JPH0956073A - Self-excited var compensator - Google Patents

Self-excited var compensator

Info

Publication number
JPH0956073A
JPH0956073A JP7211475A JP21147595A JPH0956073A JP H0956073 A JPH0956073 A JP H0956073A JP 7211475 A JP7211475 A JP 7211475A JP 21147595 A JP21147595 A JP 21147595A JP H0956073 A JPH0956073 A JP H0956073A
Authority
JP
Japan
Prior art keywords
voltage
transformers
transformer
inverter
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7211475A
Other languages
Japanese (ja)
Other versions
JP3003552B2 (en
Inventor
Takeshi Yoshida
武司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP7211475A priority Critical patent/JP3003552B2/en
Publication of JPH0956073A publication Critical patent/JPH0956073A/en
Application granted granted Critical
Publication of JP3003552B2 publication Critical patent/JP3003552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Landscapes

  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost and space of a self-excited var compensator by eliminating the need of a phase-to-phase reactor by connecting the high-voltage sides of multiple transformers for square-wave inverters in series with the high- voltage sides of multiple transformers for PWM inverters. SOLUTION: The high-voltage sides Pa and Pb of transformers Ta and Tb for square-wave inverters are connected in series and square-wave inverters 1a and 1b are respectively connected to the low-voltage sides Qa and Qb of the transformers Ta and Tb. In addition, the high-voltage side Pc of a transformer Tc for a PWM inverter is connected in series to the high-voltage sides Pa and Pb of the transformers Ta and Tb and a PWM inverter 2 is connected to the low-voltage side Qc of the transformer Tc. The voltages outputted from the inverters 1a, 1b, 2 are outputted to a power source Vs side respectively through the transformers Ta, Tb, and Tc. Therefore, the cross current which is generated by the unbalance between the output voltages of the transformers Ta and Tb is not generated and no phase-to-phase reactor is required, because no circulating current is generated between the transformers Ta and Tb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、系統安定化やアー
ク炉等の無効電力変動の大きい負荷のフリッカ、電圧変
動対策用として好適な自励式無効電力補償装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited reactive power compensator suitable for power system stabilization and flicker of a load with large reactive power fluctuations such as in an arc furnace, and as a countermeasure against voltage fluctuations.

【0002】[0002]

【従来の技術】電力系統では、無効電力変動により系統
電圧変動を引き起こす大容量のアーク炉、電車負荷、鉄
鋼圧延負荷等の変動負荷に対しては、系統電源とその変
動負荷との間に変動負荷による無効電力を補償する無効
電力補償装置を設けており、その一例として自励式無効
電力補償装置(以下、自励式SVCと称す。)がある。
上記自励式SVCは、図2に示すように、2台の方形波
インバータ(1a)(1b)と1台の高周波PWMインバー
タ(2)と制御指令部(図示せず)とを具備し、各イン
バータ(1a)(1b)(2)を系統連系用変圧器(Tm)を
介して系統電源(Vs)に接続することによりアーク炉等
の無効電力発生負荷(図示せず)に並列に接続される。
尚、(Xs)は系統インピーダンスである。
2. Description of the Related Art In a power system, a variable load such as a large-capacity arc furnace, electric train load, or steel rolling load that causes a system voltage fluctuation due to a reactive power fluctuation fluctuates between the system power supply and the fluctuating load. A reactive power compensator for compensating reactive power due to a load is provided, and an example thereof is a self-excited reactive power compensator (hereinafter referred to as a self-excited SVC).
As shown in FIG. 2, the self-excited SVC includes two square wave inverters (1a) and (1b), one high frequency PWM inverter (2), and a control command unit (not shown). The inverters (1a) (1b) (2) are connected in parallel to a reactive power generation load (not shown) such as an arc furnace by connecting to the grid power supply (Vs) via the grid interconnection transformer (Tm). To be done.
Note that (Xs) is the system impedance.

