JPH0956066A - Semiconductor circuit device - Google Patents

Semiconductor circuit device

Info

Publication number
JPH0956066A
JPH0956066A JP7207982A JP20798295A JPH0956066A JP H0956066 A JPH0956066 A JP H0956066A JP 7207982 A JP7207982 A JP 7207982A JP 20798295 A JP20798295 A JP 20798295A JP H0956066 A JPH0956066 A JP H0956066A
Authority
JP
Japan
Prior art keywords
potential
power supply
internal
circuit
potentials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7207982A
Other languages
Japanese (ja)
Inventor
Tsutomu Ichikawa
勉 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7207982A priority Critical patent/JPH0956066A/en
Publication of JPH0956066A publication Critical patent/JPH0956066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor circuit device which can supply a stable power supply voltage by means of an internal circuit by suppressing the influence of the power supply noise or grounding noise when a large number of output circuits are simultaneously switched. SOLUTION: A reference potential generating circuit which does not supply a power supply potential supplied from the outside and a grounding potential, but a plurality of potentials VDD and VSS after conversion only, and is constituted by connecting load elements R1 and R2 which are provided between an external power supply potential VCC and the grounding potential and respectively connected to the power supply potential side and grounding potential side generate a plurality of reference potentials and supplies a plurality of converted potentials to an internal circuit 8 based on the reference potentials. Therefore, the malfunction of the internal circuit 8 can be prevented, because the reference potentials can be maintained stably even when the power supply fluctuates due to ground bounce at the time of simultaneous switching of output circuits and the internal power supply voltage can be maintained constantly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、外部から供給され
る電源電位より変換した電位を内部回路に供給して動作
させる半導体回路装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor circuit device which operates by supplying an internal circuit with a potential converted from a power source potential supplied from the outside.

【0002】[0002]

【従来の技術】たとえばMOSFETは、その微細化に
伴ってホットキャリア劣化やゲート酸化膜耐圧の低下な
どの問題が顕著となり、これを回避するために印加する
バイアス電圧を同時に低下させてゆく必要がある。した
がって、MOSFETを使用した半導体回路装置の電源
電圧もまた、同時に低下させてゆく必要がある。
2. Description of the Related Art In MOSFETs, for example, problems such as hot carrier deterioration and reduction in gate oxide film breakdown voltage become more prominent with miniaturization, and in order to avoid such problems, it is necessary to simultaneously reduce the bias voltage applied. is there. Therefore, the power supply voltage of the semiconductor circuit device using the MOSFET also needs to be reduced at the same time.

【0003】しかし一方、半導体回路装置を使用するシ
ステムとしては、たとえばTTLの電源電圧は5V一定
であるなどにより容易に低下させることはできない。そ
こで、これに対処するために、たとえばデザインルール
が0.5μmであるMOSFETを使用した半導体回路
装置においては、装置内に電源電圧変換回路を設けて、
外部から供給される電源電圧である5Vを3.3Vに降
下させてこれを内部用の電源電圧として供給し動作させ
るという方法が用いられている。
On the other hand, in a system using a semiconductor circuit device, for example, the power supply voltage of TTL is constant at 5V, so that it cannot be easily lowered. Therefore, in order to deal with this, for example, in a semiconductor circuit device using a MOSFET whose design rule is 0.5 μm, a power supply voltage conversion circuit is provided in the device,
A method is used in which 5V, which is a power supply voltage supplied from the outside, is lowered to 3.3V, and this is supplied as an internal power supply voltage to operate.

【0004】図3は、従来の半導体回路装置の基本的な
構成を示す回路図である。図3において、1〜5はnM
OSFET、6はpMOSFET、7はオペアンプ、8
は内部回路、R1,R2は抵抗素子、Z1〜Z6は配線
やパッケージのリードフレームなどにおける寄生インピ
ーダンス成分、Cは外部負荷容量、VCCは外部電源電
圧、GNDは接地、VDD,VSSは内部基準電圧をそれぞ
れ示している。
FIG. 3 is a circuit diagram showing the basic structure of a conventional semiconductor circuit device. In FIG. 3, 1 to 5 are nM
OSFET, 6 is pMOSFET, 7 is operational amplifier, 8
Is an internal circuit, R1 and R2 are resistance elements, Z1 to Z6 are parasitic impedance components in wiring or a lead frame of a package, C is an external load capacitance, V CC is an external power supply voltage, GND is ground, and V DD and V SS are The internal reference voltages are shown.

