JPH095809A - Higher harmonic generator - Google Patents

Higher harmonic generator

Info

Publication number
JPH095809A
JPH095809A JP14906095A JP14906095A JPH095809A JP H095809 A JPH095809 A JP H095809A JP 14906095 A JP14906095 A JP 14906095A JP 14906095 A JP14906095 A JP 14906095A JP H095809 A JPH095809 A JP H095809A
Authority
JP
Japan
Prior art keywords
resonance
resonator
incident
basic wave
fundamental wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14906095A
Other languages
Japanese (ja)
Inventor
Hiromasa Sato
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP14906095A priority Critical patent/JPH095809A/en
Publication of JPH095809A publication Critical patent/JPH095809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To stably generate higher harmonic waves with high efficiency by inclining a basic wave to a resonance axis and making the basic wave incident on a resonator in such a manner that the basic wave enters the inside of the permissible width of the resonance of the resonator. CONSTITUTION: The second higher harmonic generator 101 is constituted by successively arranging an LD102 as a basic wave light source, a coupling optical system 103 consisting of a collimator lens, mode matching lens, etc., and the standing wave linear resonator 104. The optical axis 110 of the incident basic wave has an angle of, for example, 0.3 deg. to the resonance axis 111. A part of the basic wave 105 is not made incident on the resonator 104 and is reflected by an incident surface 109, by which the basic wave is made into directly reflected light 112. The optical axis 110 of the incident basic wave and the optical axis of the directly reflected light 112 have an angle of, for example, 0.2 deg. and, therefore, the light is not recondensed to the light emitting layer of the semiconductor laser (LD)102. The oscillation wavelength of the LD102 is, therefore, stable and since the oscillation spectral line width does not increase, the coupling efficiency of >=40% is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザからの基
本波を非線形光学材料により高調波に変換する高調波発
生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic generator for converting a fundamental wave from a semiconductor laser into a harmonic by a non-linear optical material.

【0002】[0002]

【従来の技術】図2には従来の高調波発生装置の一例と
して、定在波直線共振器を用いた第2高調波発生装置2
01が示されている。この第2高調波発生装置は、半導
体レーザ(以下LDとする)202、コリメータレンズ
及びモードマッチングレンズ等からなる結合光学系20
3、共振ミラー204と片面(出射面205)を共振ミ
ラーとしたKNbO3 単結晶等の非線形光学結晶206
とからなる定在波直線共振器207により構成されてい
る。
2. Description of the Related Art FIG. 2 shows, as an example of a conventional harmonic generator, a second harmonic generator 2 using a standing wave linear resonator.
01 is shown. This second harmonic generator is a coupling optical system 20 including a semiconductor laser (hereinafter referred to as LD) 202, a collimator lens, a mode matching lens, and the like.
3. Non-linear optical crystal 206 such as KNbO 3 single crystal using the resonance mirror 204 and one surface (exit surface 205) as the resonance mirror
And a standing wave linear resonator 207.

【0003】LD202は例えば波長860nmの基本
波208を出射する。共振器の入射面209には基本波
に対し一部透過で高調波に対し高反射の膜が蒸着され共
振ミラー面を形成し、出射面205には基本波に対し高
反射で高調波に対し高透過の膜が蒸着され共振ミラー面
を形成している。
The LD 202 emits a fundamental wave 208 having a wavelength of 860 nm, for example. On the entrance surface 209 of the resonator, a film partially transmitting the fundamental wave and highly reflecting the harmonic wave is vapor-deposited to form a resonance mirror surface, and on the exit surface 205, a high reflection of the fundamental wave and the harmonic wave is formed. A highly transparent film is deposited to form the resonant mirror surface.

