro Phe Ile Ala Asn Pro Leu 625 630 635 640 Asn Leu Ser Pro Gln Arg Arg Met Leu Ile Ile Thr Gly Pro Asn Met 645 650 655 Gly Gly Lys Ser Thr Tyr Met Arg Gln Thr Ala Leu Ile Ala Leu Met 660 665 670 Ala Tyr Ile Gly Ser Tyr Val Pro Ala Gln Lys Val Glu Ile Gly Pro 675 680 685 Ile Asp Arg Ile Phe Thr Arg Val Gly Ala Ala Asp Asp Leu Ala Ser 690 695 700 Gly Arg Ser Thr Phe Met Val Glu Met Thr Glu Thr Ala Asn Ile Leu 705 710 715 720 His Asn Ala Thr Glu Tyr Ser Leu Val Leu Met Asp Glu Ile Gly Arg 725 730 735 Gly Thr Ser Thr Tyr Asp Gly Leu Ser Leu Ala Trp Ala Cys Ala Glu 740 745 750 Asn Leu Ala Asn Lys Ile Lys Ala Leu Thr Leu Phe Ala Thr His Tyr 755 760 765 Phe Glu Leu Thr Gln Leu Pro Glu Lys Met Glu Gly Val Ala Asn Val 770 775 780 His Leu Asp Ala Leu Glu His Gly Asp Thr Ile Ala Phe Met His Ser 785 790 795 800 Val Gln Asp Gly Ala Ala Ser Lys Ser Tyr Gly Leu Ala Val Ala Ala 805 810 815 Leu Ala Gly Val Pro Lys Glu Val Ile Lys Arg Ala Arg Gln Lys Leu 820 825 830 Arg Glu Leu Glu Ser Ile Ser Pro Asn Ala Ala Ala Thr Gln Val Asp 835 840 845 Gly Thr Gln Met Ser Leu Leu Ser Val Pro Glu Glu Thr Ser Pro Ala 850 855 860 Val Glu Ala Leu Glu Asn Leu Asp Pro Asp Ser Leu Thr Pro Arg Gln 865 870 875 880 Ala Leu Glu Trp Ile Tyr Arg Leu Lys Ser Leu Val 885 890 SEQ ID NO: 1 Sequence length: 892 Sequence type: Amino acid sequence Met Asp Ala Gln Thr Arg Arg Arg Glu Arg Arg Ala Glu Lys Gln Ala 1 5 10 15 Gln Trp Lys Ala Ala Asn Pro Leu Leu Val Gly Val Ser Ala Lys Pro 20 25 30 Val Asn Ser Lys Val Gly Ser Met Ser Ala Ile Glu Asn Phe Asp Ala 35 40 45 His Thr Pro Met Met Gln Gln Tyr Leu Arg Leu Lys Ala Gln His Pro 50 55 60 Glu Ile Leu Leu Phe Tyr Arg Met Gly Asp Phe Tyr Glu Leu Phe Tyr 65 70 75 80 Asp Asp Ala Lys Arg Ala Ser Gln Leu Leu Asp Ile Ser Leu Thr Lys 85 90 95 Arg Gly Ala Ser Ala Gly Glu Pro Ile Pro Met Ala Gly Ile Pro Tyr 100 105 110 His Ala Val Glu Asn Tyr Leu Ala Lys Leu Val Asn Gln Gly Glu Ser 115 120 125 Val Ala Ile Cys Glu Gln Ile Gly Asp Pro Ala Thr Ser Lys Gly Pro 130 135 140 Val Glu Arg Lys Val Val Arg Ile Val Thr Pro Gly Thr Ile Ser Asp 145 150 155 160 Glu Ala Leu Leu Gln Glu Arg Gln Asp Asn Leu Leu Ala Ala Ile Trp 165 170 175 Gln Asp Ser Lys Gly Phe Gly Tyr Ala Thr Leu Asp Ile Ser Ser Gly 180 185 190 Arg Phe Arg Leu Ser Glu Pro Ala Asp Arg Glu Thr Met Ala Ala Glu 195 200 205 Leu Gln Arg Thr Asn Pro Ala Glu Leu Leu Tyr Ala Glu Asp Phe Ala 210 215 220 Glu Met Ser Leu Ile Glu Gly Arg Arg Gly Leu Arg Arg Arg Pro Leu 225 230 235 240 Trp Glu Phe Glu Ile Asp Thr Ala Arg Gln Gln Leu Asn Leu Gln Phe 245 250 255 Gly Thr Arg Asp Leu Val Gly Phe Gly Val Glu Asn Ala Pro Arg Gly 260 265 270 Leu Cys Ala Ala Gly Cys Leu Leu Gln Tyr Ala Lys Asp Thr Gln Arg 275 280 285 Thr Thr Leu Pro His Ile Arg Ser Ile Thr Met Glu Arg Glu Gln Asp 290 295 300 Ser Ile Ile Met Asp Ala Ala Thr