【0005】図3の構成において、直列接続されたnM
OSFET1〜4の抵抗素子R1との接続端における電
源電圧VCCを所定値だけ降下させた電圧Vref がオペア
ンプ7の非反転入力(+)に入力されて内部電源電圧V
DDが内部回路8に供給される。また、接地電位VSSは接
地ラインから直接的に供給される。したがって、内部回
路8の電源電圧は(VDD−VSS)となる。
In the configuration of FIG. 3, nMs connected in series
The voltage Vref obtained by dropping the power supply voltage V CC at the connection terminals of the OSFETs 1 to 4 with the resistance element R1 by a predetermined value is input to the non-inverting input (+) of the operational amplifier 7 to supply the internal power supply voltage V
DD is supplied to the internal circuit 8. Further, the ground potential V SS is directly supplied from the ground line. Therefore, the power supply voltage of the internal circuit 8 becomes (V DD -V SS ).

【0006】[0006]

【発明が解決しようとする課題】ところで、図3の回路
において、たとえば出力がハイレベル「H」からローレ
ベル「L」に切り替わる場合、外部負荷容量Cに蓄積さ
れていた電荷が短時間でnMOSFET5、インピーダ
ンス成分Z5,Z6を介して接地GNDに流れる。この
ため、たとえばZ4,Z5,Z6の接続中点においてノ
イズが発生して(いわゆるグランドバウンス)、これが
直接内部回路8の接地電位の変動となる。同時にスイッ
チング動作する出力回路の数が多い程このノイズ、接地
電位の変動は大きくなり、内部回路8の誤動作あるいは
外部信号レベルと内部信号レベルとの不整合となって半
導体回路装置の誤動作を引き起こす。
By the way, in the circuit of FIG. 3, for example, when the output is switched from the high level "H" to the low level "L", the electric charge accumulated in the external load capacitance C is reduced in a short time. , Through the impedance components Z5 and Z6 to the ground GND. Therefore, for example, noise is generated at the midpoint of connection of Z4, Z5, and Z6 (so-called ground bounce), and this directly changes the ground potential of the internal circuit 8. The larger the number of output circuits that perform switching operation at the same time, the greater the noise and the fluctuation of the ground potential, resulting in malfunction of the internal circuit 8 or mismatch between the external signal level and the internal signal level, which causes malfunction of the semiconductor circuit device.

【0007】図4に、図3の回路の電源電位変動時の電
圧波形を示す。図4に示すように、図3の回路において
は、接地GNDの電位の変動が大きいときは、図中Aで
示すように、内部回路8の電源電圧VDDが一定でなくな
る。
FIG. 4 shows a voltage waveform when the power supply potential of the circuit of FIG. 3 changes. As shown in FIG. 4, in the circuit of FIG. 3, when the fluctuation of the potential of the ground GND is large, the power supply voltage V DD of the internal circuit 8 is not constant as indicated by A in the figure.

【0008】ここで出力がローレベル「L」からハイレ
ベル「H」に切り替わる場合については、Z1,Z2,
Z3の接続中点の電位変動が起こるが、図3においては
その変動が抵抗素子R1における定常時の電位降下分
(たとえば1.8V)より大きくならなければ基準電位
DDは変動しない。そして図3とは逆に、VDDではなく
SSを発生させて内部回路8に供給して外部電源電圧V
CCはそのまま内部回路に供給する構成の場合には、電位
変動の現れ方が上記とは逆になりVCC変動の影響の方が
厳しくなる。
Here, when the output is switched from the low level "L" to the high level "H", Z1, Z2,
Although a potential change at the connection midpoint of Z3 occurs, in FIG. 3, the reference potential V DD does not change unless the change becomes larger than the steady-state potential drop (for example, 1.8 V) in the resistance element R1. Contrary to FIG. 3, V SS instead of V DD is generated and supplied to the internal circuit 8 to supply the external power supply voltage V
In the case of the configuration in which CC is supplied to the internal circuit as it is, the appearance of potential fluctuation is opposite to the above, and the influence of V CC fluctuation becomes more severe.