【0004】上記の構成において、LD202から出射
する波長860nmの基本波208は結合光学系203
により集光され、共振モードに整合され、定在波直線共
振器207に入射する。この際、基本波208の一部は
定在波直線共振器207に入射されず入射面209で反
射された直接反射光210となり、LD202の発光層
に再集光される。
In the above structure, the fundamental wave 208 having a wavelength of 860 nm emitted from the LD 202 is coupled to the coupling optical system 203.
The light is focused by, is matched with the resonance mode, and is incident on the standing wave linear resonator 207. At this time, part of the fundamental wave 208 is not directly incident on the standing wave linear resonator 207 but becomes the directly reflected light 210 reflected by the incident surface 209, and is re-focused on the light emitting layer of the LD 202.

【0005】入射基本波光軸211は共振軸212と一
致するように配置されており、入射した基本波208は
2つの共振ミラー面をなす入射面209と出射面205
との間を進行し共振して増幅される。増幅された基本波
のうち入射面209を通過した共振器からの戻り光21
3はLD202に戻る。そして基本波208は非線形光
学結晶206を通過するときその一部が波長430nm
の第2高調波214に変換され、出射面205より出射
される。
The incident fundamental wave optical axis 211 is arranged so as to coincide with the resonance axis 212, and the incident fundamental wave 208 has two incident mirror surfaces, an incident surface 209 and an outgoing surface 205.
And travels between them and resonates to be amplified. Return light 21 from the resonator that has passed through the incident surface 209 of the amplified fundamental wave 21
3 returns to the LD 202. When the fundamental wave 208 passes through the nonlinear optical crystal 206, a part of it has a wavelength of 430 nm.
Is converted into the second harmonic wave 214 and is emitted from the emission surface 205.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記の高
調波発生装置においては、共振器207の入射面209
での反射光210がLD202に戻ることにより、LD
発振周波数の不安定化及び発振スペクトル線幅の増大が
起こり、共振器207への結合効率が低下する。その結
果十分な共振出力が得られず、約10μWの不安定で微
弱な第2高調波しか得られないという問題点を有してい
た。
However, in the above-described harmonic generator, the incident surface 209 of the resonator 207 is used.
When the reflected light 210 at the LD returns to the LD 202,
The oscillation frequency becomes unstable and the oscillation spectrum line width increases, and the coupling efficiency to the resonator 207 decreases. As a result, there is a problem that a sufficient resonance output cannot be obtained and only the unstable and weak second harmonic of about 10 μW can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、基本波光源である半
導体レーザと、基本波を共振させる複数の共振ミラーに
よって構成される共振器と、前記共振器内の基本波の光
軸上に配置された非線形光学材料とを備えてなる高調波
発生装置において、基本波を共振軸に対して傾けて、共
振器の共振許容幅内に入るように入射してなる高調波発
生装置を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is a resonance constituted by a semiconductor laser as a fundamental wave light source and a plurality of resonance mirrors for resonating the fundamental wave. And a non-linear optical material arranged on the optical axis of the fundamental wave in the resonator, wherein the fundamental wave is tilted with respect to the resonance axis and is within the resonance allowable width of the resonator. (EN) Provided is a harmonic wave generator which is incident so as to enter.

【0008】本発明において、共振軸とは、共振許容幅
内で最大の共振出力が得られる光軸であり、複数の共振
ミラーにより共振器を構成した場合に一義的に決まる光
軸であり、多くの場合共振器のほぼ中心を通る軸に等し
い。
In the present invention, the resonance axis is an optical axis that gives the maximum resonance output within the allowable resonance width, and is an optical axis that is uniquely determined when a resonator is composed of a plurality of resonance mirrors. Often equal to the axis through the center of the resonator.

【0009】また、共振許容幅内とは、入射光軸に対し
共振軸を平行にずらすか傾けていった際に、入射光軸と
共振軸が一致したときに得られる最大出力の半分以上の
出力が得られる範囲をいう。
The term "resonance allowable width" means that the resonance optical axis is parallel to the incident optical axis or is tilted in parallel with the incident optical axis. The range in which output is obtained.