Arg Arg Asn Leu Glu Ile Thr Gln 305 310 315 320 Asn Leu Ala Gly Gly Ala Glu Asn Thr Leu Ala Ser Val Leu Asp Cys 325 330 335 Thr Val Thr Pro Met Gly Ser Arg Met Leu Lys Arg Trp Leu His Met 340 345 350 Pro Val Arg Asp Thr Arg Val Leu Leu Glu Arg Gln Gln Thr Ile Gly 355 360 365 Ala Leu Gln Asp Phe Thr Ala Gly Leu Gln Pro Val Leu Arg Gln Val 370 375 380 Gly Asp Leu Glu Arg Ile Leu Ala Arg Leu Ala Leu Arg Thr Ala Arg 385 390 395 400 Pro Arg Asp Leu Ala ArgMet Arg His Ala Phe Gln Gln Leu Pro Glu 405 410 415 Leu Arg Ala Gln Leu Glu Thr Val Asp Ser Ala Pro Val Gln Ala Leu 420 425 430 Arg Glu Lys Met Gly Glu Phe Ala Glu Leu Arg Asp Leu Leu Glu Arg 435 440 445 Ala Ile Ile Asp Thr Pro Pro Val Leu Val Arg Asp Gly Gly Val Ile 450 455 460 Ala Ser Gly Tyr Asn Glu Glu Leu Asp Glu Trp Arg Ala Leu Ala Asp 465 470 475 480 Gly Ala Thr Asp Tyr Leu Glu Arg Leu Glu Val Arg Glu Arg Glu Arg 485 490 495 Thr Gly Leu Asp Thr Leu Lys Val Gly Phe Asn Ala Val His Gly Tyr 500 505 510 Tyr Ile Gln Ile Ser Arg Gly Gln Ser His Leu Ala Pro Ile Asn Tyr 515 520 525 Met Arg Arg Gln Thr Leu Lys Asn Ala Glu Arg Tyr Ile Ile Pro Glu 530 535 540 Leu Lys Glu Tyr Glu Asp Lys Val Leu Thr Ser Lys Gly Lys Ala Leu 545 550 555 560 Ala Leu Glu Lys Gln Leu Tyr Glu Glu Leu Phe Asp Leu Leu Leu Pro 565 570 575 His Leu Glu Ala Leu Gln Gln Ser Ala Ser Ala Leu Ala Glu Leu Asp 580 585 590 Val Leu Val Asn Leu Ala Glu Arg Ala Tyr Thr Leu Asn Tyr Thr Cys 595 600 605 Pro Thr Phe Ile Asp Lys Pro Gly Ile Arg Ile Thr Glu Gly Arg His 610 615 620 Pro Val Val Glu Gln Val Leu Asn Glu Pro Phe Ile Ala Asn Pro Leu 625 630 635 640 Asn Leu Ser Pro Gln Arg Arg Met Leu Ile Ile Thr Gly Pro Asn Met 645 650 655 Gly Gly Lys Ser Thr Tyr Met Arg Gln Thr Ala Leu Ile Ala Leu Met 660 665 670 Ala Tyr Ile Gly Ser Tyr Val Pro Ala Gln Lys Val Glu Ile Gly Pro 675 680 685 Ile Asp Arg Ile Phe Thr Arg Val Gly Ala Ala Asp Asp Leu Ala Ser 690 695 700 Gly Arg Ser Thr Phe Met Val Glu Met Thr Glu Thr Ala Asn Ile Leu 705 710 715 720 His Asn Ala Thr Glu Tyr Ser Leu Val Leu Met Asp Glu Ile Gly Arg 725 730 735 Gly Thr Ser Thr Tyr Asp Gly Leu Ser Leu Ala Trp Ala Cys Ala Glu 740 745 750 Asn Leu Ala Asn Lys Ile Lys Ala Leu Thr Leu Phe Ala Thr His Tyr 755 760 765 Phe Glu Leu Thr Gln Leu Pro Glu Lys Met Glu Gly Val Ala Asn Val 770 775 780 His Leu Asp Ala Leu Glu His Gly Asp Thr Ile Ala Phe Met His Ser 785 790 795 800 Val Gln Asp Gly Ala Ala Ser Lys Ser Tyr Gly Leu Ala Val Ala Ala 805 810 815 Leu Ala Gly Val Pro Lys Glu Val Ile Lys Arg Ala Arg Gln Lys Leu 820 825 830 Arg Glu Leu Glu Ser Ile Ser Pro Asn Ala Ala Ala Thr Gln Val Asp 835 840 845 Gly Thr Gln Met Ser Leu Leu Ser Val Pro Glu Glu Thr Ser Pro Ala 850 855 860 Val Glu Ala Leu Glu Asn Leu Asp Pro Asp Ser Leu Thr Pro Arg Gln 865 870 875 880 Ala Leu Glu Trp Ile Tyr Arg Leu Lys Ser Leu Val 885 890