【0009】このように、半導体回路装置においては、
装置の複数の出力回路が同時にスイッチング動作を行う
と、電源側あるいは接地側の配線やリードフレームのイ
ンピーダンスによって電源線あるいは接地線にノイズが
発生し、これが装置の誤動作を引き起こすという問題が
ある。そしてこれは、図3の電源電圧降下回路を用いた
半導体回路装置においても問題であり、たとえば基準電
圧発生回路の接地側に発生したノイズは、図4中Aで示
すように、そのまま基準電位の変動となり、内部電源電
位を変動させて誤動作の原因となっていた。
As described above, in the semiconductor circuit device,
When a plurality of output circuits of the device simultaneously perform switching operation, noise occurs in the power supply line or the ground line due to the impedance of the wiring on the power supply side or the ground side or the lead frame, which causes a malfunction of the device. This is also a problem in the semiconductor circuit device using the power supply voltage lowering circuit of FIG. 3. For example, noise generated on the ground side of the reference voltage generating circuit is the same as that of the reference potential as shown by A in FIG. This has caused fluctuations, causing fluctuations in the internal power supply potential and causing malfunctions.

【0010】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、多数の出力回路の同時スイッチ
ング時の電源ノイズあるいは接地ノイズの影響を抑制し
て内部回路により安定した電源電圧を供給できる半導体
回路装置を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to suppress the influence of power supply noise or ground noise at the time of simultaneous switching of a large number of output circuits and to provide a stable power supply voltage by an internal circuit. It is to provide a semiconductor circuit device that can be supplied.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、外部から供給される電源電位より変換し
た電位を内部回路に供給して動作させる半導体回路装置
であって、外部電源電位を複数の内部電源電位に変換す
る変換手段を有し、内部回路には、上記変換手段による
複数の内部電源電位のみ供給される。
In order to achieve the above object, the present invention is a semiconductor circuit device that operates by supplying a potential converted from an externally supplied power source potential to an internal circuit and operating the semiconductor circuit device. To a plurality of internal power supply potentials, and only a plurality of internal power supply potentials by the conversion means are supplied to the internal circuit.

【0012】また、本発明の半導体回路装置では、上記
変換手段は、一定の電位降下を生じる電位降下手段と、
上記電位降下手段と外部電源電位および接地電位との間
にそれぞれ接続された負荷手段とからなり複数の基準電
位を発生する基準電位発生回路、並び上記基準電位発生
回路により発生された複数の基準電位に基づいて複数の
変換した電位を内部回路に供給する手段により構成され
ている。
Further, in the semiconductor circuit device of the present invention, the conversion means includes potential lowering means for causing a constant potential drop,
A reference potential generating circuit for generating a plurality of reference potentials, which is composed of the potential lowering means and load means respectively connected to the external power supply potential and the ground potential, and a plurality of reference potentials generated by the reference potential generating circuit. It is configured by means for supplying a plurality of converted potentials to the internal circuit based on the above.

【0013】本発明の半導体回路装置によれば、たとえ
ば外部電源電位側の寄生インピーダンス成分の接続中点
における電位変動分も、また接地側の寄生インピーダン
ス成分の接続中点における電位変動分も所定電圧であれ
ば負荷手段における電位降下の変動となり変換手段によ
り発生される複数の基準電位も変動しない。したがっ
て,内部電源電圧は一定に保たれて、内部回路の誤動作
は起こらない。そしてまた、たとえば接地側寄生インピ
ーダンス成分の接続中点における電位変動分は、複数の
負荷手段おける電位降下の変動にそれぞれ分割されるこ
とにより直接基準電位の変動とはならないことから、外
部信号レベルと内部信号レベルとの不整合に対するマー
ジンが拡大されて誤動作の防止が図られる。
According to the semiconductor circuit device of the present invention, for example, the potential variation at the midpoint of connection of the parasitic impedance component on the external power supply potential side and the potential variation at the midpoint of connection of the parasitic impedance component on the ground side are both predetermined voltages. In that case, the potential drop in the load means changes and the plurality of reference potentials generated by the converting means also do not change. Therefore, the internal power supply voltage is kept constant, and malfunction of the internal circuit does not occur. Further, for example, the potential fluctuation at the connection midpoint of the ground-side parasitic impedance component does not directly become the fluctuation of the reference potential by being divided into the fluctuations of the potential drop in the plurality of load means. The margin for mismatch with the internal signal level is expanded to prevent malfunction.