【0003】上記変圧器(Tm)は方形波インバータ用変
圧器(Ta)(Tb)及びPWMインバータ用変圧器(Tc)
とを具備し、方形波インバータ用変圧器(Ta)(Tb)は
各高圧側(一次側)(Pa)(Pb)を相間リアクトル
(L)を介して並列多重接続し、リアクトル(L)と系
統インピーダンス(Xs)を介して系統電源(Vs)に接続
したもので、各低圧側(二次側)(Qa)(Qb)に方形波
インバータ(1a)(1b)を接続する。又、PWMインバ
ータ用変圧器(Tc)は高圧側(Pc)を方形波インバータ
用変圧器(Ta)(Tb)の並列接続点に直列接続して低圧
側(Qc)にPWMインバータ(2)を接続したものであ
る。
The transformer (Tm) is a transformer for square wave inverter (Ta) (Tb) and a transformer for PWM inverter (Tc).
The transformer (Ta) (Tb) for the square wave inverter is provided with multiple high voltage side (primary side) (Pa) (Pb) connected in parallel via the interphase reactor (L), and is connected to the reactor (L). It is connected to the system power supply (Vs) via the system impedance (Xs), and square wave inverters (1a) (1b) are connected to each low voltage side (secondary side) (Qa) (Qb). The PWM inverter transformer (Tc) is connected in series to the parallel connection point of the square wave inverter transformers (Ta) (Tb), and the PWM inverter (2) is connected to the low voltage side (Qc). It is connected.

【0004】又、方形波インバータ(1a)(1b)は、上
述したように、それぞれ変圧器(Ta)(Tb)の低圧側
(Qa)(Qb)に接続され、コンバータ等で直流充電され
たコンデンサ(図示せず)の直流電圧から基本周波数
(50、60Hz)の固定方形波ベース電圧(Vp)を発生する
大容量の低損失低速応答インバータである。PWMイン
バータ(2)は、上述したように、変圧器(Tc)の低圧
側(Qc)に接続され、コンバータ等で直流充電されたコ
ンデンサ(図示せず)の直流電圧から無効電流打ち消し
用補償電流を生成するための高周波の可変方形波電圧成
分(Vq)を発生する小容量の高損失高速応答インバータ
である。
The square wave inverters (1a) and (1b) are connected to the low-voltage side (Qa) (Qb) of the transformers (Ta) (Tb), respectively, and are DC-charged by a converter or the like, as described above. It is a large-capacity low-loss low-speed response inverter that generates a fixed square wave base voltage (Vp) of a fundamental frequency (50, 60Hz) from a DC voltage of a capacitor (not shown). As described above, the PWM inverter (2) is connected to the low-voltage side (Qc) of the transformer (Tc) and compensates the reactive current from the DC voltage of the capacitor (not shown) that is DC-charged by the converter or the like. It is a small-capacity, high-loss, high-speed response inverter that generates a high-frequency variable square-wave voltage component (Vq) to generate a.

【0005】この時、方形波インバータ用変圧器(Ta)
(Tb)の出力電圧位相を変えて並列多重接続することに
より、変圧器(Ta)(Tb)から電源側に流れる補償電流
(Ia)(Ib)の高調波成分を打ち消し合って低減する。
又、2台の方形波インバータ(1a)と(1b)、又は変圧
器(Ta)と(Tb)とがそれぞれ同容量であっても誤差等
により各出力電圧が不均衡になると、各変圧器(Ta)
(Tb)間で還流する横流(It)が発生し、それが電源側
に流れず、変圧器(Ta)又は(Tb)に流れ込んで変圧器
耐量を越えて予期せぬ不具合が発生することがある。そ
のため、変圧器(Ta)(Tb)間に相間リアクトル(L)
を介在させ、そのインピーダンス値を調整して横流(I
t)が電源側に流れ易くなるように制御し、リアクトル
(L)によって変圧器(Ta)(Tb)間に流れる横流(I
t)を抑制する。
At this time, the transformer (Ta) for the square wave inverter
By changing the output voltage phase of (Tb) and making parallel multiple connections, the harmonic components of the compensating currents (Ia) and (Ib) flowing from the transformers (Ta) (Tb) to the power supply side are canceled and reduced.
Even if two square wave inverters (1a) and (1b) or transformers (Ta) and (Tb) have the same capacity, if each output voltage becomes unbalanced due to an error or the like, each transformer (Ta)
A cross current (It) that recirculates between (Tb) occurs, which does not flow to the power supply side and flows into the transformer (Ta) or (Tb), which exceeds the transformer withstand capacity and causes unexpected failures. is there. Therefore, the interphase reactor (L) is placed between the transformer (Ta) and (Tb).
And adjust its impedance value to adjust the cross current (I
t) is controlled so that it easily flows to the power supply side, and the cross current (I) that flows between the transformers (Ta) and (Tb) is controlled by the reactor (L).
suppress t).

