JPH095620A - Automatic focusing device and automatic focusing method for image pickup device - Google Patents

Automatic focusing device and automatic focusing method for image pickup device

Info

Publication number
JPH095620A
JPH095620A JP7147652A JP14765295A JPH095620A JP H095620 A JPH095620 A JP H095620A JP 7147652 A JP7147652 A JP 7147652A JP 14765295 A JP14765295 A JP 14765295A JP H095620 A JPH095620 A JP H095620A
Authority
JP
Japan
Prior art keywords
image
image pickup
filter
video signal
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7147652A
Other languages
Japanese (ja)
Inventor
Kunihiko Yamada
邦彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7147652A priority Critical patent/JPH095620A/en
Priority to US08/661,944 priority patent/US6654061B2/en
Publication of JPH095620A publication Critical patent/JPH095620A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE: To provide an automatic focusing device and an automatic focusing method for an image pickup device capable of obtaining rapid and smooth automatic focusing operation and realizing miniaturization and the reduction of cost. CONSTITUTION: An image projected by an optical system consisting of a photographing lens 1, a polarizing filter 10, and a double refraction plate 11 is converted into a video signal by an image pickup element 2, and a high frequency component is fetched from the video signal by a 1st filter means consisting of a filter 12 and a BPF 14 and a 2nd filter means consisting of a filter 13 and a BPF 15, changed to an absolute value by detection circuits 16 and 17, and compared by a microcomputer 7 so as to decide a focusing state. A motor 9 is driven in accordance with the result of the decision, so that the lens 1 is driven in a focusing direction. The 1st and the 2nd filter means have characteristic that the largeness of the quantity of the high frequency component being their output is inverted in the vicinity of a focusing point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撮像素子より得られる
映像信号を用いて撮影レンズの繰り出し量を調節し、合
焦状態を得る撮像装置の自動焦点調節装置および撮像装
置の自動焦点調節方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focus adjustment device for an image pickup apparatus and an automatic focus adjustment method for an image pickup apparatus, in which a moving amount of a taking lens is adjusted by using a video signal obtained from an image pickup device. It is about.

【0002】[0002]

【従来の技術】従来、この種の装置としては、映像信号
に含まれる高周波成分をバンドパスフィルタ等で抽出す
るか、被写体のエッジ部分の鋭さを微分回路等で抽出す
るかして被写体映像の焦点状態を判断し、この抽出した
量が最大となるようにレンズの位置を移動させることに
より映像信号の合焦状態を得る方式が知られている。こ
の方式はNHK技術研究 昭40第17巻1号「山登り
サーボ方式によるテレビカメラの自動焦点調節」石田他
著に詳述されている。以下、これについて簡単に説明す
る。
2. Description of the Related Art Conventionally, as a device of this type, a high-frequency component contained in a video signal is extracted by a bandpass filter or the like, or the sharpness of the edge portion of the object is extracted by a differentiating circuit or the like to obtain a video image of the subject. A method is known in which the focus state is determined and the position of the lens is moved so that the extracted amount is maximized to obtain the in-focus state of the video signal. This method is described in detail in NHK Technical Research, Vol. 40, No. 17, "Automatic Focusing of Television Camera by Mountain Climbing Servo Method" by Ishida et al. Hereinafter, this will be briefly described.

【0003】図15において、1はレンズ、2は撮像素
子、3はプリアンプ、4はプロセス回路、5はバンドパ
スフィルタ(以下、BPFと略す。)、6は検波回路、
7はマイクロコンピュータ(以下、マイコンと称
す。)、8はモータ駆動回路、9はモータである。
In FIG. 15, 1 is a lens, 2 is an image pickup element, 3 is a preamplifier, 4 is a process circuit, 5 is a bandpass filter (hereinafter abbreviated as BPF), 6 is a detection circuit,
Reference numeral 7 is a microcomputer (hereinafter referred to as a microcomputer), 8 is a motor drive circuit, and 9 is a motor.

【0004】レンズ1により被写体像が撮像素子2の撮
像面に投影され、撮像素子2より電気信号に変換された
映像信号が得られる。この映像信号はプリアンプ3によ
り適当なレベルに増幅され、プロセス回路4によりNT
SC等の規格化された映像信号に変換される。プリアン
プ3の出力はまたBPF5には加えられ、映像信号に含
まれる高周波成分が抽出され、検波回路6により、この
高周波成分の絶対量に相当する出力を得る。
An image of a subject is projected on the image pickup surface of the image pickup device 2 by the lens 1, and a video signal converted into an electric signal is obtained by the image pickup device 2. This video signal is amplified to an appropriate level by the preamplifier 3 and the process circuit 4 outputs the NT signal.
It is converted into a standardized video signal such as SC. The output of the preamplifier 3 is also applied to the BPF 5, the high frequency component included in the video signal is extracted, and the detection circuit 6 obtains an output corresponding to the absolute amount of this high frequency component.

【0005】撮像素子2の撮像面に投影されたレンズ1
の投影像の解像度は、その焦点状態により変化する。即
ち、レンズ1の投影像の焦点が撮像素子2の撮像面上に
あるときは解像度が最大となり、焦点が撮像面から隔て
る距離(以下、これをデフォーカス量と称す。)が長い
程、解像度は低下する。
The lens 1 projected on the image pickup surface of the image pickup device 2.
The resolution of the projected image varies depending on the focus state. That is, the resolution becomes maximum when the focus of the projected image of the lens 1 is on the image pickup surface of the image pickup element 2, and the longer the distance the focus is from the image pickup surface (hereinafter, referred to as defocus amount), the resolution. Will fall.

【0006】図16はレンズ1の合焦,小ボケ,大ボケ
の各焦点状態におけるMTF曲線の変化を表すものであ
る。図16に示すように、レンズ1の焦点状態が合焦状
態に近づくほど高い空間周波数間で解像し、大ボケ状態
に近づくほど解像できる空間周波数は低くなる。この関
係は、そのまま映像信号の出力振幅と周波数の関係に相
当する。即ち、レンズ1の焦点状態が合焦状態に近づく
ほど映像信号に含まれる高周波成分の振幅が大きくな
り、大ボケ状態に近づくほど高周波成分の振幅が小さく
なる。
FIG. 16 shows changes in the MTF curve when the lens 1 is in focus, small blur, and large blur. As shown in FIG. 16, the closer the focus state of the lens 1 is to the focused state, the higher the spatial frequency is resolved. The closer to the large blur state, the lower the spatial frequency that can be resolved. This relationship directly corresponds to the relationship between the output amplitude of the video signal and the frequency. That is, the closer the focus state of the lens 1 is to the focused state, the larger the amplitude of the high frequency component included in the video signal, and the closer to the large blur state, the smaller the amplitude of the high frequency component.

【0007】従って、検波回路6の出力は図17に示す
ようにレンズ1の繰り出し量により変化し、ある位置で
最大値をもつ。これはレンズ1の繰り出し量が変化する
と撮像素子2の表面に投影される像の焦点状態が変化
し、これが合焦状態、いわゆるピントが合った状態では
撮影像の鮮鋭度が最大となり、撮像素子2で映像信号に
変換された場合はそれに含まれる高周波成分が最大とな
るためである。
Therefore, the output of the detection circuit 6 changes depending on the amount of extension of the lens 1 as shown in FIG. 17, and has a maximum value at a certain position. This is because when the amount of extension of the lens 1 changes, the focus state of the image projected on the surface of the image pickup element 2 changes, and the sharpness of the picked-up image becomes maximum in the in-focus state, that is, when the image is in focus. This is because when converted into a video signal in 2, the high frequency component contained in the video signal becomes maximum.

【0008】マイコン7は、この検波回路6の出力をと
りこみ、この出力が大きくなるようなモータ8の駆動方
向及び駆動速度を計算し、モータ駆動回路8を介してモ
ータ9の回転方向及び回転速度を制御する。そして検波
回路6の出力が最大となる位置でモータ8を停止させ
る。
The microcomputer 7 takes in the output of the detection circuit 6 and calculates the driving direction and the driving speed of the motor 8 such that the output becomes large, and the rotation direction and the rotating speed of the motor 9 are calculated via the motor driving circuit 8. To control. Then, the motor 8 is stopped at the position where the output of the detection circuit 6 becomes maximum.