【0014】[0014]

【発明の実施の形態】図1は、本発明に係る半導体回路
装置の一例を示す回路図であって、従来例を示す図3と
同一構成部分は同一符号をもって表す。すなわち、1〜
5はnMOSFET、6はpMOSFET、7,9はオ
ペアンプ、8は内部回路、R1,R2は抵抗素子、Z1
〜Z6は配線やパッケージのリードフレームなどにおけ
る寄生インピーダンス成分、Cは外部負荷容量、VCC
外部電源電圧、GNDは接地、VDD,VSSは内部基準電
圧をそれぞれ示している。
1 is a circuit diagram showing an example of a semiconductor circuit device according to the present invention, and the same components as those in FIG. 3 showing a conventional example are denoted by the same reference numerals. That is, 1 to
5 is an nMOSFET, 6 is a pMOSFET, 7 and 9 are operational amplifiers, 8 is an internal circuit, R1 and R2 are resistance elements, and Z1.
˜Z6 are parasitic impedance components in the wiring or the lead frame of the package, C is an external load capacitance, V CC is an external power supply voltage, GND is ground, and V DD and V SS are internal reference voltages, respectively.

【0015】抵抗素子R1、nMOSFET1〜4、抵
抗素子R2が外部電源電圧VCCの供給ラインと接地ライ
ンとの間に直列に接続されて、基準電位発生回路が構成
されている。また、pMOSFET1およびnMOSF
ET5が外部電源電圧VCCの供給ラインと接地ラインと
の間に直列に接続されて出力バッファが構成されてい
る。抵抗素子R1とnMOSFET1のドレインとの接
続中点がオペアンプ7の非反転入力(+)に接続され、
オペアンプ7の反転入力(−)はその出力端に接続され
ている。また、抵抗素子R2とnMOSFET4のソー
スとの接続中点がオペアンプ9の非反転入力(+)に接
続され、オペアンプ9の反転入力(−)はその出力端に
接続されている。そして、オペアンプ7の出力から内部
回路8に対して基準電圧VDDが供給され、オペアンプ9
の出力から内部回路8に対して基準電圧VSSが供給され
内部回路8の2出力がpMOSFET1およびnMOS
FET5のゲートにそれぞれに接続されている。
The resistance element R1, the nMOSFETs 1 to 4, and the resistance element R2 are connected in series between the supply line of the external power supply voltage V CC and the ground line to form a reference potential generating circuit. In addition, pMOSFET1 and nMOSF
ET5 is connected in series between the supply line of the external power supply voltage V CC and the ground line to form an output buffer. The midpoint of connection between the resistance element R1 and the drain of the nMOSFET 1 is connected to the non-inverting input (+) of the operational amplifier 7,
The inverting input (-) of the operational amplifier 7 is connected to its output terminal. The midpoint of connection between the resistance element R2 and the source of the nMOSFET 4 is connected to the non-inverting input (+) of the operational amplifier 9, and the inverting input (-) of the operational amplifier 9 is connected to the output terminal thereof. The reference voltage V DD is supplied to the internal circuit 8 from the output of the operational amplifier 7,
The reference voltage V SS is supplied from the output of the internal circuit 8 to the internal circuit 8 and the two outputs of the internal circuit 8 are pMOSFET 1 and nMOS.
It is connected to the gate of the FET 5, respectively.