【0010】本発明において、前記共振器が定在波直線
共振器であり、基本波の共振が入射側の共振ミラーと非
線形光学材料の1面に設けられた出射側の共振ミラーと
の間で行わることが、装置の構成が単純化され、製作、
光軸等の調整が容易になるので好ましい。また、非線形
光学材料の1面を出射側の共振ミラーとすることによ
り、単純な構成で高効率の高調波発生が可能になる。
In the present invention, the resonator is a standing wave linear resonator, and the resonance of the fundamental wave is between the resonance mirror on the incident side and the resonance mirror on the emitting side provided on one surface of the nonlinear optical material. What is done is that the configuration of the device is simplified,
It is preferable because adjustment of the optical axis and the like becomes easy. Further, by using one surface of the nonlinear optical material as the resonance mirror on the emitting side, it is possible to generate highly efficient harmonics with a simple configuration.

【0011】共振器が前記定在波直線共振器である場
合、基本波入射光軸と共振軸との角度は、入射側の共振
ミラーの入射面(球面)の曲率半径が5mmに対して、
0.15゜〜0.4゜が好ましい。0.15゜より小さ
いとLD発振周波数の不安定化及び発振スペクトル線幅
増大が回避できないため好ましくなく、0.4゜より大
きいと共振出力が最大共振出力の50%よりも小さくな
り好ましくない。同様に曲率半径が3mmの場合は、
0.15゜〜0.3゜とするのが好ましい。
When the resonator is the standing wave linear resonator, the angle between the fundamental wave incident optical axis and the resonance axis is such that the radius of curvature of the incident surface (spherical surface) of the resonance mirror on the incident side is 5 mm.
0.15 ° to 0.4 ° is preferable. If it is smaller than 0.15 °, instability of the LD oscillation frequency and increase of the oscillation spectrum line width cannot be avoided, which is not preferable, and if it is larger than 0.4 °, the resonance output becomes less than 50% of the maximum resonance output, which is not preferable. Similarly, when the radius of curvature is 3 mm,
The angle is preferably 0.15 ° to 0.3 °.

【0012】ここで、基本波の入射光軸と共振軸との角
度は、基本波の入射光軸と直接反射光の角度が0.2゜
以上になるように傾ける必要がある。この角度をθとす
るとθは、共振ミラーの曲率半径R、共振器を傾けた場
合の共振ミラーの入射面(図1の入射面109)から共
振軸上に存在する共振器の回転中心までの距離L(L<
R)、共振軸の回転角(傾き角)φで、近似的にθ=2
(1−L/R)φと表される。θを0.2゜よりも大き
くする必要から、φ>1/{10(1−L/R)}とな
る。一方共振許容幅内で出力がちょうど50%になると
きの傾き角をφ t とすると、1/{10(1−L/
R)}<φ<φt となる。
Here, the angle between the incident optical axis of the fundamental wave and the resonance axis
The angle between the incident optical axis of the fundamental wave and the direct reflected light is 0.2 °
It is necessary to incline so that it is above. Let this angle be θ
Then, θ is the radius of curvature R of the resonance mirror,
From the incident surface (incident surface 109 of FIG. 1) of the resonant mirror
Distance L to the center of rotation of the resonator existing on the oscillation axis (L <L <
R) and the rotation angle (tilt angle) φ of the resonance axis, approximately θ = 2
It is expressed as (1-L / R) φ. θ is greater than 0.2 °
Φ> 1 / {10 (1-L / R)} because it needs to be
You. On the other hand, when the output is just 50% within the resonance allowable width,
Angle of inclination φ t Then, 1 / {10 (1-L /
R)} <φ <φt Becomes

【0013】O<L<Rであるから、0.1゜<1/
{10(1−L/R)}となり、0.1゜<φ<φt
なる。ただし、1/{10(1−L/R)}≧φt とな
るとφが共振許容幅を超えることになり、Lはそのよう
な値をとることはできない。
Since O <L <R, 0.1 ° <1 /
{10 (1-L / R)}, and 0.1 ° <φ <φ t . However, when 1 / {10 (1-L / R)} ≧ φ t , φ exceeds the resonance permissible width, and L cannot take such a value.