【0009】以上のようにしてビデオカメラのレンズの
繰り返し量を制御して自動的に合焦状態を得る。
As described above, the focus amount is automatically obtained by controlling the repetition amount of the lens of the video camera.

【0010】ところで、この方式においては、例えば初
め、図17のA点で示す位置にレンズが繰り出されてい
たとすると、合焦位置のB点までレンズを繰り出すため
には、とりあえずレンズを無限遠方向、あるいは至近方
向のどちらかにレンズを動かして、駆動方向を決定しな
ければならない。即ち、図17のA点において無限遠方
向へレンズを駆動した場合はそのままB点まで駆動すれ
ばよいが、至近方向へ駆動した場合は検波回路6の出力
が低下するのを確認した上で方向を逆転させなければな
らない。
By the way, in this system, for example, if the lens is first extended to the position indicated by point A in FIG. 17, in order to extend the lens to the point B at the in-focus position, the lens is first moved to the infinity direction. The driving direction must be determined by moving the lens in either the, or the closest direction. That is, when the lens is driven in the infinity direction at the point A in FIG. 17, the lens can be driven as it is to the point B. However, when the lens is driven in the close direction, it is confirmed that the output of the detection circuit 6 decreases and then the direction is changed. Must be reversed.

【0011】更に、レンズの駆動方向がB点に向かって
いるとしても、B点に到達した時点ですぐにはB点が最
大値であるとは判断できないので、いったんB点を通り
過ぎ、C点において検波回路6の出力が低下するのを確
認し、またB点へ戻るといった動作をしなければならな
い。
Further, even if the driving direction of the lens is toward the point B, it cannot be determined that the point B is the maximum value immediately after reaching the point B. Therefore, once the point B is passed, the detection is performed at the point C. It is necessary to confirm that the output of the circuit 6 has decreased and then to return to the point B.

【0012】以上のような動作は、レンズを駆動させて
検波回路6の出力の変化を見なければ、合焦なのかある
いは無限遠方向に非合焦(以下、後ピン状態と呼ぶ。)
なのか至近方向へ非合焦(以下、前ピン状態を呼ぶ。)
なのか分からないために必然的に行なわなければならな
いものであり、自動的に合焦状態を能率よくスムーズに
得るためには好ましくない動作である。
In the above operation, if the lens is driven and the change in the output of the detection circuit 6 is not observed, it may be in focus or out of focus in the infinity direction (hereinafter referred to as the rear focus state).
However, it is out of focus in the close-up direction (hereinafter referred to as the front focus state).
This is an operation that is necessarily performed because it is not known, and it is an unfavorable operation for automatically and smoothly obtaining a focused state.

【0013】前記方式に対して、レンズ系の一部、ある
いは撮像素子を合焦動作を行なわせる駆動系とは別の駆
動系で光軸方向に特定の周期で微小振動(以下、ウォブ
リング動作と称す。)させることにより、撮像面の被写
体像の焦点状態を判別し、自動的に合焦状態を得る方式
が提案されており、例えば特開昭58−188965号
(北村他)等により詳述されている。この方式は、レン
ズ系をモータで駆動せずに、合焦であるかあるいは前ピ
ン状態なのか後ピン状態なのか判別できるため、前述の
方式にくらべ能率よくスムーズに合焦動作させることが
できるが、レンズ系あるいは撮像素子を光軸方向に振動
させるための機構が複雑で高価なものになる。
In contrast to the above-mentioned method, a part of the lens system or a drive system different from the drive system for performing the focusing operation of the image pickup device is used to perform minute vibrations in a specific cycle in the optical axis direction (hereinafter referred to as wobbling operation). A method for determining the focus state of a subject image on the image pickup surface and automatically obtaining the in-focus state is proposed, for example, as described in JP-A-58-188965 (Kitamura et al.). Has been done. In this method, it is possible to determine whether the lens is in focus, is in the front focus state, or is in the rear focus state without driving the lens system with a motor, so that the focusing operation can be performed efficiently and smoothly as compared with the above-described method. However, the mechanism for vibrating the lens system or the image pickup device in the optical axis direction becomes complicated and expensive.

【0014】これに対して、現在では合焦動作を行なわ
せる駆動系にステッピングモータ等の比較的位置制御を
行ないやすい駆動系を用い、前述のウォブリング動作も
このの駆動系により同時に行なわせる方式が主流になり
つつある。
On the other hand, at present, there is a method in which a drive system such as a stepping motor which is relatively easy to perform position control is used as a drive system for performing a focusing operation, and the above-mentioned wobbling operation is also simultaneously performed by this drive system. It is becoming mainstream.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、光学系の焦点状態を判別するためのウォブ
リング動作を撮影者が観察している映像画面上で分かり
にくい程度の微小な振動振幅で行われなければならい
が、映像信号は少なからずノイズを伴うため、前述のよ
うな微小振動幅で前ピン,後ピン等の判別を確実に行う
にはある程度ウォブリング動作を長い間行い、平均化さ
れた検出結果を得た上で判別しなければならない。合焦
動作はその結果が得られた後、合焦方向へレンズを駆動
する、といった過程を経るため、全体として合焦するま
でに長い時間を要し、好ましくないものとなる。特に、
合焦近傍においては、僅かに振動振幅をウォブリング動
作であっても、敏感に撮影画像に影響してしまい、良好
な画像が得られない場合もある。
However, in the above-mentioned conventional example, the wobbling operation for discriminating the focus state of the optical system is performed with a small vibration amplitude that is difficult to understand on the image screen observed by the photographer. Although it must be performed, the video signal is accompanied by noise in no small amount, so wobbling is performed for a long time and averaged in order to reliably identify the front pin, the rear pin, etc. with the minute vibration width as described above. It is necessary to judge after obtaining the detection result. Since the focusing operation involves a process of driving the lens in the focusing direction after the result is obtained, it takes a long time to focus as a whole, which is not preferable. Especially,
In the vicinity of the focus, even if the wobbling operation is performed with a slight vibration amplitude, the picked-up image is sensitively affected, and a good image may not be obtained in some cases.

【0016】また更に、光学系が合焦状態となった後
も、被写体の位置は時々刻々変わりつつあるので、常
時、あるいは定期的にウォブリング動作を継続させ、合
焦状態か否か判別し続けなければならない。このような
動作は、常に駆動系に電力を供給し続けなければなら
ず、このため大きな消費電力を要し、好ましくないもの
である。更にまた、前述のようなウォブリングを伴う動
作を行わせるための駆動系は、その動作に見合った駆動
速度,駆動トルク及び駆動精度等を要求されるため、小
型化することが難しく、また価格も高価になってしま
う。
Further, since the position of the subject is changing every moment even after the optical system is brought into the in-focus state, the wobbling operation is continuously or regularly continued to determine whether or not the in-focus state is maintained. There must be. Such an operation is unfavorable because it is necessary to constantly supply power to the drive system, which requires large power consumption. Furthermore, the drive system for performing the operation involving wobbling as described above is required to have a drive speed, a drive torque, a drive accuracy, and the like commensurate with the operation, so that it is difficult to miniaturize and the price is also low. It becomes expensive.

【0017】本発明は、このような状況のものとでなさ
れたもので、速く、スムーズな自動合焦動作が得られ、
小型化,コストダウンのできる、撮像装置の自動焦点調
節装置および撮像装置の自動焦点調節方法を提供するこ
とを目的とするものである。
The present invention has been made under such circumstances, and a fast and smooth automatic focusing operation can be obtained.
An object of the present invention is to provide an automatic focus adjustment device for an image pickup apparatus and an automatic focus adjustment method for an image pickup apparatus, which can be downsized and reduced in cost.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するた
め、本発明では撮像装置の自動焦点調節装置を次の
(1)のとおりに、また撮像装置の自動焦点調節方法を
次の(2)の通りに構成する。
In order to achieve the above object, according to the present invention, an automatic focus adjusting device for an image pickup apparatus is as follows (1) and an automatic focus adjusting method for an image pickup apparatus is as follows (2). Configure as follows.