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の融合MutSタンパク質をコードする
ベクターを構築する方法を示す図である。
FIG. 1 shows a method of constructing a vector encoding the fusion MutS protein of the present invention.

【図2】MutSタンパク質をコードするベクターを構
築する方法を示す図である。
FIG. 2 shows a method for constructing a vector encoding MutS protein.

【図3】部分精製したMutSタンパク質のSDS−P
AGEの結果を示す模式図である。
FIG. 3: SDS-P of partially purified MutS protein
It is a schematic diagram which shows the result of AGE.

【図4】部分精製したMutSタンパク質がMutSタ
ンパク質活性を有するか否かを調べたネイティブPAG
Eの結果を示す模式図である。
FIG. 4 Native PAG examined to see whether partially purified MutS protein has MutS protein activity
It is a schematic diagram which shows the result of E.

【図5】部分精製したMutSタンパク質と各種二本鎖
オリゴヌクレオチドとの反応物を種々の濃度のDNase I
で処理したものをネイティブPAGEにかけた結果を示
す模式図である。
FIG. 5 shows the reaction products of partially purified MutS protein with various double-stranded oligonucleotides at various concentrations of DNase I.
It is a schematic diagram which shows the result of what subjected to what was processed by 1. to native PAGE.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:19) (C12P 21/02 C12R 1:19) Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C12R 1:19) (C12P 21/02 C12R 1:19)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 MutSタンパク質のN末端にラムダフ
ァージのNタンパク質のN末端側断片が結合された融合
MutSタンパク質。
1. A fused MutS protein in which an N-terminal fragment of N protein of lambda phage is bound to the N-terminus of MutS protein.
【請求項2】 前記ラムダファージのNタンパク質のN
末端側断片は、該Nタンパク質のN末端から1番目〜3
3番目のアミノ酸から成る断片である請求項1記載の融
合MutSタンパク質。
2. The N of the N protein of lambda phage
The terminal fragment is the first to the third from the N-terminus of the N protein.
The fused MutS protein according to claim 1, which is a fragment consisting of the third amino acid.
【請求項3】 MutSタンパク質のN末端と前記ラム
ダファージのNタンパク質のN末端側断片との間にオリ
ゴペプチドをさらに含む請求項1又は2記載の融合Mu
tSタンパク質。
3. The fusion Mu according to claim 1, further comprising an oligopeptide between the N-terminus of MutS protein and the N-terminal fragment of N-protein of lambda phage.
tS protein.
【請求項4】 配列表の配列番号1に示すアミノ酸配列
を有する融合MutSタンパク質。
4. A fused MutS protein having the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing.
【請求項5】 誘導時以外は検出可能な程度にその下流
の構造遺伝子を発現させないプロモーターと、該プロモ
ーターの下流に請求項1ないし4のいずれかに記載の融
合MutSタンパク質をコードするDNA配列を少なく
とも含むベクターを宿主細胞中で発現させ、該融合Mu
tSタンパク質を回収することを含む、融合MutSタ
ンパク質の製造方法。
5. A promoter which does not express a structural gene downstream thereof to a detectable level except at the time of induction, and a DNA sequence encoding the fusion MutS protein according to any one of claims 1 to 4 downstream of the promoter. Expressing at least a vector containing in the host cell,
A method for producing a fusion MutS protein, comprising recovering tS protein.
【請求項6】 前記プロモーターはPL プロモーター又
はT7 プロモーターである請求項5記載の方法。
6. The method according to claim 5, wherein the promoter is a P L promoter or a T 7 promoter.
JP7230781A 1995-08-16 1995-08-16 Fused muts protein and its production Pending JPH0959299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230781A JPH0959299A (en) 1995-08-16 1995-08-16 Fused muts protein and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230781A JPH0959299A (en) 1995-08-16 1995-08-16 Fused muts protein and its production