【0014】前記非線形光学材料としては、KNbO
3 、β−BaB24 、KTiOPO4 、KH2 PO
4 、LiNbO3 等の非線形光学結晶、その他有機非線
形光学材料等が使用できるが、高い第2高調波への変換
効率、結晶の取扱いやすさ等からしてKNbO3 単結晶
が好ましい。
As the non-linear optical material, KNbO is used.
3 , β-BaB 2 O 4 , KTiOPO 4 , KH 2 PO
4 , non-linear optical crystals such as LiNbO 3 and other organic non-linear optical materials can be used, but KNbO 3 single crystal is preferable in terms of high conversion efficiency to the second harmonic and easy handling of the crystal.

【0015】また本発明は、第2高調波のみならず、第
3高調波等のより高次の高調波の発生装置にも応用でき
る。
Further, the present invention can be applied not only to the second harmonic but also to a generator of higher harmonics such as the third harmonic.

【0016】[0016]

【作用】本発明においては、LDからの基本波を共振軸
に対して傾けて、共振器の共振許容幅内に入るように入
射することにより、共振器に結合しなかった直接反射光
がLD発光層に再集光されることによるLDの発振周波
数の不安定化及び発振スペクトル線幅の増大を回避し、
高い結合効率で共振器に基本波を入射でき、高効率の波
長変換が可能になると考えられる。
In the present invention, the fundamental wave from the LD is tilted with respect to the resonance axis and is incident so as to fall within the resonance allowable width of the resonator, so that the directly reflected light not coupled to the resonator is LD. Avoiding the destabilization of the oscillation frequency of the LD and the increase of the oscillation spectrum line width due to re-focusing on the light emitting layer,
It is considered that the fundamental wave can be incident on the resonator with high coupling efficiency, which enables highly efficient wavelength conversion.

【0017】[0017]

【実施例】以下実施例に基づいて説明する。図1には本
発明を適用した第2高調波発生装置101の一実施例が
示されている。この第2高調波発生装置101は、基本
波光源としてのLD102、コリメータレンズ及びモー
ドマッチングレンズ等からなる結合光学系103、定在
波直線共振器104が順次配列されて構成されている。
LD102は本実施例では波長860nm、単一縦横モ
ードの非点収差が少ないものが用いられ基本波105を
出射する。基本波105は結合光学系103により集光
され共振モードに整合され、定在波直線共振器104に
入射する。
EXAMPLES Examples will be described below. FIG. 1 shows an embodiment of a second harmonic generation device 101 to which the present invention is applied. The second harmonic generation device 101 is configured by sequentially arranging an LD 102 as a fundamental wave light source, a coupling optical system 103 including a collimator lens and a mode matching lens, and a standing wave linear resonator 104.
In this embodiment, the LD 102 has a wavelength of 860 nm and a single longitudinal-transverse mode with little astigmatism is used, and emits the fundamental wave 105. The fundamental wave 105 is collected by the coupling optical system 103, matched with the resonance mode, and incident on the standing wave linear resonator 104.

【0018】定在波直線共振器104は、本実施例では
曲率半径5mmの球面状の共振ミラー面を有する共振ミ
ラー106と、片面(出射面107)を共振ミラー面と
したKNbO3 単結晶の非線形光学結晶108により構
成されている。定在波直線共振器104の入射面109
には基本波に対し95%以上反射で高調波に対し90%
以上反射の膜が蒸着され共振ミラーを形成し、出射面1
07には基本波に対し99%以上反射で高調波に対し9
0%以上透過の膜が蒸着され共振ミラーを形成してい
る。
The standing wave linear resonator 104 in this embodiment is composed of a resonance mirror 106 having a spherical resonance mirror surface with a radius of curvature of 5 mm and a KNbO 3 single crystal having one surface (emission surface 107) as a resonance mirror surface. The nonlinear optical crystal 108 is used. Incident surface 109 of standing wave linear resonator 104
95% or more of the fundamental wave and 90% of the harmonic wave
The reflection film is vapor-deposited to form a resonance mirror, and the exit surface 1
In 07, 99% or more of the fundamental wave is reflected and 9 of the harmonic wave is reflected.
A film having a transmission of 0% or more is deposited to form a resonance mirror.