【0006】又、一般に、変圧器を直列多重構成した場
合、系統連系時(スイッチON時)に各変圧器に加わる直
列電圧分担は変圧器の励磁インピーダンス比によって決
まる。一方、低圧側で各インバータ(1a)(1b)(2)
に必要な電圧は予め規定されているため、上記各励磁イ
ンピーダンス比に誤差が生じると、変圧器の低圧側電圧
も不適正になってインバータ(1a)(1b)(2)に不所
望の過電圧が加わることがある。そこで、従来、変圧器
鉄心にギャップを設けたり、低圧側に励磁インピーダン
ス調整用リアクトルを設け、変圧器(Ta)(Tb)にPW
Mインバータ用変圧器(Tc)を直列接続した時、励磁イ
ンピーダンス比を適正値に調整して直列電圧分担を調整
する。この時、変圧器(Ta)(Tb)を並列多重接続して
変圧器(Tc)とで直列多重構成にすると、3台の変圧器
で直列構成部分が2段となるため、直列電圧分担の調整
が容易になる。
Further, in general, in the case where the transformers are serially multiplexed, the sharing of the series voltage applied to each transformer when the system is connected (when the switch is ON) is determined by the exciting impedance ratio of the transformer. On the other hand, on the low voltage side, each inverter (1a) (1b) (2)
Since the voltage required for this is specified in advance, if an error occurs in the above excitation impedance ratios, the voltage on the low-voltage side of the transformer will also become improper and the inverter (1a) (1b) (2) will experience an undesired overvoltage. May be added. Therefore, conventionally, a gap has been provided in the transformer core or an exciting impedance adjusting reactor has been provided on the low voltage side, and the transformer (Ta) (Tb) has a PW.
When the transformer (Tc) for M inverter is connected in series, the excitation impedance ratio is adjusted to an appropriate value to adjust the series voltage sharing. At this time, if the transformers (Ta) (Tb) are connected in parallel multiplex to form a series multiplex configuration with the transformer (Tc), three transformers will have two stages in the series configuration, and thus the series voltage will be shared. Adjustment becomes easy.

【0007】上記構成によれば、負荷電流を検出して負
荷変動による無効電力発生を検知すると、各インバータ
(1a)(1b)(2)で補償用無効電力(Q)を発生し、
それを変圧器(Tm)を介して系統母線に供給して負荷変
動による無効電力を打ち消す。上記無効電力(Q)は、
Q={Vs・(Vp+Vq)/Xs} によって決まり、PWMインバー
タ(2)による電圧成分(Vq)を可変制御して適宜、設
定する。
According to the above configuration, when the load current is detected and the reactive power generation due to the load fluctuation is detected, the compensating reactive power (Q) is generated in each inverter (1a) (1b) (2),
It is supplied to the system bus through the transformer (Tm) to cancel the reactive power due to load fluctuation. The reactive power (Q) is
Determined by Q = {Vs · (Vp + Vq) / Xs}, the voltage component (Vq) by the PWM inverter (2) is variably controlled and set appropriately.