Publications (1)

Publication Number Publication Date
JPH0959299A true JPH0959299A (en) 1997-03-04

Family

ID=16913171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230781A Pending JPH0959299A (en) 1995-08-16 1995-08-16 Fused muts protein and its production

Country Status (1)

Country Link
JP (1) JPH0959299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029876B2 (en) 2001-03-09 2006-04-18 Genentech, Inc. Process for production of polypeptides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029876B2 (en) 2001-03-09 2006-04-18 Genentech, Inc. Process for production of polypeptides

Similar Documents

Publication Publication Date Title
Davidson et al. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli
Snyder et al. Bent DNA at a yeast autonomously replicating sequence
Vanzo et al. Ribonuclease E organizes the protein interactions in the Escherichia coli RNA degradosome
Kaster et al. Analysis of a bacterial hygromycin B resistance gene by transcriptional and translational fusions and by DNA sequencing
Moriyama et al. Destrin, a mammalian actin-depolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA.
US4952501A (en) Method for analyzing and synthesizing functional polypeptide sequences for assembly into enhanced or multi-functional proteins
Honoré et al. Regulation of enterobacterial cephalosporinase production: the role of a membrane‐bound sensory transducer
Groarke et al. The amino acid sequence of D-ribose-binding protein from Escherichia coli K12.
WO1996004373A2 (en) Recombinant production of biologically active peptides and proteins
Hall et al. DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes.
Sugiyama et al. Site-directed mutagenesis of the A-factor receptor protein:: Val-41 important for DNA-binding and Trp-119 important for ligand-binding
US5795731A (en) Inteins as antimicrobial targets: genetic screens for intein function
Horazdovsky et al. High-affinity L-arabinose transport operon: Gene product expression and mRNAs
De Cock et al. The interdomain linker of Escherichia coli initiation factor IF3: a possible trigger of translation initiation specificity
NZ240720A (en) Somatotropin analogues carrying mutations in the alpha-helix-3 and/or alpha-helix-2 portions and methods for their production
KR20190060024A (en) Novel peptide for enhancing expression efficiency and fusion protein including the same
JP2579619B2 (en) Recombinant ricin toxin fragment
JPH0848697A (en) Method for controlling gene expression
van Ulsen et al. Function of the C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase in basal expression and integration host factor-mediated activation of the early promoter of bacteriophage Mu
Bullard et al. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes
Karaivanova et al. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties
Anderson et al. Construction and expression of a synthetic wheat storage protein gene
EP0204302A2 (en) Laminin and the production thereof
JPH0959299A (en) Fused muts protein and its production
US5212083A (en) Sequence for stabilizing proteins in bacteria