【0019】この構成において、入射基本波光軸110
は共振軸111と0.3°の角度をなしており、基本波
105の一部は定在波直線共振器104に入射せず入射
面109で反射され直接反射光112となる。入射基本
波光軸110と直接反射光112の光軸とは0.2°の
角度をなすことから、LD102の発光層には再集光さ
れない。このためLD102の発振波長は安定であり、
また発振スペクトル線幅も増大しないため40%以上の
結合効率が得られた。
In this structure, the incident fundamental wave optical axis 110
Forms an angle of 0.3 ° with the resonance axis 111, and a part of the fundamental wave 105 does not enter the standing wave linear resonator 104 but is reflected by the incident surface 109 to be directly reflected light 112. Since the incident fundamental wave optical axis 110 and the optical axis of the direct reflected light 112 form an angle of 0.2 °, they are not re-focused on the light emitting layer of the LD 102. Therefore, the oscillation wavelength of the LD 102 is stable,
Moreover, since the oscillation spectrum line width does not increase, a coupling efficiency of 40% or more was obtained.

【0020】この結果、十分な基本波共振出力が得ら
れ、波長430nm、出力1mWの第2高調波113が
得られた。また増幅された基本波のうち共振ミラー10
6を通過した共振器からの戻り光114は、LD102
に戻りLD102の発振周波数はこの戻り光114によ
り安定化され、室温±10℃でも第2高調波(青色レー
ザ)出力が維持された。
As a result, a sufficient fundamental wave resonance output was obtained, and the second harmonic wave 113 having a wavelength of 430 nm and an output of 1 mW was obtained. Of the amplified fundamental wave, the resonance mirror 10
The return light 114 from the resonator that has passed through 6 is the LD 102.
The oscillation frequency of the LD 102 was stabilized by the return light 114, and the second harmonic (blue laser) output was maintained even at room temperature ± 10 ° C.

【0021】本発明に用いる共振器としては、複数の共
振ミラーと非線形光学材料が別個の共振器に限定される
ものではなく、非線形光学材料自体に共振ミラーが形成
されたモノリシック型(一体成形型)の共振器も適用可
能である。
The resonator used in the present invention is not limited to a resonator in which a plurality of resonant mirrors and a nonlinear optical material are separate, but a monolithic type (integrally molded type) in which a resonant mirror is formed in the nonlinear optical material itself. ) Resonator is also applicable.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
基本波を共振軸に対して傾けて、共振器の共振許容幅内
に入るように入射することにより、LDの発振周波数の
不安定化及び発振スペクトル線幅の増大に起因する共振
器への結合効率の低下が回避可能となり、安定で高効率
な高調波発生が可能となる。また、光アイソレータ等の
直接反射光を制御するための素子を必要としないため、
小型で単純な構成が可能になるという効果もあわせて有
する。
As described above, according to the present invention,
The fundamental wave is tilted with respect to the resonance axis and is incident so as to fall within the resonance allowable width of the resonator, thereby coupling to the resonator due to destabilization of the oscillation frequency of the LD and increase of the oscillation spectrum line width. The decrease in efficiency can be avoided, and stable and highly efficient harmonic generation can be achieved. Moreover, since an element for controlling the directly reflected light such as an optical isolator is not required,
It also has the effect of enabling a compact and simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高調波発生装置の実施例を示す側面図
である。
FIG. 1 is a side view showing an embodiment of a harmonic generator of the present invention.

【図2】従来の高調波発生装置の一例を示す側面図であ
る。
FIG. 2 is a side view showing an example of a conventional harmonic generator.