【0019】(1)撮影レンズと、この撮影レンズの後
に配置された偏光フィルタと、この偏光フィルタの後に
配置された複屈折現像を有する結晶質の透過板と、この
透光板の後に配置された撮像素子と、この撮像素子によ
る映像信号からその高周波成分を取り出す第1のフィル
タ手段と、前記撮像素子による映像信号からその高周波
成分を取り出す第2のフィルタ手段と、前記第1のフィ
ルタ手段の出力と前記第2のフィルタ手段の出力を比較
し前記撮影レンズを含む光学系の焦点状態を判別する判
別手段と、この判別手段の出力にもとづいて前記撮影レ
ンズを合焦方向へ駆動する駆動手段とを備え、前記第1
のフィルタ手段と前記第2のフィルタ手段は、夫々の出
力の高周波成分の大小関係が合焦点近傍で反転するもの
である撮像装置の自動焦点調節装置。
(1) A photographing lens, a polarizing filter arranged after this photographing lens, a crystalline transmission plate having birefringence development arranged after this polarizing filter, and a light transmission plate arranged behind this transmission plate. Of the image sensor, a first filter means for extracting the high frequency component from the video signal by the image sensor, a second filter means for extracting the high frequency component from the video signal by the image sensor, and a first filter means. Discriminating means for discriminating the focus state of the optical system including the taking lens by comparing the output with the output of the second filter means, and driving means for driving the taking lens in the focusing direction based on the output of the discriminating means. And the first
The above-mentioned filter means and the above-mentioned second filter means are automatic focus adjusting devices for an image pickup apparatus, in which the magnitude relation of the high frequency components of the respective outputs is inverted in the vicinity of the focal point.

【0020】(2)撮像素子の撮像面に投影された、複
屈折現象の常光線による投影像と異常光線による投影像
によって得られた映像信号により、撮影レンズを含む光
学系の焦点状態を判別し、この判別の結果にもとづいて
前記撮影レンズを合焦方向へ駆動する撮像装置の自動焦
点調節方法。
(2) The focus state of the optical system including the taking lens is discriminated by the video signal obtained by the projection image by the ordinary ray of the birefringence phenomenon and the projection image by the extraordinary ray projected on the image pickup surface of the image pickup device. Then, an automatic focus adjusting method for an image pickup apparatus, which drives the taking lens in a focusing direction based on a result of this determination.

【0021】[0021]

【作用】前記(1),(2)の構成により、撮像素子の
撮像面に投影された、複屈折現象の常光線による投影像
と異常光線による投影像によって得られた映像信号によ
り、撮影レンズの光学系の焦点状態が判別され、この判
別の結果に基づいて撮影レンズが合焦方向へ駆動され
る。
With the constructions of (1) and (2), the photographing lens is formed by the image signals obtained by the projection image by the ordinary ray and the projection image by the extraordinary ray of the birefringence phenomenon which are projected on the image pickup surface of the image pickup device. The focus state of the optical system is discriminated, and the photographing lens is driven in the focusing direction based on the discrimination result.

【0022】[0022]

【実施例】以下本発明を実施例により詳しく説明する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0023】(実施例1)図1は実施例1である“撮像
装置”の構成を示すブロック図である。
(Embodiment 1) FIG. 1 is a block diagram showing the arrangement of an "imaging device" according to the first embodiment.

【0024】図1において、1,2,3,4,7,8,
9の各要素は、図15に示す従来例と同じである。10
は偏光フィルタ、11は複屈折現象を有する結晶質の透
過板(以下、複屈折板と称す。)、12は撮像素子2に
投影された像の映像信号から異常光線によって投影され
た像の映像信号を相殺して常光線によって投影された像
の映像信号のみを取り出すフィルタ、13は撮像素子2
に投影された像の映像信号の高域成分をより多く含みな
がら、常光線によって投影された像の映像信号から異常
光線によって投影された像の映像信号を相殺して常光線
によって投影された像の映像信号を取り出すフィルタ、
14及び15はそれぞれの入力信号から高周波成分を抽
出するBPF(バンドパスフィルタ)、16及び17は
それぞれ検波回路である。なお、通常、撮像素子2の直
前に光学ローパスフィルタとして挿入されている複屈折
板は、本実施例においては構成に含まれないものとす
る。なお、フィルタ12,BPF14は請求項1の第1
のフィルタ手段に対応し、フィルタ13,BPF15は
請求項1の第2のフィルタ手段に対応する。
In FIG. 1, 1, 2, 3, 4, 7, 8,
Each element 9 is the same as that of the conventional example shown in FIG. 10
Is a polarization filter, 11 is a crystalline transmission plate having a birefringence phenomenon (hereinafter referred to as a birefringence plate), and 12 is an image of an image projected by an extraordinary ray from an image signal of the image projected on the image sensor 2. A filter for canceling the signals and extracting only the video signal of the image projected by the ordinary ray, 13 is the image sensor 2
The image projected by the ordinary ray by canceling the image signal of the image projected by the extraordinary ray from the image signal of the image projected by the ordinary ray while including more high frequency components of the image signal of the image projected on A filter that extracts the video signal of
Reference numerals 14 and 15 are BPFs (band pass filters) for extracting high frequency components from the respective input signals, and 16 and 17 are detection circuits. Note that the birefringent plate that is normally inserted immediately before the image sensor 2 as an optical low-pass filter is not included in the configuration in this embodiment. The filter 12 and the BPF 14 are the first in claim 1.
The filter 13 and the BPF 15 correspond to the second filter means of claim 1.

【0025】図1のレンズ1,偏光フィルタ10で投影
された被写体像は、複屈折板11を介して撮像素子2の
撮像面に2つの重なり合った像を結ぶ。この過程を図2
〜図11を用いて説明する。
The subject image projected by the lens 1 and the polarization filter 10 of FIG. 1 forms two overlapping images on the image pickup surface of the image pickup device 2 via the birefringent plate 11. This process is shown in Figure 2.
This will be described with reference to FIG.

【0026】図2において、10は偏光フィルタ、11
は複屈折板、2は撮像素子、Aは入射光線、A1 は複屈
折現象におけるAの常光線、A2 は複屈折現象における
Aの異常光線である。偏光フィルタ10を通過した入射
光線Aが複屈折板11に入ると、その入射光線Aはそれ
ぞれ異なった方向に偏光した常光線A1 と異常光線A2
に分かれる。
In FIG. 2, reference numeral 10 denotes a polarization filter, and 11
Is a birefringent plate, 2 is an image sensor, A is an incident ray, A 1 is an ordinary ray of A in the birefringence phenomenon, and A 2 is an extraordinary ray of A in the birefringence phenomenon. When the incident light ray A that has passed through the polarization filter 10 enters the birefringent plate 11, the incident light ray A is polarized in different directions, the ordinary ray A 1 and the extraordinary ray A 2
Divided into

【0027】偏光していない一般の入射光の複屈折の場
合はその常光線の光量と異常光線の光量は均等に分か
れ、それぞれの光量は等しくなるが、本実施例の場合は
偏光フィルタ10により入射光Aは偏光されているの
で、常光線A1 の光量と異常光線A2 の光量は偏光フィ
ルタ10の偏光方向及び消光比により差が生じる。ここ
で、常光線A1 の光量をF1 、異常光線A2 の光量をF
2 、偏光フィルタ10の消光比をkとし、偏光フィルタ
10の偏光方向は常光線A1 の偏光方向と等しいものと
すると
In the case of birefringence of general incident light that is not polarized, the light amount of the ordinary ray and the light amount of the extraordinary ray are equally divided, and the respective light amounts become equal, but in the case of this embodiment, the polarization filter 10 is used. Since the incident light A is polarized, the light quantity of the ordinary ray A 1 and the light quantity of the extraordinary ray A 2 differ depending on the polarization direction and extinction ratio of the polarization filter 10. Here, the light quantity of the ordinary ray A 1 is F 1 , and the light quantity of the extraordinary ray A 2 is F
2 , assuming that the extinction ratio of the polarization filter 10 is k and the polarization direction of the polarization filter 10 is equal to the polarization direction of the ordinary ray A 1.