【0016】以下に、各部の具体的な構成および作用に
ついて順を追って説明する。各nMOSFET1〜4は
ゲートとドレインとが接続され、またソースと基板(p
−well)とが接続され、またそれらのp−well
はn型半導体中に形成されて互いにまた他のnMOSF
ETのp−wellからも電気的に分離されている。こ
れにより、各nMOSFETのドレイン−ソース間の電
位差はそのしきい値と等しくなり、これらが複数個直列
に接続されてその段数分の電位降下が得られるようにな
っている。外部から供給される電源電圧VCCとの差はそ
の両端にそれぞれ接続された抵抗素子R1,R2におけ
る電位降下の和となる。
The specific structure and operation of each section will be described below in order. The gates and drains of the nMOSFETs 1 to 4 are connected to each other, and the sources and the substrate (p
-Well) and their p-well
Are formed in an n-type semiconductor and are connected to each other and to another nMOSF.
It is also electrically separated from the p-well of ET. As a result, the potential difference between the drain and source of each nMOSFET becomes equal to its threshold value, and a plurality of these are connected in series to obtain a potential drop corresponding to the number of stages. The difference from the power supply voltage V CC supplied from the outside is the sum of the potential drops in the resistance elements R1 and R2 connected to both ends thereof.

【0017】たとえば、外部電源電圧VCCが5Vであ
り、nMOSFET1〜4のしきい値Vthが0.8Vで
あれば、直列に接続されたnMOSFET1〜4の両端
の電位差は3.2Vであり、2個の抵抗素子R1,R2
における電位降下の和は1.8Vである。
For example, if the external power supply voltage V CC is 5V and the threshold value V th of the nMOSFETs 1 to 4 is 0.8V, the potential difference across the nMOSFETs 1 to 4 connected in series is 3.2V. Two resistance elements R1 and R2
The sum of the potential drops at is 1.8V.

【0018】なお、一定の電位降下を得る手段としては
pMOSFET、ツェナダイオードなどのnMOSFE
T以外の手段を用いても良く、また負荷手段もたとえば
ドレイン電流−ドレイン電圧特性のリニア領域に動作点
を有するようにしたMOSFETなどの他の手段も用い
ても良い。ただし、後に説明するようにその特性は揃っ
ている方が良い。
As a means for obtaining a constant potential drop, an nMOSFE such as a pMOSFET or a Zener diode is used.
Means other than T may be used, and the load means may be another means such as a MOSFET having an operating point in the linear region of the drain current-drain voltage characteristic. However, as will be described later, it is better that the characteristics are uniform.

【0019】ここで、直列に接続されたnMOSFET
1〜4の両端における電位をそれぞれVDD、VSS(VDD
(Vref1)>VSS(Vref2))とすれば、VDDが内部回
路8に供給される電源電圧、VSSが同接地電位に相当す
る。すなわち、(VDD−VSS)が内部回路8における電
源電圧になる。実際には、上述したように、これらの基
準電位はそれぞれ電流バッファ手段としてのオペアンプ
7,9を介することにより出力インピーダンスの十分に
低い電源電圧として内部回路8に供給される。
Here, nMOSFETs connected in series
The potentials at both ends of 1 to 4 are V DD and V SS (V DD
(Vref1)> if V SS (Vref2)), the power supply voltage V DD is supplied to the internal circuit 8, the V SS corresponding to the ground potential. That is, (V DD −V SS ) becomes the power supply voltage in the internal circuit 8. Actually, as described above, these reference potentials are supplied to the internal circuit 8 as a power supply voltage having a sufficiently low output impedance by way of the operational amplifiers 7 and 9 respectively serving as current buffer means.

【0020】pMOSFET1、nMOSFET5は半
導体回路装置の出力回路のバッファ手段を構成し、出力
端子に接続された外部の信号線(ここでは寄生容量素子
Cでその負荷容量を示す)を駆動する。
The pMOSFET 1 and the nMOSFET 5 form a buffer means of the output circuit of the semiconductor circuit device, and drive an external signal line (here, the parasitic capacitance element C shows its load capacitance) connected to the output terminal.

【0021】これらの基準電位発生回路、電流バッファ
手段、および出力バッファ手段と外部電源との間の電源
線には配線やパッケージのリードフレームなどにおける
寄生インピーダンス成分Z1〜Z6がたとえば図1のよ
うに存在する。
Parasitic impedance components Z1 to Z6 in the wiring or the lead frame of the package are provided in the power supply line between the reference potential generating circuit, the current buffer means, the output buffer means and the external power source as shown in FIG. Exists.

【0022】ここで、たとえば出力がハイレベル「H」
からローレベル「L」に切り替わる場合、外部負荷容量
Cに蓄積されていた電荷が短時間でnMOSFET5、
寄生インピーダンス成分Z5,Z6を介して接地GND
に流れる。このため、寄生インピーダンス成分Z4,Z
5,Z6の接続中点においてノイズが発生し、これが直
接内部回路8の接地電位の変動となるが、図1において
は、その変動が、抵抗素子R1 およびR2の定常時の電
位降下分(たとえば1.8V)より大きくならなければ
基準電位VSSは変動しない。
Here, for example, the output is at the high level "H".
From the low level to “L”, the charge accumulated in the external load capacitance C is quickly transferred to the nMOSFET 5,
Ground GND via parasitic impedance components Z5 and Z6
Flows to Therefore, the parasitic impedance components Z4 and Z
Noise is generated at the connection midpoint of 5, 5 and 6 and this directly changes the ground potential of the internal circuit 8. In FIG. The reference potential V SS does not change unless it becomes larger than 1.8 V).

【0023】また、出力がローレベル「L」からローレ
ベル「H」に切り替わる場合については、寄生インピー
ダンス成分Z1,Z2,Z3の接続中点の電位変動が起
こるが、図1においてはその変動が抵抗素子R1および
R2における定常時の電位降下分(たとえば1.8V)
より大きくならなければ基準電位VDDは変動しない。
Further, when the output is switched from the low level "L" to the low level "H", the potential change at the connection midpoint of the parasitic impedance components Z1, Z2, Z3 occurs, but in FIG. Steady-state potential drop in the resistance elements R1 and R2 (for example, 1.8 V)
Unless it becomes larger, the reference potential V DD does not change.

【0024】図2に示すように、図1の回路において
は、寄生インピーダンス成分Z1,Z2,Z3の接続中
点における電位変動分もまた寄生インピーダンス成分Z
4,Z5,Z6の接続中点における電位変動分も1.8
V以下であれば抵抗素子R1,R2における電位降下の
変動となり、基準電位VDDのみならずVSSも変動しな
い。したがって,内部電源電圧(VDD−VSS)は一定に
保たれて、内部回路8の誤動作は起こらない。そしてま
た、たとえば寄生インピーダンス成分Z4,Z5,Z6
の接続中点における電位変動分は、抵抗素子R1におけ
る電位降下の変動と抵抗素子R2における電位変動分に
分割されることにより直接基準電位VSSの変動とはなら
ないことから、外部信号レベルと内部信号レベルとの不
整合に対するマージンが拡大されて誤動作の防止が図ら
れる。これは、抵抗素子R1,R2の抵抗値RV1,R
V2がRV1=RV2あるいはこれらの負荷手段に他の
方法を用いた場合にはその特性が同じであると、その変
動が2個の負荷手段に等分配されるために最もマージン
が大きくなる。
As shown in FIG. 2, in the circuit of FIG. 1, the variation in potential at the connection midpoint of the parasitic impedance components Z1, Z2, Z3 is also the parasitic impedance component Z.
The potential fluctuation at the midpoint of connection of 4, Z5 and Z6 is also 1.8.
If it is V or less, the potential drop in the resistance elements R1 and R2 varies, and not only the reference potential V DD but also V SS does not vary. Therefore, the internal power supply voltage (V DD −V SS ) is kept constant, and malfunction of the internal circuit 8 does not occur. And again, for example, parasitic impedance components Z4, Z5, Z6
The potential fluctuation at the connection midpoint of is not divided directly into the fluctuation of the potential drop in the resistance element R1 and the fluctuation of the potential in the resistance element R2, and thus does not directly fluctuate in the reference potential V SS. The margin for mismatch with the signal level is expanded to prevent malfunction. This is the resistance value RV1, R2 of the resistance elements R1, R2.
If V2 is RV1 = RV2 or if another method is used for these load means and the characteristics are the same, the fluctuation is evenly distributed to the two load means, so that the margin becomes the largest.