【符号の説明】[Explanation of symbols]

101:第2高調波発生装置 102:半導体レーザ(LD) 103:結合光学系 104:定在波直線共振器 105:基本波 106:共振ミラー 107:出射面 108:非線形光学結晶 109:入射面 110:入射基本波光軸 111:共振軸 112:直接反射光 113:第2高調波 114:戻り光 101: Second harmonic generation device 102: Semiconductor laser (LD) 103: Coupling optical system 104: Standing wave linear resonator 105: Fundamental wave 106: Resonant mirror 107: Emission surface 108: Nonlinear optical crystal 109: Incident surface 110 : Incident fundamental wave optical axis 111: resonance axis 112: direct reflected light 113: second harmonic 114: return light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基本波光源である半導体レーザと、基本波
を共振させる複数の共振ミラーによって構成される共振
器と、前記共振器内の基本波の光軸上に配置された非線
形光学材料とを備えてなる高調波発生装置において、基
本波を共振軸に対して傾けて、共振器の共振許容幅内に
入るように入射してなることを特徴とする高調波発生装
置。
1. A semiconductor laser as a fundamental wave light source, a resonator constituted by a plurality of resonant mirrors for resonating the fundamental wave, and a nonlinear optical material arranged on the optical axis of the fundamental wave in the resonator. A harmonic generation device comprising: a fundamental wave which is inclined with respect to a resonance axis and is incident so as to fall within a resonance allowable width of a resonator.
【請求項2】前記共振器が定在波直線共振器であり、基
本波の共振が入射側の共振ミラーと非線形光学材料の1
面に設けられた出射側の共振ミラーとの間で行われてな
る請求項1記載の高調波発生装置。
2. The resonator is a standing wave linear resonator, and the resonance of the fundamental wave is one of a resonance mirror on the incident side and a nonlinear optical material.
The harmonic generation device according to claim 1, wherein the harmonic generation device is performed between the resonance mirror provided on the surface and on the exit side.
JP14906095A 1995-06-15 1995-06-15 Higher harmonic generator Pending JPH095809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14906095A JPH095809A (en) 1995-06-15 1995-06-15 Higher harmonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14906095A JPH095809A (en) 1995-06-15 1995-06-15 Higher harmonic generator

Publications (1)

Publication Number Publication Date
JPH095809A true JPH095809A (en) 1997-01-10

Family

ID=15466801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14906095A Pending JPH095809A (en) 1995-06-15 1995-06-15 Higher harmonic generator

Country Status (1)

Country Link
JP (1) JPH095809A (en)

Similar Documents

Publication Publication Date Title
US6370168B1 (en) Intracavity frequency-converted optically-pumped semiconductor laser
US5222088A (en) Solid-state blue laser device capable of producing a blue laser beam having high power
US6097540A (en) Frequency conversion combiner system for diode lasers
US5341393A (en) Laser-diode-pumped solid-state laser
JP2849233B2 (en) Optical wavelength converter with bulk resonator structure
JP2003503739A (en) Method and apparatus for frequency conversion of fixed frequency laser radiation
EP0820130B1 (en) Laser beam emitting apparatus
JPH08190111A (en) Higher harmonic generator
JPH095809A (en) Higher harmonic generator
JP3023725B2 (en) Harmonic generator
JPH07154021A (en) Variable wavelength blue color laser
JP2955609B2 (en) Wavelength conversion element
JP2761678B2 (en) Laser diode pumped solid state laser
JPH06265955A (en) Wavelength converting element
JPH08320510A (en) Higher harmonic generator
JPH09232665A (en) Output stabilizing second harmonics light source
JPH0743758A (en) Generating device for higher harmonic
JPH06265954A (en) Wavelength converting element
JPH0736073A (en) Polarized light control solid-state laser
JPH07218942A (en) Higher harmonic wave generator
JP3031740B2 (en) Harmonic generator
JP3074772B2 (en) Second harmonic generator
JP2670638B2 (en) Laser diode pumped solid state laser
JPH0414024A (en) Secondary higher harmonic generation device
JPH0575189A (en) Laser diode pumping solid laser