【0008】[0008]

【発明が解決しようとする課題】解決しようとする課題
は、自励式無効電力補償装置において2台の方形波イン
バータ用変圧器(Ta)(Tb)を並列多重接続すると、相
間リアクトル(L)が必要となり、しかもリアクトル
(L)は高圧側にあってその絶縁設備も必要となるた
め、変圧器(Tm)全体の寸法が大きくなり、且つ、コス
トも増大する点である。そこで、本発明は相間リアクト
ル(L)を省略してコスト低減及び省スペース化を図っ
た自励式SVCを提供することを目的とする。
A problem to be solved by the invention is that when two transformers (Ta) (Tb) for a square wave inverter are connected in parallel and multiple in a self-excited var compensator, an interphase reactor (L) is generated. This is because the reactor (L) is on the high-voltage side, and its insulation equipment is also required. Therefore, the overall size of the transformer (Tm) becomes large and the cost also increases. Therefore, an object of the present invention is to provide a self-excited SVC in which the interphase reactor (L) is omitted to reduce the cost and save the space.

【0009】[0009]

【課題を解決するための手段】本発明は、系統電圧と等
しいベース電圧を発生する大容量低速応答の方形波イン
バータを低圧側に接続した複数の方形波インバータ用変
圧器と、無効電流打ち消し用補償電流を生成するための
電圧成分を発生する小容量高速応答のPWMインバータ
を低圧側に接続したPWMインバータ用変圧器とを具備
し、各インバータの出力電圧の加算値を系統インピーダ
ンスを介して系統電圧と同位相で振幅制御することによ
り補償用無効電力を発生するに際して、複数台の方形波
インバータ用変圧器とPWMインバータ用変圧器の高圧
側を直列多重接続することを特徴とする。
SUMMARY OF THE INVENTION The present invention is a transformer for a plurality of square wave inverters in which a large capacity low speed response square wave inverter for generating a base voltage equal to a system voltage is connected to a low voltage side, and for canceling a reactive current. A PWM inverter transformer in which a small-capacity, high-speed-response PWM inverter that generates a voltage component for generating a compensation current is connected to the low-voltage side, and the added value of the output voltage of each inverter is connected to the system impedance via the system impedance. When the reactive power for compensation is generated by controlling the amplitude in the same phase as the voltage, the high-voltage side of a plurality of transformers for square wave inverters and the transformers for PWM inverters are connected in series.

【0010】[0010]

【発明の実施の形態】本発明に係る自励式無効電力補償
装置の実施の形態を図1を参照して以下に説明する。図
2に示す部分と同一部分には同一参照符号を付してその
説明を省略する。相違する点は変圧器(Tn)の構成にお
いて複数の方形波インバータ用変圧器(Ta)(Tb)の各
高圧側(Pa)(Pb)を直列多重接続して各低圧側(Qa)
(Qb)にそれぞれ方形波インバータ(1a)(1b)を接続
したことである。且つ、方形波インバータ用変圧器(T
a)(Tb)の高圧側(Pa)(Pb)にPWMインバータ用
変圧器(Tc)の高圧側(Pc)を更に直列接続して低圧側
(Qc)にPWMインバータ(2)を接続する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a self-excited var compensator according to the present invention will be described below with reference to FIG. The same parts as those shown in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. The difference is that in the configuration of the transformer (Tn), each high-voltage side (Pa) (Pb) of a plurality of transformers (Ta) (Tb) for a square wave inverter is connected in series and connected to each low-voltage side (Qa).
Square wave inverters (1a) and (1b) are connected to (Qb). Moreover, the transformer for the square wave inverter (T
a) The high-voltage side (Pa) (Pb) of (Tb) is further connected in series with the high-voltage side (Pc) of the PWM inverter transformer (Tc), and the PWM inverter (2) is connected to the low-voltage side (Qc).