【0025】以上説明したように、本例によれば、内部
回路8には変換後の複数の電位VDD,VSSのみを供給し
て外部から供給される電源電位VCCおよび接地電位の供
給は行わず、外部の電源電位VCCと接地電位との間に設
けられ、電源電位側および接地電位側にそれぞれ負荷素
子R1,R2を直列に接続した構成の基準電位発生回路
より複数(本例では2つ)の基準電位を発生させて、こ
れらの基準電位に基づいて複数の変換した電位を供給す
るようにしたので、同時出力スイッチング時のグランド
バウンスなどの電源電位の変動に対しても基準電位を安
定に保持でき、これにより内部電源電圧を一定に保持で
きることから、内部回路8の誤動作を防止できる。ま
た、電源電圧の変動分は抵抗素子R1における電位降下
の変動と抵抗素子R2におけるそれとに分割されること
により直接VSSの変動とはならないため、外部信号レベ
ルと内部信号レベルとの不整合に対するマージンを拡大
でき、誤動作を防止できる利点がある。
As described above, according to this embodiment, the internal circuit 8 is supplied with only the plurality of converted potentials V DD and V SS and the supply of the power source potential V CC and the ground potential which are externally supplied. Is provided between the external power supply potential V CC and the ground potential, and a plurality of reference potential generation circuits (in this example, the load potentials R1 and R2 are connected in series on the power supply potential side and the ground potential side, respectively) are provided. 2) are generated and a plurality of converted potentials are supplied based on these reference potentials, so that reference is made even for fluctuations in power supply potential such as ground bounce during simultaneous output switching. Since the potential can be held stably and the internal power supply voltage can be held constant, malfunction of the internal circuit 8 can be prevented. Further, since the fluctuation of the power supply voltage is divided into the fluctuation of the potential drop in the resistance element R1 and the fluctuation of the potential drop in the resistance element R2, the fluctuation of V SS does not directly occur, so that the mismatch between the external signal level and the internal signal level can be prevented. There is an advantage that the margin can be expanded and malfunction can be prevented.

【0026】[0026]

【発明の効果】以上説明したように、本発明の半導体回
路装置によれば、同時出力スイッチング時のグランドバ
ウンスなどの電源電位の変動に対しても基準電位を安定
に保持でき、その結果、内部電源電圧を一定に保持で
き、内部回路の誤動作を防止できる。また、外部信号レ
ベルと内部信号レベルとの不整合に対するマージンを拡
大でき、ひいては誤動作の防止を図れる利点がある。
As described above, according to the semiconductor circuit device of the present invention, the reference potential can be stably maintained even with respect to fluctuations in the power supply potential such as ground bounce during simultaneous output switching, and as a result, internal The power supply voltage can be kept constant, and malfunction of internal circuits can be prevented. Further, there is an advantage that the margin for the mismatch between the external signal level and the internal signal level can be expanded, and thus the malfunction can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体回路装置の一例を示す回路
図である。
FIG. 1 is a circuit diagram showing an example of a semiconductor circuit device according to the present invention.

【図2】図1の回路の電源電位変動についての説明図で
ある。
FIG. 2 is an explanatory diagram of power supply potential fluctuations in the circuit of FIG.

【図3】従来の半導体回路装置を示す回路図である。FIG. 3 is a circuit diagram showing a conventional semiconductor circuit device.

【図4】図3の回路の電源電位変動についての説明図で
ある。
FIG. 4 is an explanatory diagram of power supply potential fluctuations in the circuit of FIG.

【符号の説明】[Explanation of symbols]

1〜5…nMOSFET 6…pMOSFET 7,9…オペアンプ 8…内部回路 R1,R2…抵抗素子 Z1〜Z6…寄生インピーダンス成分 C…外部負荷容量 VCC…外部電源電圧 GND…接地 VDD,VSS…内部基準電圧1 to 5 ... nMOSFET 6 ... pMOSFET 7, 9 ... Operational amplifier 8 ... Internal circuit R1, R2 ... Resistor element Z1 to Z6 ... Parasitic impedance component C ... External load capacitance V CC ... External power supply voltage GND ... Ground V DD , V SS ... Internal reference voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部から供給される電源電位より変換し
た電位を内部回路に供給して動作させる半導体回路装置
であって、 外部電源電位を複数の内部電源電位に変換する変換手段
を有し、 内部回路には、上記変換手段による複数の内部電源電位
のみ供給する半導体回路装置。
1. A semiconductor circuit device for supplying a potential converted from an externally supplied power potential to an internal circuit to operate, the conversion circuit having a conversion means for converting the external power potential into a plurality of internal power potentials. A semiconductor circuit device for supplying only a plurality of internal power supply potentials by the conversion means to the internal circuit.
【請求項2】 上記変換手段は、一定の電位降下を生じ
る電位降下手段と、上記電位降下手段と外部電源電位お
よび接地電位との間にそれぞれ接続された負荷手段とか
らなり複数の基準電位を発生する基準電位発生回路、並
び上記基準電位発生回路により発生された複数の基準電
位に基づいて複数の変換した電位を内部回路に供給する
手段により構成されている請求項1記載の半導体回路装
置。
2. The conversion means comprises a potential drop means for causing a constant potential drop, and load means respectively connected between the potential drop means and an external power source potential and a ground potential. 2. The semiconductor circuit device according to claim 1, further comprising: a reference potential generating circuit for generating; and a means for supplying a plurality of converted potentials based on a plurality of reference potentials generated by the reference potential generating circuit to an internal circuit.
JP7207982A 1995-08-15 1995-08-15 Semiconductor circuit device Pending JPH0956066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7207982A JPH0956066A (en) 1995-08-15 1995-08-15 Semiconductor circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7207982A JPH0956066A (en) 1995-08-15 1995-08-15 Semiconductor circuit device

Publications (1)

Publication Number Publication Date
JPH0956066A true JPH0956066A (en) 1997-02-25

Family

ID=16548726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7207982A Pending JPH0956066A (en) 1995-08-15 1995-08-15 Semiconductor circuit device

Country Status (1)

Country Link
JP (1) JPH0956066A (en)

Similar Documents

Publication Publication Date Title
JP3315652B2 (en) Current output circuit
US7342420B2 (en) Low power output driver
US10454466B1 (en) Biasing cascode transistors of an output buffer circuit for operation over a wide range of supply voltages
US8154271B2 (en) Semiconductor integrated circuit device
US7276961B2 (en) Constant voltage outputting circuit
JPH04291608A (en) Power supply circuit
US6977523B2 (en) Voltage level shifting circuit
JP3680122B2 (en) Reference voltage generation circuit
KR0126911B1 (en) Circuit and method for voltage reference generating
JPH11338559A (en) Constant voltage circuit
JP4920398B2 (en) Voltage generation circuit
US7605654B2 (en) Telescopic operational amplifier and reference buffer utilizing the same
US6380792B1 (en) Semiconductor integrated circuit
US6583669B1 (en) Apparatus and method for a compact class AB turn-around stage with low noise, low offset, and low power consumption
KR0163728B1 (en) Constant voltage generating circuit comprising bi-mos
US20070159557A1 (en) Semiconductor integrated circuit
US6525602B1 (en) Input stage for a buffer with negative feed-back
JPH05507576A (en) Low standby current intermediate DC voltage generator
US6975168B2 (en) Drive circuit
US5361000A (en) Reference potential generating circuit
JPH0956066A (en) Semiconductor circuit device
JP3386661B2 (en) Output buffer
US7961037B2 (en) Intermediate potential generation circuit
US6859092B2 (en) Method and low voltage CMOS circuit for generating voltage and current references
US4616172A (en) Voltage generator for telecommunication amplifier