【0028】[0028]

【数1】 [Equation 1]

【0029】である。また、このとき常光線A1 と異常
光線A2 のおりなす角度をθ、複屈折板11の厚さをt
h とすると、撮像素子2の撮像面に到達したときの常光
線A1と異常光線A2 間の距離wは w=th ・tanθ ……………… (2) また、常光線A1 と異常光線A2 の光路長の差ΔLは
Is as follows. At this time, the angle formed by the ordinary ray A 1 and the extraordinary ray A 2 is θ, and the thickness of the birefringent plate 11 is t.
When is h, the distance w between the ordinary ray A 1 and extraordinary ray A 2 when it reaches the imaging plane of the imaging element 2 is w = t h · tanθ .................. ( 2) Further, the ordinary ray A 1 And the optical path length difference ΔL between extraordinary ray A 2 is

【0030】[0030]

【数2】 [Equation 2]

【0031】で表わされる。It is represented by

【0032】以上のような過程を、図1に示す光学系に
おいて考えた場合、次のようになる。図3は、図1に示
す光学系の部分を詳しく表わしたものである。図3にお
いて、1はレンズ、10は偏光フィルタ、11は複屈折
板、2は撮像素子であり、A1 は常光線による被写体像
の光束を示し、A2 は異常光線による被写体像の光束を
示す。図3に示すように、レンズ1によって投影された
被写体像は偏光フィルタ10を通り、複屈折板11によ
って2つに分かれ、常光線A1 による投影像は図3の点
1 に結像し、異常光線A2 による投影像は点P2 に結
像する。このとき、前述のように、異常光線A2 の光路
長は常光線A1 の光路長よりΔLだけ長いため、結像点
2 の位置はP1 よりもΔLだけレンズ1寄りになる。
即ち、常光線A1 による投影像が、撮像素子2の撮像面
で合焦状態であったとすると、異常光線A2 による投影
像はそれよりΔLだけ前ピン状態になる。
Considering the above process in the optical system shown in FIG. 1, the process is as follows. FIG. 3 shows in detail the part of the optical system shown in FIG. In FIG. 3, 1 is a lens, 10 is a polarizing filter, 11 is a birefringent plate, 2 is an image sensor, A 1 is a light flux of an object image by an ordinary ray, and A 2 is a light flux of an object image by an extraordinary ray. Show. As shown in FIG. 3, the subject image projected by the lens 1 passes through the polarizing filter 10, split into two by the birefringent plate 11, the projected image by the ordinary ray A 1 is imaged on a point P 1 in FIG. 3 , the projected image by the extraordinary ray a 2 is imaged at point P 2. At this time, as described above, since the optical path length of the extraordinary ray A 2 is longer than the optical path length of the ordinary ray A 1 by ΔL, the position of the image forming point P 2 is closer to the lens 1 by ΔL than P 1 .
That is, if the projection image of the ordinary ray A 1 is in focus on the image pickup surface of the image pickup element 2, the projection image of the extraordinary ray A 2 is in the front focus state by ΔL.

【0033】図4〜図8は、いろいろな焦点状態におけ
る常光線A1 の投影像と異常光線A2 の投影像の結像状
態をそれぞれ示すものである。図4〜図8において、
2,10及び11に示す各要素は図3に示すそれと同じ
である。
FIGS. 4 to 8 show the image formation states of the projection image of the ordinary ray A 1 and the projection image of the extraordinary ray A 2 in various focus states. 4 to 8,
Each element shown in 2, 10, and 11 is the same as that shown in FIG.

【0034】図4は図3と同じ焦点状態の場合を更に詳
しく示すものである。ここで、撮像素子2の走査線の走
査方向が矢印Mの方向とし、常光線A1 による投影像の
光量をF1 、異常光線A2 による投影像の光量をF2
してF1 >F2 であるとした場合、撮像素子2の撮像面
に投影される像は、図9に示すように、2つの像が左右
にwだけずれて重なり合った像となり、更に左側の像は
合焦、右側の像はΔLだけ前ピンで、なおかつ、左側の
像は右側の像よりF1 /F2 だけ明るい像となる。
FIG. 4 shows the case of the same focus state as in FIG. 3 in more detail. Here, the scanning direction of the scanning line of the image sensor 2 is the direction of arrow M, the light quantity of the projected image by the ordinary ray A 1 is F 1 , and the light quantity of the projected image by the extraordinary ray A 2 is F 2 , and F 1 > F 2 , The image projected on the image pickup surface of the image pickup element 2 is an image in which the two images are overlapped with each other by shifting by w to the left and right as shown in FIG. The image on the left side is ΔL front-focused, and the image on the left side is brighter by F 1 / F 2 than the image on the right side.

【0035】このような投影像を、矢印Mに示す方向の
走査線で走査した場合の映像信号出力、即ち図1に示す
プリアンプ3の出力関数f0 (t)で表わすものとす
る。このf0 (t)は、 f0 (t)=h0 (t)+k・g{h0 (t−Δt)} ……… (4) で表わされる。ここでh0 (t)は常光線A1 による投
影像が合焦状態のときの、その常光線A1 による投影像
のみの映像信号波形を表わすものであり、kは常光線A
1 による投影像の光量F1 と異常光線A2 に対する投影
像の光量F2 との比、即ち、k=F2 /F1 (<1)で
あり、t{}はΔLだけ前ピン状態の場合のMTF曲線
の変化に伴う映像信号の高周波成分の減衰を表わす関数
であり、またΔtは撮像素子2の撮像面の区間wを走査
する時間である。従って、k・g{h0 (t−Δt)}
は、異常光線A2 による投影像のみの映像信号波形を表
わす。
It is assumed that such a projected image is represented by a video signal output when the scanning line in the direction indicated by the arrow M is scanned, that is, an output function f 0 (t) of the preamplifier 3 shown in FIG. This f 0 (t) is expressed by f 0 (t) = h 0 (t) + k · g {h 0 (t−Δt)} (4) Here, h 0 (t) represents a video signal waveform of only the projection image of the ordinary ray A 1 when the projection image of the ordinary ray A 1 is in focus, and k is the ordinary ray A
The ratio of the amount F 2 of the projected image relative to the amount of light F 1 and the extraordinary ray A 2 of the projected image by 1, that is, k = F 2 / F 1 ( <1), t {} is ΔL only previous focus state In this case, it is a function representing the attenuation of the high frequency component of the video signal due to the change of the MTF curve, and Δt is the time for scanning the section w of the image pickup surface of the image pickup device 2. Therefore, k · g {h 0 (t−Δt)}
Represents the video signal waveform of only the projection image by the extraordinary ray A 2 .

【0036】図16に示すMTF曲線の変化は光学的な
低域通過フィルタ(以下、LPFと略す。)とみなすこ
とができる。従って前述のg{}に相当する電気的なL
PFを考え、これをLPF1とすると、図12に示す巡
回形フィルタにより、常光線A1 により投影された像の
映像信号h0 (t)より形成した信号で、異常光線A2
により投影された像の映像信号k・g{h0 (t−Δ
t)}を相殺して、元の映像信号出力f0 (t)から常
光線A1 により投影撮影像のみの映像信号h0 (t)を
抽出することが可能である。
The change in the MTF curve shown in FIG. 16 can be regarded as an optical low pass filter (hereinafter abbreviated as LPF). Therefore, the electrical L corresponding to the above-mentioned g {}
Consider the PF, which upon the LPF1, the recursive filter shown in FIG. 12, in the formed signal from the video signal h 0 of the image projected by the ordinary ray A 1 (t), the extraordinary ray A 2
Image signal k · g {h 0 (t−Δ
t)} can be canceled to extract the video signal h 0 (t) of only the projected image by the ordinary ray A 1 from the original video signal output f 0 (t).

【0037】図12において、111は減算器、112
は乗算器、113は前述のLPF1、114は入力信号
をΔtだけ遅らせる遅延回路である。減算器111の出
力が常光線により投影された像の映像信号h0 (t)で
あると仮定すると、遅延回路114の出力はそれよりΔ
tだけ遅れたものとなり、h0 (t−Δt)となる。こ
れは、LPF1により高周波成分を低減され、g{h0
(t−Δt)}となる。更に、乗算器113でk(k<
1)倍されて、異常光線A2 による投影像のみの映像信
号k・g{h0 (t−Δt)}となる。これを元の信号
0 (t)から減算器111により減ずることにより、
常光線A1 による投影像のみの映像信号h0 (t)が得
られる。
In FIG. 12, 111 is a subtractor, and 112
Is a multiplier, 113 is the above-mentioned LPF 1, and 114 is a delay circuit that delays the input signal by Δt. Assuming that the output of the subtractor 111 is the image signal h 0 (t) of the image projected by the ordinary ray, the output of the delay circuit 114 is Δ
It is delayed by t and becomes h 0 (t−Δt). This is because the high frequency component is reduced by LPF1, and g {h 0
(T−Δt)}. Further, in the multiplier 113, k (k <
1) It is multiplied to become a video signal k · g {h 0 (t−Δt)} of only the projection image by the extraordinary ray A 2 . By subtracting this from the original signal f 0 (t) by the subtractor 111,
A video signal h 0 (t) of only the projection image by the ordinary ray A 1 is obtained.

【0038】図1に示すフィルタ12は、このような巡
回形フィルタで構成されていて、プリアンプ3から出力
される、常光線A1 による投影像に異常光線A2 による
投影像が重畳した映像信号から、常光線A1 による投影
像のみの映像信号を抽出してプロセス回路(請求項1の
信号処理手段に対応)4へ出力する。プロセス回路4で
はこの信号からNTSC等の規格化された映像信号に変
換し、出力する。
The filter 12 shown in FIG. 1, such be composed of a recursive filter, is output from the preamplifier 3, a video signal projected image is superimposed by the extraordinary ray A 2 to the projection image by the ordinary ray A 1 From this, a video signal of only the projection image of the ordinary ray A 1 is extracted and output to the process circuit (corresponding to the signal processing means of claim 1) 4. The process circuit 4 converts this signal into a standardized video signal such as NTSC and outputs it.

【0039】図5は、レンズ1によって投影された被写
体像が複屈折板11によって2つに分かれ、常光線A1
による投影像が撮像素子2の撮像面から光軸上にΔL/
2だけレンズ1と反対方向に離れた点P1 に結像し、異
常光線A2 による投影像は撮像素子2の撮像面から光軸
上にΔL/2だけレンズ1よりに離れた点P2 に結像し
た場合を表わすものである。このような場合は、撮像素
子の撮像面に投影される像は、図10に示すように、2
つの像が左右にwだけずれて重なり合い、左側の像はΔ
L/2だけ後ピン、右側の像はΔL/2だけ前ピンで、
なおかつ、左側の像は右側の像よりF1 /F2 だけ明る
い像となる。像としては、同じデフォカス量ならば前ピ
ン,後ピンの差は殆ど無く、2つの像は同じボケ量で明
るさだけが異なる。このような投影像を、矢印Mに示す
方向の走査線で走査した場合の映像信号出力を、同様に
関数f1 (t)で表わすものとする。このf1 (t)
は、 f1 (t)=h1 (t)+k・h1 (t−Δt) ………… (5) で表わされる。ここでh1 (t)は常光線A1 による投
影像がΔL/2だけ後ピンのときの、その常光線A1
よる投影像のみの映像信号波形を表わすものである。異
常光線A2 による投影像のみの映像信号波形はΔL/2
だけ前ピンであり、後ピンの場合と同様、k・h1 (t
−Δt)で表わされる。
In FIG. 5, the object image projected by the lens 1 is divided into two by the birefringent plate 11, and the ordinary ray A 1
From the imaging surface of the image sensor 2 on the optical axis by ΔL /
An image is formed at a point P 1 apart from the lens 1 in the opposite direction by 2 and a projection image of the extraordinary ray A 2 is separated from the image pickup surface of the image pickup element 2 by ΔL / 2 on the optical axis at a point P 2 apart from the lens 1. This shows the case where an image is formed on the. In such a case, the image projected on the image pickup surface of the image pickup device is 2 as shown in FIG.
The two images overlap left and right by w, and the left image is Δ
L / 2 rear pin, right image is ΔL / 2 front pin,
Furthermore, the image on the left is brighter by F 1 / F 2 than the image on the right. As for the images, if the amount of defocus is the same, there is almost no difference between the front focus and the rear focus, and the two images have the same blur amount but different brightness. The video signal output when such a projected image is scanned by the scanning line in the direction shown by the arrow M is similarly represented by the function f 1 (t). This f 1 (t)
Is represented by f 1 (t) = h 1 (t) + k · h 1 (t−Δt) (5). Here, h 1 (t) represents a video signal waveform of only the projection image of the ordinary ray A 1 when the projection image of the ordinary ray A 1 is back-focused by ΔL / 2. The video signal waveform of only the projected image by the extraordinary ray A 2 is ΔL / 2
Is the front pin only, and k · h 1 (t
-Δt).

【0040】前記信号f1 (t)に関し、図13に示す
巡回形フィルタにより、常光線A1により投影された像
の映像信号h1 (t)より形成された信号で、異常光線
2により投影された像の映像信号k・h1 (t−Δ
t)を相殺して、元の映像信号出力f1 (t)から常光
線A1 による投影像のみの映像信号h1 (t)を抽出す
ることが可能である。
[0040] For the signal f 1 (t), the recursive filter shown in FIG. 13, the signal formed from the video signal h 1 of the image projected by the ordinary ray A 1 (t), the extraordinary ray A 2 Video signal of projected image k · h 1 (t−Δ
It is possible to cancel out t) and extract the video signal h 1 (t) of only the projection image by the ordinary ray A 1 from the original video signal output f 1 (t).

【0041】図13において、121は減算器、122
は乗算器、124は入力信号をΔtだけ遅らせる遅延回
路である。減算器121の出力が常光線により投影され
た像の映像信号h1 (t)であると仮定すると、遅延回
路124の出力はこれよりΔtだけ遅れたものとなり、
1 (t−Δt)となる。更に、乗算器123でk(k
<1)倍されて、異常光線A2 による投影像のみの映像
信号k・h1 (t−Δt)となる。これを元の信号f1
(t)から減算器121により減ずることにより、常光
線A1 による投影像のみの映像信号h1 (t)が得られ
る。
In FIG. 13, 121 is a subtractor and 122
Is a multiplier, and 124 is a delay circuit that delays the input signal by Δt. Assuming that the output of the subtractor 121 is the image signal h 1 (t) of the image projected by the ordinary ray, the output of the delay circuit 124 is delayed by Δt from this,
h 1 (t−Δt). Further, in the multiplier 123, k (k
<1) It is multiplied to become the video signal k · h 1 (t−Δt) of only the projection image by the extraordinary ray A 2 . This is the original signal f 1
By subtracting from (t) by the subtractor 121, the video signal h 1 (t) of only the projected image of the ordinary ray A 1 is obtained.

【0042】図1に示すフィルタ13は、このような巡
回形フィルタで構成されていて、プリアンプ3から出力
される常光線A1 による投影像に、異常光線A2 による
投影像が重畳した映像信号から、常光線A1 による投影
像のみの映像信号を抽出する。
The filter 13 shown in FIG. 1 is composed of such a recursive filter, and is a video signal in which the projection image of the extraordinary ray A 2 is superimposed on the projection image of the ordinary ray A 1 output from the preamplifier 3. From, the video signal of only the projection image by the ordinary ray A 1 is extracted.

【0043】一方、前述の図4のような焦点状態のと
き、このフィルタ13の出力h0'(t)は h0'(t)=f0(t)−k・h0'(t−Δt) =h0(t)+k・g{h0(t−Δt)}−k・h0'(t−Δt) =h0(t)+k・[g{h0(t−Δt)}−h0'(t−Δt)] …………(6) となる。ここでk<<1とするとh0'(t−Δt)≒h
0(t−Δt)であり、(6)式の[]内はΔLだけでデ
フォーカスした像の映像信号から合焦状態の像の映像信
号を差し引いたものになるから、合焦状態の像の映像信
号に含まれる高周波成分だけ残ったものとなる。従っ
て、図4のような焦点状態のときは、図1のフィルタ1
3の出力はフィルタ12の出力より高周波成分を多く含
む。
On the other hand, in the focus state as shown in FIG. 4, the output h 0 ′ (t) of the filter 13 is h 0 ′ (t) = f 0 (t) −k · h 0 ′ (t− Δt) = h 0 (t) + k · g {h 0 (t−Δt)} − k · h 0 ′ (t−Δt) = h 0 (t) + k · [g {h 0 (t−Δt)} -H 0 '(t-Δt)] ............ (6). Here, if k << 1, then h 0 '(t−Δt) ≈h
It is 0 (t-Δt), and the value in [] of the equation (6) is the image signal of the image defocused by only ΔL minus the image signal of the in-focus image. Only the high frequency components included in the video signal of are left. Therefore, when the focus state is as shown in FIG. 4, the filter 1 of FIG.
The output of 3 contains more high frequency components than the output of the filter 12.

【0044】BPF14,BPF15は、それぞれフィ
ルタ12,フィルタ13の出力からその高周波成分を抽
出し、検波回路16,検波回路17によりそれぞれBP
F14,BPF15の出力からその高周波成分の絶対量
に相当する出力D1 ,D2 を得る。図4のような焦点状
態のときはこれらの出力は、D1 <D2 となる。
The BPF 14 and BPF 15 respectively extract the high frequency components from the outputs of the filter 12 and the filter 13, and the detecting circuit 16 and the detecting circuit 17 respectively detect the BP.
F14, obtained from the output of BPF15 to output D 1, D 2 corresponding to the absolute amount of the high-frequency component. In the focus state as shown in FIG. 4, these outputs are D 1 <D 2 .

【0045】この関係は、図4のように常光線A1 によ
る投影像が、撮像素子2の撮像面で合焦状態でなくて
も、図6に示すように常光線A1 による投影像がより前
ピン状態であっても同様であり、フィルタ13の出力は
フィルタ12の出力より高周波成分を多く含み、D1
2 となる。
As for this relationship, the projected image by the ordinary ray A 1 as shown in FIG. 4 is obtained by the ordinary ray A 1 as shown in FIG. 6 even if the projected image by the ordinary ray A 1 is not in focus on the image pickup surface of the image pickup device 2. The same is true in the front pin state, where the output of the filter 13 contains more high frequency components than the output of the filter 12, and D 1 <
It becomes D 2 .

【0046】図4に示す焦点状態に対して、図5に示す
焦点状態の場合、フィルタ13の出力は、前述のh1
(t)で表わされるが、フィルタ12の出力h0'(t)
は、 h0'(t)=f1(t)−k・g{h1'(t−Δt)} =h1(t)+k・h1(t−Δt)−k・g{h1'(t−Δt)} =h1(t)+k・[h1(t−Δt)−g{h1'(t−Δt)}] …………(7) となる。ここで、k<<1とするとh1'(t−Δt)≒
1(t−Δt)であり、(7)式の[]内はΔL/2だ
けデフォーカスした像の映像信号から更にΔLデフォー
カスした像に相当する映像信号を差し引いたものになる
から、ΔL/2だけデフォーカスした像の映像信号に含
まれる高周波成分だけ残ったものとなる。従って、図5
のような焦点状態のときは、図1のフィルタ12の出力
はフィルタ13の出力より高周波成分を多く含む。従っ
て図5のような焦点状態のとき、検波回路16,検波回
路17の出力は、D1 >D2 となる。
In contrast to the focus state shown in FIG. 4, in the case of the focus state shown in FIG. 5, the output of the filter 13 is the above-mentioned h 1
The output of the filter 12 is represented by (t) h 0 '(t)
Is h 0 ′ (t) = f 1 (t) −k · g {h 1 ′ (t−Δt)} = h 1 (t) + k · h 1 (t−Δt) −k · g {h 1 “(T−Δt)} = h 1 (t) + k · [h 1 (t−Δt) −g {h 1 ′ (t−Δt)}] ... (7) Here, if k << 1, then h 1 '(t−Δt) ≈
h 1 (t−Δt), and the value in [] of the equation (7) is obtained by subtracting the video signal corresponding to the image defocused by ΔL from the video signal of the image defocused by ΔL / 2. Only the high frequency component included in the video signal of the image defocused by ΔL / 2 remains. Therefore, FIG.
In such a focus state, the output of the filter 12 in FIG. 1 contains more high frequency components than the output of the filter 13. Therefore, in the focus state as shown in FIG. 5, the outputs of the detection circuit 16 and the detection circuit 17 are D 1 > D 2 .

【0047】図7はレンズ1によって投影された被写体
像が複屈折板11によって2つの分かれ、異常光線A2
による投影像が撮像素子2の撮像面に結像し、常光線A
1 による投影像が撮像素子2の撮像面から光軸上にΔL
だけレンズ1と反対方向に離れた点P1 に結像した場合
を表わすものである。このような場合、撮像素子2の撮
像面に投影される像は、図11に示すように、2つの像
が左右にwだけずれて重なり合い、右側の像は合焦、左
側の像はΔLだけ後ピンで、なおかつ、左側の像は右側
の像よりF1 /F2 だけ明るい像となる。このような投
影像を、矢印Mに示す方向の走査線で走査した場合の映
像信号出力を、同様に関数f2 (t)で表わすものとす
る。
In FIG. 7, the object image projected by the lens 1 is divided into two by the birefringent plate 11, and the extraordinary ray A 2
A projected image formed by is formed on the image pickup surface of the image pickup element 2, and the ordinary ray A
The projected image by 1 is ΔL on the optical axis from the image pickup surface of the image pickup element 2.
This shows a case where an image is formed at a point P 1 which is separated from the lens 1 in the opposite direction. In such a case, as shown in FIG. 11, the images projected on the imaging surface of the image sensor 2 overlap with each other with the two images left and right displaced by w, the right image is in focus, and the left image is ΔL. At the rear focus, the image on the left side is brighter by F 1 / F 2 than the image on the right side. The video signal output when such a projected image is scanned by the scanning line in the direction indicated by the arrow M is similarly represented by the function f 2 (t).

【0048】このf2 (t)は、 f2 (t)=g{h0 (t)}+k・h0 (t−Δt) ………… (8) このときフィルタ13の出力h2'(t)は、 h2'(t)=f2(t)−k・h2'(t−Δt) =g{h0(t)}+k・h0(t−Δt)−k・h2'(t−Δt) =g{h0(t)}+k・[h0(t−Δt)−h2'(t−Δt)] ………… (9) となる。ここでk<<1とするとh2'(t−Δt)≒g
{h0(t−Δt)}であり、(9)式の[]内は合焦状
態の像の映像信号からΔLだけデフォーカスした像の映
像信号を差し引いたものになるから、合焦状態の像の映
像信号に含まれる高周波成分だけが残ったものとなる。
This f 2 (t) is f 2 (t) = g {h 0 (t)} + k · h 0 (t−Δt) (8) At this time, the output h 2 'of the filter 13 (T) is h 2 ′ (t) = f 2 (t) −k · h 2 ′ (t−Δt) = g {h 0 (t)} + k · h 0 (t−Δt) −k · h 2 ′ (t−Δt) = g {h 0 (t)} + k · [h 0 (t−Δt) −h 2 ′ (t−Δt)] (9) Here, if k << 1, then h 2 '(t-Δt) ≈g
{H 0 (t−Δt)}, and the value in [] of the expression (9) is the image signal of the image in the focused state minus the image signal of the image defocused by ΔL. Only the high-frequency component contained in the video signal of the image is left.

【0049】次にフィルタ12の出力h2 は、 h2 (t)=f2(t)−k・g{h2(t−Δt) =g{h0(t)}+k・h0(t−Δt)−k・g{h2(t−Δt)} =g{h0(t)}+k・[h0(t−Δt)−g{h2(t−Δt)}] ………… (10) となる。ここでk<<1とするとh2 (t−Δt)≒g
{h0(t−Δt)}であり、(9)式の[]内は合焦の
像の映像信号から、ΔLだけデフォーカスした像の映像
信号を更にΔLだけデフォーカスさせたものに相当する
映像信号にして差し引いたものになるから、合焦状態の
像の映像信号に含まれる更に多くの高周波成分が残った
ものとなる。従って、図7のような焦点状態のときは、
図1のフィルタ12の出力はフィルタ13の出力より高
周波成分を多く含む。従って、図7のような焦点状態の
とき、検波回路16,検波回路17の出力は、D1 >D
2 となる。
Next, the output h 2 of the filter 12 is: h 2 (t) = f 2 (t) -k · g {h 2 (t−Δt) = g {h 0 (t)} + k · h 0 ( t-Δt) -k {g 2 (t-Δt)} = g {h 0 (t)} + k [h 0 (t-Δt) -g {h 2 (t-Δt)}] … (10). Here, if k << 1, h 2 (t−Δt) ≈g
{H 0 (t−Δt)}, and [] in the equation (9) corresponds to the image signal of the focused image defocused by ΔL from the image signal of the focused image further defocused by ΔL. Since it is a video signal that is subtracted from the video signal, the higher frequency component included in the video signal of the focused image remains. Therefore, in the focus state as shown in FIG.
The output of the filter 12 in FIG. 1 contains more high frequency components than the output of the filter 13. Therefore, in the focus state as shown in FIG. 7, the outputs of the detection circuit 16 and the detection circuit 17 are D 1 > D
It becomes 2 .

【0050】この関係は、図7のように異常光線A2
よる投影像が、撮像素子2の撮像素子2の撮像面で合焦
状態でなくても、図8に示すように異常光線A2 による
投影像がより後ピン状態であっても同様であり、フィル
タ12の出力はフィルタ13の出力より高周波成分を多
く含みD1 >D2 となる。
[0050] This relationship, the projected image by the extraordinary ray A 2 as shown in FIG. 7, may not in focus on the imaging surface of the imaging element 2 of the image pickup element 2, the extraordinary ray A 2 as shown in FIG. 8 The same is true even if the projection image by the lens is in the rear focus state, and the output of the filter 12 contains more high frequency components than the output of the filter 13 and D 1 > D 2 .

【0051】図14は、以上のような図4〜図8に示す
各結像状態を含め、常光線A1 の結像点のデフォーカス
量に対する検波回路16,17のそれぞれの出力レベル
1,D2 及びそれぞれの差D2 −D1 の関係を示すも
のである。図14に示すように、常光線A1 の結像点の
デフォーカス量がほぼΔL/4だけ後ピンのとき、D2
−D1 =0、即ちD2 =D1 となる。また、これ以上前
ピンのときはD1 <D2 となり、これ以上後ピンのとき
はD1 >D2 となる。
FIG. 14 shows the output levels D 1 of the detection circuits 16 and 17 with respect to the defocus amount of the image forming point of the ordinary ray A 1 including the image forming states shown in FIGS. 4 to 8. , D 2 and the respective differences D 2 −D 1 are shown. As shown in FIG. 14, when the defocus amount at the image formation point of the ordinary ray A 1 is back by about ΔL / 4, D 2
-D 1 = 0, that is, D 2 = D 1 . Further, when the front pin is more than this, D 1 <D 2 , and when the rear pin is more than this, D 1 > D 2 .

【0052】図1に示すマイコン7において、これら2
つの検波回路16,17の出力をA/D変換して取り込
んで演算を行い、D1 <D2 のときはモータ駆動回路8
を介してモータ9を駆動させ、レンズ1の位置を無限遠
方向に移動させる。また逆にD1 >D2 のときはモータ
駆動回路8を介してモータ9を駆動させ、レンズ1の位
置を至近方向に移動させる。
In the microcomputer 7 shown in FIG.
The outputs of the two detection circuits 16 and 17 are A / D-converted and fetched for calculation, and when D 1 <D 2 , the motor drive circuit 8
The motor 9 is driven via the to move the position of the lens 1 in the infinity direction. On the contrary, when D 1 > D 2 , the motor 9 is driven through the motor drive circuit 8 to move the position of the lens 1 in the closest direction.

【0053】ここで、前記ΔL/4のデフォーカス量に
より生ずる常光線A1 による撮像素子2の撮像面への投
影像の錯乱円径が合焦とみなせる錯乱円径、即ち最小錯
乱円径よりも小さいならば、マイコン7はD1 =D2
なる位置でレンズ1を停止させればよい。またその錯乱
円径が最小錯乱円径より大きいならば、その分D2 >D
1 となる位置でレンズ1を停止させればよい。
Here, the diameter of the circle of confusion of the image projected on the image pickup surface of the image pickup device 2 by the ordinary ray A 1 generated by the defocus amount of ΔL / 4 is the diameter of the circle of confusion which can be regarded as the focus, that is, the minimum circle of confusion. If it is smaller, the microcomputer 7 may stop the lens 1 at a position where D 1 = D 2 . If the diameter of the circle of confusion is larger than the minimum diameter of circle of confusion, D 2 > D
The lens 1 may be stopped at the position of 1.

【0054】以上説明したように、本実施例では、各レ
ンズ位置での合焦方向が判定できるので、従来の山登り
サーボ方式より速く、スムーズな自動合焦動作を行うこ
とができる。またウォブリング動作を伴わないので、合
焦点近傍においても良好な画像を得ることができ、ま
た、ウォブリングしないのでレンズ駆動系はそれ程高い
駆動速度,駆動トルク及び駆動精度等は必要なく、比較
的小型で安価に装置を構成することができる。
As described above, in this embodiment, since the focusing direction at each lens position can be determined, a faster and smoother automatic focusing operation can be performed as compared with the conventional hill climbing servo system. Also, since no wobbling operation is involved, a good image can be obtained even in the vicinity of the in-focus point. Also, since no wobbling is performed, the lens drive system does not require such high drive speed, drive torque, drive accuracy, etc., and is relatively small. The device can be constructed at low cost.

【0055】(実施例2)実施例1は、複屈折現象の常
光線による投影像の映像信号に基づき異常光線による投
影像の映像信号を相殺することにより、常光線による投
影像の映像信号のみを抽出して、NTSCに規格化され
た映像信号として出力としているが、この逆であっても
かまわない。本実施例はこの“逆”の例である。即ち、
偏光フィルタの偏光方向を異常光線の偏光方向に合わ
せ、異常光線による投影像の光量を常光線による投影像
の光量より大きくし、異常光線による投影像の映像信号
に基づき常光線による投影像の映像信号を相殺すること
により、異常光線による投影像の映像信号のみを抽出し
て、NTSCに規格化された映像信号出力するものであ
る。
(Embodiment 2) In Embodiment 1, only the video signal of the projection image by the ordinary ray is canceled by canceling the video signal of the projection image by the extraordinary ray on the basis of the video signal of the projection image by the ordinary ray of the birefringence phenomenon. Is extracted and output as a video signal standardized to NTSC, but the reverse is also possible. The present embodiment is an example of this "reverse". That is,
Align the polarization direction of the polarization filter with the polarization direction of the extraordinary ray, make the amount of light projected by the extraordinary ray larger than that of the image projected by the ordinary ray, and project the image projected by the ordinary ray based on the video signal of the image projected by the extraordinary ray. By canceling the signals, only the video signal of the projection image due to the extraordinary ray is extracted and the video signal standardized to NTSC is output.