【0011】上記構成によれば、方形波インバータ(1
a)(1b)及びPWMインバータ(2)から出力した電
圧は、直列多重構成した変圧器(Ta)(Tb)及び(Tc)
を経てそれぞれ電源側に出力される。そうすると、変圧
器(Ta)(Tb)間で還流が生じないため、変圧器(Ta)
(Tb)の各出力電圧の不均衡による横流(It)の発生が
なくなって相間リアクトル(L)が不要となる。又、従
来同様、変圧器(Ta)(Tb)の出力電圧の位相を変える
ことにより高調波を低減する。
According to the above configuration, the square wave inverter (1
Voltages output from a) (1b) and PWM inverter (2) are transformers (Ta) (Tb) and (Tc) that are serially multiplexed.
Is output to the power supply side. Then, since no return current occurs between the transformers (Ta) (Tb), the transformers (Ta)
The generation of the cross current (It) due to the imbalance of the output voltages of (Tb) is eliminated, and the interphase reactor (L) is unnecessary. Further, as in the conventional case, harmonics are reduced by changing the phase of the output voltage of the transformer (Ta) (Tb).

【0012】[0012]

【実施例】更に、本発明のより具体的な実施例を次に示
す。まず3台の変圧器(Ta)(Tb)(Tc)を直列多重接
続したことで、励磁インピーダンス比を調整して系統連
系(スイッチON)時の各直列電圧分担が適正になるよう
に調整する必要がある。そこで、同じ性能を持つ方形波
インバータ(1a)と(1b)とでは変圧器鉄心にギャップ
を設けて励磁インピーダンス比を調整する。又、異なる
性能を持つ2台の方形波インバータ用変圧器(Ta)(T
b)とPWMインバータ用変圧器(Tc)とでは励磁イン
ピーダンス調整用リアクトルを設けて励磁インピーダン
ス比を調整することとする。
EXAMPLES Further specific examples of the present invention will be shown below. First, by connecting three transformers (Ta) (Tb) (Tc) in series multiplex, the excitation impedance ratio is adjusted so that each series voltage distribution during grid interconnection (switch ON) is adjusted appropriately. There is a need to. Therefore, in the square wave inverters (1a) and (1b) having the same performance, a gap is provided in the transformer core to adjust the exciting impedance ratio. Also, two square wave inverter transformers (Ta) (T
An exciting impedance adjusting reactor is provided between b) and the PWM inverter transformer (Tc) to adjust the exciting impedance ratio.

【0013】[0013]

【発明の効果】本発明によれば、自励式無効電力補償装
置における複数の方形波インバータ用変圧器の各高圧側
を直列多重接続して各低圧側に方形波インバータを接続
したから、相間リアクトル及びその絶縁設備が不要にな
って部品点数が減少し、低コスト及び省スペース化を実
現出来る。
According to the present invention, the high voltage sides of a plurality of transformers for a square wave inverter in a self-excited var compensator are connected in series and the square wave inverter is connected to each low voltage side. Also, the insulating equipment is not required, the number of parts is reduced, and low cost and space saving can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自励式無効電力補償装置の実施の
形態を示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a self-excited reactive power compensator according to the present invention.

【図2】従来の自励式無効電力補償装置の一例を示す回
路図である。
FIG. 2 is a circuit diagram showing an example of a conventional self-excited reactive power compensator.

【符号の説明】[Explanation of symbols]