【0056】このようにして、本実施例においても、実
施例1と同様の効果が得られる。
In this way, also in this embodiment, the same effect as that of the first embodiment can be obtained.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
速く,スムーズな自動合焦動作を行うことができ、ま
た、ウォブリング動作を伴わないので、合焦点近傍にお
いても良好な画像を得ることができる。更にレンズ駆動
系はウォブリングする必要がないため、それ程高い駆動
速度,駆動トルク及び駆動精度等は必要なく、比較的小
型で安価な装置で構成することができる。
As described above, according to the present invention,
A fast and smooth automatic focusing operation can be performed, and since no wobbling operation is involved, a good image can be obtained even in the vicinity of the in-focus point. Further, since the lens drive system does not need to be wobbled, it does not require such high drive speed, drive torque, drive accuracy, etc., and can be configured with a relatively small and inexpensive device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の構成を示す図FIG. 1 is a diagram showing a configuration of a first embodiment.

【図2】 複屈折板を通る光線を示す図FIG. 2 is a diagram showing light rays passing through a birefringent plate.

【図3】 光学系の詳細図[Figure 3] Detailed view of the optical system

【図4】 結像例1を示す図FIG. 4 is a diagram showing an imaging example 1.

【図5】 結像例2を示す図FIG. 5 is a diagram showing an imaging example 2;

【図6】 結像例3を示す図FIG. 6 is a diagram showing imaging example 3;

【図7】 結像例4を示す図FIG. 7 is a diagram showing imaging example 4;

【図8】 結像例5を示す図FIG. 8 is a diagram showing imaging example 5;

【図9】 投影像例1を示す図FIG. 9 is a diagram showing a projected image example 1;

【図10】 投影像例2を示す図FIG. 10 is a diagram showing a projected image example 2;

【図11】 投影像例3を示す図FIG. 11 is a diagram showing a projected image example 3;

【図12】 映像信号h0 (t)を取り出す巡回形フィ
ルタを示す図
FIG. 12 is a diagram showing a recursive filter for extracting a video signal h 0 (t).

【図13】 映像信号h1 (t)を取り出す巡回形フィ
ルタを示す図
FIG. 13 is a diagram showing a recursive filter for extracting a video signal h 1 (t).

【図14】 常光線のデフォーカス量と検波回路出力レ
ベルの関係を示す図
FIG. 14 is a diagram showing the relationship between the defocus amount of an ordinary ray and the output level of a detection circuit.

【図15】 従来例構成を示すブロック図FIG. 15 is a block diagram showing a configuration of a conventional example.

【図16】 レンズの空間周波数特性を示す図FIG. 16 is a diagram showing a spatial frequency characteristic of a lens.

【図17】 従来例の検波回路6の出力特性を示す図FIG. 17 is a diagram showing the output characteristic of the detection circuit 6 of the conventional example.

【符号の説明】[Explanation of symbols]

1 撮影レンズ 2 撮像素子 7 マイコン 9 モータ 10 偏光フィルタ 11 複屈折板 12 フィルタ 13 フィルタ 14 BPF 15 BPF 1 Photographic lens 2 Image sensor 7 Microcomputer 9 Motor 10 Polarizing filter 11 Birefringent plate 12 Filter 13 Filter 14 BPF 15 BPF

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 撮影レンズと、この撮影レンズの後に配
置された偏光フィルタと、この偏光フィルタの後に配置
された複屈折現像を有する結晶質の透過板と、この透光
板の後に配置された撮像素子と、この撮像素子による映
像信号からその高周波成分を取り出す第1のフィルタ手
段と、前記撮像素子による映像信号からその高周波成分
を取り出す第2のフィルタ手段と、前記第1のフィルタ
手段の出力と前記第2のフィルタ手段の出力を比較し前
記撮影レンズを含む光学系の焦点状態を判別する判別手
段と、この判別手段の出力にもとづいて前記撮影レンズ
を合焦方向へ駆動する駆動手段とを備え、前記第1のフ
ィルタ手段と前記第2のフィルタ手段は、夫々の出力の
高周波成分の大小関係が合焦点近傍で反転するものであ
ることを特徴とする撮像装置の自動焦点調節装置。
1. A photographing lens, a polarizing filter arranged after the photographing lens, a crystalline transmission plate having birefringence development arranged after the polarizing filter, and a crystalline transmission plate arranged after the transparent plate. Image pickup element, first filter means for extracting a high frequency component from a video signal by the image pickup element, second filter means for extracting a high frequency component from a video signal by the image pickup element, and output of the first filter means Discriminating means for discriminating the focus state of the optical system including the taking lens, and driving means for driving the taking lens in the focusing direction based on the output of the discriminating means. The first filter means and the second filter means are characterized in that the magnitude relation of the high frequency components of the respective outputs is inverted near the in-focus point. Automatic focus adjustment device for imaging device.
【請求項2】 撮像素子の撮像面に投影された、複屈折
現象の常光線による投影像と異常光線による投影像によ
って得られた映像信号により、撮影レンズを含む光学系
の焦点状態を判別し、この判別の結果にもとづいて前記
撮影レンズを合焦方向へ駆動することを特徴とする撮像
装置の自動焦点調節方法。
2. A focus state of an optical system including a taking lens is discriminated by a video signal obtained by a projection image of an ordinary ray of a birefringence phenomenon and a projection image of an extraordinary ray projected on an image pickup surface of an image pickup device. An automatic focus adjusting method for an image pickup apparatus, characterized in that the photographing lens is driven in a focusing direction based on a result of this determination.
JP7147652A 1995-06-14 1995-06-14 Automatic focusing device and automatic focusing method for image pickup device Withdrawn JPH095620A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7147652A JPH095620A (en) 1995-06-14 1995-06-14 Automatic focusing device and automatic focusing method for image pickup device
US08/661,944 US6654061B2 (en) 1995-06-14 1996-06-11 Automatic focus adjusting apparatus and method utilized by an image sensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7147652A JPH095620A (en) 1995-06-14 1995-06-14 Automatic focusing device and automatic focusing method for image pickup device

Publications (1)

Publication Number Publication Date
JPH095620A true JPH095620A (en) 1997-01-10

Family

ID=15435199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7147652A Withdrawn JPH095620A (en) 1995-06-14 1995-06-14 Automatic focusing device and automatic focusing method for image pickup device

Country Status (1)

Country Link
JP (1) JPH095620A (en)

Similar Documents

Publication Publication Date Title
JP3975395B2 (en) Camera system
JP4861057B2 (en) Imaging apparatus and control method thereof
US20080043136A1 (en) Automatic focusing apparatus and image pickup apparatus
US6654061B2 (en) Automatic focus adjusting apparatus and method utilized by an image sensing apparatus
JPS5891410A (en) Focusing method of image pickup device
JP2006064969A (en) Automatic focusing system
JP4573032B2 (en) Auto focus system
JP2977979B2 (en) Automatic focusing device
JPH05308557A (en) Automatic focusing device
JPH06205268A (en) Automatic focus adjustment device and video camera
JPH095620A (en) Automatic focusing device and automatic focusing method for image pickup device
JPH09189854A (en) Device and method for executing automatic focusing action for image pickup device
JPH07143388A (en) Video camera
JPS58194473A (en) Image pickup device
JPH02280579A (en) Automatic focusing device
JP2868834B2 (en) Auto focus device
JP2810403B2 (en) Automatic focusing device
JP2004258085A (en) Autofocus system
JP4994817B2 (en) Imaging device
JPH0933799A (en) Automatic focusing device and method for image pickup device
JP2621412B2 (en) Imaging device
JPH03150975A (en) Automatic focusing device
JP2006215284A (en) Autofocus system
JP3490747B2 (en) Automatic focusing device for still video camera
JPH07162731A (en) Autofocus video camera

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903