1a、1b 方形波インバータ 2 PWMインバータ Tn 変圧器 Ta、Tb 方形波インバータ用変圧器 Tc PWMインバータ用変圧器 Vs 系統電源 Xs 系統インピーダンス 1a, 1b Square wave inverter 2 PWM inverter Tn Transformer Ta, Tb Square wave inverter transformer Tc PWM inverter transformer Vs System power supply Xs System impedance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 系統電圧と等しいベース電圧を発生する
大容量低速応答の方形波インバータを低圧側に接続した
複数の方形波インバータ用変圧器と、無効電流打ち消し
用補償電流を生成するための電圧成分を発生する小容量
高速応答のPWMインバータを低圧側に接続したPWM
インバータ用変圧器とを具備し、各インバータの出力電
圧の加算値を系統インピーダンスを介して系統電圧と同
位相で振幅制御することにより補償用無効電力を発生す
るに際して、複数台の方形波インバータ用変圧器とPW
Mインバータ用変圧器の高圧側を直列多重接続すること
を特徴とする自励式無効電力補償装置。
1. A plurality of square wave inverter transformers in which a large-capacity low-speed response square wave inverter that generates a base voltage equal to a system voltage is connected to a low voltage side, and a voltage for generating a compensating current for canceling reactive current. PWM that connects a low-capacity, high-speed PWM inverter that generates a component to the low-voltage side
It is equipped with an inverter transformer, and when the reactive power for compensation is generated by controlling the amplitude of the added value of the output voltage of each inverter in the same phase as the system voltage via the system impedance, Transformer and PW
A self-excited reactive power compensator, characterized in that the high-voltage side of a transformer for an M inverter is connected in multiple series.
JP7211475A 1995-08-21 1995-08-21 Self-excited reactive power compensator Expired - Fee Related JP3003552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7211475A JP3003552B2 (en) 1995-08-21 1995-08-21 Self-excited reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7211475A JP3003552B2 (en) 1995-08-21 1995-08-21 Self-excited reactive power compensator

Publications (2)

Publication Number Publication Date
JPH0956073A true JPH0956073A (en) 1997-02-25
JP3003552B2 JP3003552B2 (en) 2000-01-31

Family

ID=16606568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7211475A Expired - Fee Related JP3003552B2 (en) 1995-08-21 1995-08-21 Self-excited reactive power compensator

Country Status (1)

Country Link
JP (1) JP3003552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638849A (en) * 2018-12-13 2019-04-16 广西电网有限责任公司电力科学研究院 A kind of power distribution network low-voltage intelligence control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638849A (en) * 2018-12-13 2019-04-16 广西电网有限责任公司电力科学研究院 A kind of power distribution network low-voltage intelligence control system

Also Published As

Publication number Publication date
JP3003552B2 (en) 2000-01-31

Similar Documents

Publication Publication Date Title
Liang et al. A power-line conditioner based on flying-capacitor multilevel voltage-source converter with phase-shift SPWM
Mori et al. Development of a large static var generator using self-commutated inverters for improving power system stability
Liang et al. A new type of STATCOM based on cascading voltage-source inverters with phase-shifted unipolar SPWM
EP1670130A2 (en) Power conversion system and method
US6104102A (en) Multi-quality electric power supply apparatus
US6433520B1 (en) Dc power regulator incorporating high power ac to dc converter with controllable dc voltage and method of use
JP3651796B2 (en) Power converter
JPH05308799A (en) Constant frequency power supply equipment
JP3044119B2 (en) Power failure countermeasure device
JP3003552B2 (en) Self-excited reactive power compensator
Nunez et al. Voltage disturbances and unbalance compensation by the use of a 3-phase series active filter
JP2000037078A (en) Multilevel power converter
JP3191633B2 (en) Static var compensator
Panfilov et al. Performance assessment of thyristors switched capacitors during reactive power compensation of dynamic load
JPH10174291A (en) Inverter device linked to system
JP2682241B2 (en) Power failure countermeasure device
JPH09247862A (en) Self-excitation reactive power compensator
Alarcon et al. Design and implementation of a 3-phase series active filter to compensate voltage disturbances
JPH06178449A (en) Reactive power compensator
Chen et al. Analysis and comparison of passive & active harmonic suppression filters in distribution systems
Stanić et al. Extended SVM for direct matrix converter based drive operating under unbalanced grid conditions
Tak et al. Capacitor Sizing of High Resolution Converter for Induction Machine Driven Fan Load
JP2713043B2 (en) Inverter device
Nikolaev et al. Sustainability of High-Power Frequency Converters with Active Rectifiers Connected in Parallel with “EAF-SVC” Complex
EP3512088B1 (en) Voltage source converter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees