JPH0955453A - Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture - Google Patents

Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture

Info

Publication number
JPH0955453A
JPH0955453A JP20721595A JP20721595A JPH0955453A JP H0955453 A JPH0955453 A JP H0955453A JP 20721595 A JP20721595 A JP 20721595A JP 20721595 A JP20721595 A JP 20721595A JP H0955453 A JPH0955453 A JP H0955453A
Authority
JP
Japan
Prior art keywords
carbon
substrate
glassy carbon
glassy
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20721595A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
哲雄 鈴木
Kazuo Muramatsu
一生 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20721595A priority Critical patent/JPH0955453A/en
Publication of JPH0955453A publication Critical patent/JPH0955453A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the fault of glassy carbon layers of a low heat conductivity and to obtain a carbon substrate for chip mounting use by a method wherein the glassy carbon layers with the mirror-polished surface are respectively provided on both sides of an intermediate layer containing fibers made of graphitizable carbon and whose fiber axes are parallel to the carbon layers. SOLUTION: Glassy carbon layers 1 with the mirror-polished surface are respectively provided on both sides of an intermediate layer 3 containing fibers made of graphitizable carbon. Layers constituting the layer 3 are provided in such a way that the fiber axes of the fibers are parallel (the X- and Y- directions) to the layers 1. In the case where such a carbon substrate is manufactured, both surfaces of a layer containing fibers made of graphitizable carbon, are held between thermosetting resins to turn the sheet into a composite sheet, the composite sheet is heat-treated at 1200 deg.C or higher in an inert atmosphere to turn the thermosetting resin into glassy carbon layers and thereafter, the surfaces of these glassy carbon layers have only to be mirror-polished. As the thermosetting resin to be used here, a phenolic resin is preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数の半導体集積
回路チップを実装するのに適したカーボン基板、および
その様な基板を製造する為の有用な方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to a carbon substrate suitable for mounting a plurality of semiconductor integrated circuit chips, and a useful method for manufacturing such a substrate.

【0002】[0002]

【従来の技術】半導体集積回路チップ内での集積密度が
高まるにつれて、これらのチップの実装に対しても高密
度化が要求されてきている。特に近年では、半導体集積
回路チップ内での高密度化のみならず、高度に集積化さ
れたチップを高密度に実装する技術の開発が進められて
いる。こうした高密度実装化に対処する為には、複数の
半導体集積回路チップ(ベアーチップ)を基板に直接搭
載し、基板上に形成された多層配線層を介して、これら
のベアーチップ間を電気的に接続したマルチチップモジ
ュールが開発されている。
2. Description of the Related Art As the integration density in semiconductor integrated circuit chips has increased, there has been a demand for higher density mounting of these chips. In recent years, in particular, not only high densification within a semiconductor integrated circuit chip, but also development of a technique for mounting a highly integrated chip at a high density has been advanced. In order to cope with such high-density mounting, a plurality of semiconductor integrated circuit chips (bare chips) are directly mounted on a substrate, and the bare chips are electrically connected via a multilayer wiring layer formed on the substrate. A multi-chip module connected to is being developed.

【0003】上記の様なマルチチップモジュールの基板
に要求される特性としては、(a)表面が平坦で平滑で
あること、(b)半導体集積回路チップに近い熱膨張係
数を有すること、(c)高い熱伝導率であること、
(d)不純物を含まず高純度であること、(e)高い化
学的安定性を有すること、(f)軽量(比重が小さい)
であること、等が挙げられる。
The characteristics required for the substrate of the above multi-chip module are: (a) the surface is flat and smooth, (b) it has a thermal expansion coefficient close to that of a semiconductor integrated circuit chip, and (c) ) High thermal conductivity,
(D) High purity without impurities, (e) High chemical stability, (f) Light weight (small specific gravity)
And so on.

【0004】上記の様な基板の素材としては、従来では
アルミナ、窒化アルミ、炭化珪素等のセラミックス系材
料や、銅−タングステン合金、銅−モリブデン合金、コ
バール等の金属系材料が使用されているが、これまで用
いられてきた材料は、基板に要求されるすべての特性を
満足しているとは言えず、夫々下記に示す様な欠点を有
している。
As a material for the substrate as described above, ceramic materials such as alumina, aluminum nitride and silicon carbide, and metal materials such as copper-tungsten alloy, copper-molybdenum alloy and Kovar are conventionally used. However, the materials used so far cannot be said to satisfy all the properties required for the substrate, and each has the following drawbacks.

【0005】[0005]

【発明が解決しようとする課題】セラミックス系材料
は、基本的に原料を焼結して製造するものであるので粒
界が残り、また本質的に多結晶性材料であるので、高い
表面平滑性を実現することは困難である。特に、チップ
間を結ぶ多層配線の微細化に伴い、基板に求められる平
滑性はSiウエハーに近い高水準が求められる様になっ
ており、不均質なセラミックス系材料では、この様な高
水準の平滑性を達成することは困難である。またセラミ
ックス系材料では、焼結に際して少量の結合助剤を添加
する必要があるので、これに起因する不純物の混入の恐
れもある。尚セラミックス系材料のうちで、アルミナ系
材料がしばしば使用されているが、この材料では上記の
欠点に加えて、熱伝導率が基板に要求されているよりも
低いという欠点もある。
Since the ceramic material is basically manufactured by sintering raw materials, grain boundaries remain, and since it is essentially a polycrystalline material, it has high surface smoothness. Is difficult to achieve. In particular, with the miniaturization of multilayer wiring connecting chips, a high level of smoothness required of a substrate is required to be close to that of a Si wafer, and in a non-homogeneous ceramic material, such a high level of smoothness is required. Achieving smoothness is difficult. Further, in a ceramic material, it is necessary to add a small amount of a binding aid at the time of sintering, and there is a possibility that impurities resulting from this may be mixed. Of the ceramic materials, alumina materials are often used, but in addition to the above-mentioned drawbacks, this material also has the drawback that the thermal conductivity is lower than that required for the substrate.

【0006】一方、金属系材料では、一般的に熱膨張係
数が大き過ぎて、ベアーチップとの熱膨張係数の不整合
に起因する応力が、モジュールの信頼性に対して悪影響
を与えることがある。熱膨張係数が基板に近い金属系材
料を使用することも考えられるが、こうした金属系材料
は密度が高いのが一般的であり、軽量であることも特性
の一つとして要求される基板の素材としては不適切であ
る。またモリブデンやタングステン、或はそれらの合金
は、熱膨張係数の点ではそれほど問題がないと言える
が、加工性が悪いという別の欠点がある。
On the other hand, in a metal-based material, the coefficient of thermal expansion is generally too large, and the stress due to the mismatch of the coefficient of thermal expansion with the bare chip may adversely affect the reliability of the module. . It is possible to use a metal-based material whose coefficient of thermal expansion is close to that of the substrate, but such metal-based material is generally high in density, and lightweight is also a substrate material that is required as one of its characteristics. Is inappropriate as Further, molybdenum, tungsten, or alloys thereof can be said to be less problematic in terms of the coefficient of thermal expansion, but have another drawback of poor workability.

【0007】ところで炭素系材料は、その軽量、熱伝導
性、電気伝導性、熱膨張特性、高純度、機械的性質等か
ら、マルチチップモジュールの基板の素材として有力な
候補として注目されている。しかしながら、炭素系材料
として知られているもののうち高密度黒鉛材料は、表面
の平滑性に劣ること、発塵が多いことから実用的ではな
いという欠点がある。
By the way, the carbonaceous material has been attracting attention as a strong candidate as a material for the substrate of the multi-chip module because of its light weight, thermal conductivity, electrical conductivity, thermal expansion characteristics, high purity and mechanical properties. However, among the known carbonaceous materials, the high-density graphite material has a drawback that it is not practical because it has poor surface smoothness and generates a lot of dust.

【0008】一方、フェノール樹脂やフラン樹脂等の熱
硬化性樹脂を不活性雰囲気で熱処理して得られるガラス
状カーボンは、上記高密度黒鉛材料の持つ欠点がほとん
ど無く、基板材料として特に期待されている炭素系材料
である。このガラス状カーボンは、非常に均質なガラス
状物質(非晶質)であり、Siウエハー並みの高い表面
平滑性が実現できるという特徴を有しており、他の炭素
系材料に比べて優れていると言われている。しかしなが
らガラス状カーボンは、非晶質であることに起因して熱
伝導率が低く、マルチチップモジュールの基板の素材と
しては、放熱性の点で問題がある。
On the other hand, glassy carbon obtained by heat-treating a thermosetting resin such as phenol resin or furan resin in an inert atmosphere has almost no drawbacks of the above-mentioned high-density graphite material and is particularly expected as a substrate material. It is a carbon-based material. This glassy carbon is a very homogeneous glassy substance (amorphous), and has the characteristic that it can achieve high surface smoothness comparable to that of Si wafers, and is superior to other carbon-based materials. It is said that However, glassy carbon has a low thermal conductivity due to its amorphous nature, and thus has a problem in terms of heat dissipation as a material for a substrate of a multichip module.

【0009】本発明は上記の様な事情に着目してなされ
たものであって、ガラス状カーボンが有している欠点を
解消しつつ、このガラス状カーボンを有効に利用し、半
導体集積回路チップ実装用として最適なカーボン基板、
およびその様な基板を製造する為の方法を実現しようと
するものである。
The present invention has been made by paying attention to the above circumstances, and the glassy carbon is effectively utilized while eliminating the drawbacks of the glassy carbon. The most suitable carbon substrate for mounting,
And a method for manufacturing such a substrate.

【0010】[0010]

【課題を解決するための手段】上記課題を解決すること
のできた本発明とは、易黒鉛化性炭素からなる繊維を含
む中間層の両側に、表面が鏡面研磨されたガラス状カー
ボン層が設けられると共に、前記中間層を構成する層は
その繊維軸がガラス状カーボン層と平行になる様に設け
たものである点に要旨を有する半導体集積回路チップ実
装用カーボン基板である。ここで「易黒鉛化性炭素」と
は、周知の如く3000℃の様な高温で処理したときに
容易に黒鉛化する炭素の意味であり、この易黒鉛化炭素
からなる繊維の代表的なものとして、メソフェーズピッ
チを溶融紡糸し、次いで不融化および炭素化した炭素繊
維が挙げられる。また「鏡面」とは、Ra(中心線表面
粗さ)で10nm以下、Rmax(最大表面粗さ)で1
00nm以下である様な表面状態を意味する。
Means for Solving the Problems According to the present invention capable of solving the above problems, a glassy carbon layer whose surface is mirror-polished is provided on both sides of an intermediate layer containing fibers made of graphitizable carbon. The carbon substrate for mounting a semiconductor integrated circuit chip is characterized in that the layer constituting the intermediate layer is provided such that its fiber axis is parallel to the glassy carbon layer. Here, "graphitizable carbon" means, as is well known, carbon that is easily graphitized when treated at a high temperature such as 3000 ° C., and is a typical fiber of graphitizable carbon. Examples include carbon fibers obtained by melt-spinning mesophase pitch and then infusibilized and carbonized. The "mirror surface" is Ra (center line surface roughness) of 10 nm or less and Rmax (maximum surface roughness) of 1
It means a surface state such that it is not more than 00 nm.

【0011】上記の様なカーボン基板を製造するに当た
っては、易黒鉛化性炭素からなる繊維を含む層の両表面
を、熱硬化性樹脂で挟んで複合体とし、この複合体を不
活性雰囲気中で1200℃以上で熱処理して前記熱硬化
性樹脂をガラス状カーボンとした後、該ガラス状カーボ
ンの表面を鏡面研磨する様にすれば良い。
In producing the carbon substrate as described above, a thermosetting resin is sandwiched between both surfaces of a layer containing fibers made of graphitizable carbon to form a composite, and the composite is placed in an inert atmosphere. After heat-treating at 1200 ° C. or above for forming the thermosetting resin into glassy carbon, the surface of the glassy carbon may be mirror-polished.

【0012】また上記製造方法において、用いる熱硬化
性樹脂としては、フェノール樹脂が好ましい。また易黒
鉛化性炭素からなる繊維としては、メソフェーズピッチ
を溶融紡糸し、次いで不融化した後に、400〜800
℃で一次焼成されたものであることが好ましい。更に、
不活性雰囲気中で1200℃以上で熱処理した後、更に
熱間静水圧加圧処理することが好ましい。
In the above manufacturing method, the thermosetting resin used is preferably a phenol resin. Further, as the fiber made of easily graphitizable carbon, mesophase pitch is melt-spun and then infusibilized, and then 400 to 800
It is preferable that the material is primarily fired at ℃. Furthermore,
After heat treatment at 1200 ° C. or higher in an inert atmosphere, it is preferable to further perform hot isostatic pressing.

【0013】[0013]

【発明の実施の形態】ガラス状カーボンは、フェノール
樹脂、フラン樹脂、その他の熱硬化性樹脂を不活性雰囲
気中で熱処理することによって得られることは、既に良
く知られている。このガラス状カーボンは、均質な非晶
質材料であり、研磨によって非常に平滑な面、いわゆる
鏡面が得られる。そこで、こうした特性を活かして、磁
気ディスク基板やヘッドスライダー等の電子部品分野へ
の応用が進められている。
It is well known that glassy carbon can be obtained by heat-treating a phenolic resin, a furan resin or other thermosetting resin in an inert atmosphere. This glassy carbon is a homogeneous amorphous material, and a very smooth surface, a so-called mirror surface, can be obtained by polishing. Therefore, by utilizing these characteristics, application to the field of electronic components such as magnetic disk substrates and head sliders is being promoted.

【0014】本発明者らは、ガラス状カーボン材料が有
する高度の鏡面性は、半導体集積回路チップ実装用基
板、いわゆるマルチチップモジュール用基板としても、
最適のものであると考えた。前述した様な高密度実装で
は、チップ間の電気的接続を基板に形成された多層配線
層を介して行っており、多層配線層も高密度化する傾向
を示している。その結果、実装用基板の表面平滑性にお
いても、Siウエハー並みの高水準が求められつつあ
る。上記ガラス状カーボンは、その均質性からこの様な
目的に非常に適した材料であると考えられる。また熱膨
張特性、機械的強度、不純物の少なさ、化学的安定性
(腐食や変質をしない)等の特性も、高密実装用に適し
たものである。
The inventors of the present invention have found that the glass-like carbon material has a high degree of specularity as a substrate for mounting a semiconductor integrated circuit chip, that is, a so-called multi-chip module substrate.
I thought it was the best one. In the high-density mounting as described above, the electrical connection between the chips is made through the multilayer wiring layer formed on the substrate, and the multilayer wiring layer also tends to be highly densified. As a result, the surface smoothness of the mounting substrate is required to be as high as that of a Si wafer. The above-mentioned glassy carbon is considered to be a material very suitable for such a purpose because of its homogeneity. Further, the properties such as thermal expansion characteristics, mechanical strength, small amount of impurities, and chemical stability (no corrosion or deterioration) are suitable for high-density mounting.

【0015】ところが前述した様に、ガラス状カーボン
は非晶質材料であるが故に、熱伝導率は3〜8Wm-1
-1程度であり、黒鉛系材料に比べて低いという欠点があ
る。例えば、高温、高圧の熱間静水圧加圧処理(HIP
処理)を施し、嵩密度を1.8g/cm3 にまで緻密化
したものでも、熱伝導率は10Wm-1-1を大きく上回
ることはない。この熱伝導率の悪さは、ガラス状カーボ
ンの高密度実装用基板としての適用を妨げる唯一の欠点
になっていた。
However, as described above, since glassy carbon is an amorphous material, its thermal conductivity is 3 to 8 Wm -1 K.
It is about -1, which is a drawback compared to graphite materials. For example, hot isostatic pressing at high temperature and high pressure (HIP
The heat conductivity does not greatly exceed 10 Wm −1 K −1 even if the bulk density is increased to 1.8 g / cm 3 by the treatment. This poor thermal conductivity has been the only drawback that prevents the application of glassy carbon as a substrate for high-density mounting.

【0016】一方、黒鉛系の炭素材料は、結晶構造に起
因した大きな異方性を有するものの、その六角網目に沿
った方向、即ち結晶のab面内方向の熱伝導率は、20
00Wm-1-1にも及び、アルミや銅等の金属材料をも
凌ぐものである。メソフェーズピッチ系炭素繊維に代表
される易黒鉛性炭素繊維は、繊維軸方向に黒鉛の六角網
目が配列した構造を有し、その結果、繊維軸方向に非常
に高い熱伝導率を示すものとなる。また最終熱処理温度
によって、結晶性、即ち黒鉛化度が決定され、それに応
じて熱伝導率を変えることもできるという特徴がある。
On the other hand, although the graphite-based carbon material has a large anisotropy due to the crystal structure, the thermal conductivity in the direction along the hexagonal network, that is, in the ab plane direction of the crystal is 20.
It is as high as 00 Wm -1 K -1 , and is superior to metal materials such as aluminum and copper. Graphitizable carbon fibers represented by mesophase pitch carbon fibers have a structure in which hexagonal meshes of graphite are arranged in the fiber axis direction, and as a result, extremely high thermal conductivity is exhibited in the fiber axis direction. . The final heat treatment temperature determines the crystallinity, that is, the degree of graphitization, and the thermal conductivity can be changed accordingly.

【0017】本発明は、ガラス状カーボンと易黒鉛化性
炭素繊維とを複合化することによって、両方の材料が持
つ特徴を同時に発現させ、半導体集積回路チップ実装用
基板として最適なカーボン基板が実現できたのである。
即ち、基板表面部分をガラス状カーボンで構成し、その
均質性を活用して高度な平滑性を確保すると共に、内部
に易黒鉛化性炭素からなる繊維を含む層(中間層)を形
成することによって、基板全体としての高い熱伝導性を
確保するものである。
According to the present invention, by combining glassy carbon and easily graphitizable carbon fiber, the characteristics of both materials can be exhibited at the same time, and a carbon substrate most suitable as a substrate for mounting a semiconductor integrated circuit chip is realized. I was able to do it.
That is, the substrate surface part is composed of glassy carbon, its homogeneity is utilized to secure a high degree of smoothness, and a layer (intermediate layer) containing fibers made of graphitizable carbon is formed inside. This ensures high thermal conductivity of the substrate as a whole.

【0018】図1は、本発明の基板構成を示す概略説明
図であり、図中1はガラス状カーボン層、2は易黒鉛化
性炭素からなる繊維を含む中間層、3はガラス状カーボ
ン層1の鏡面研磨された表面を夫々示す。また中間層3
を構成する層は、その繊維軸がガラス状カーボン層1と
平行(図1におけるX,Y方向)となる様に設けられて
いる。
FIG. 1 is a schematic explanatory view showing the constitution of the substrate of the present invention, in which 1 is a glassy carbon layer, 2 is an intermediate layer containing fibers made of graphitizable carbon, and 3 is a glassy carbon layer. 1 shows a mirror-polished surface of No. 1 respectively. Also the middle layer 3
The layers constituting the are provided so that their fiber axes are parallel to the glassy carbon layer 1 (X and Y directions in FIG. 1).

【0019】易黒鉛化性炭素からなる繊維としては、一
種の液晶であるメソフェーズピッチを溶融紡糸した後、
不融化し、次いで不活性雰囲気で熱処理したいわゆるメ
ソフェーズピッチ系炭素繊維が代表的なものとして挙げ
られる。このようなメソフェーズピッチから作成された
繊維は、熱処理によりピッチ中の芳香族水素が脱離し、
処理温度が1200℃で水素含有量が極僅かとなり、実
質的に炭素への転換がほぼ終了する。そしてそれに伴
い、種々の特性も炭素特有のものを示す様になる。この
とき1200℃を超える様な温度での熱処理では、主に
化学変化から、物理的な黒鉛結晶構造の形成を担うこと
になる。この様な熱処理による黒鉛結晶構造の形成に伴
い、繊維軸方向の熱伝導率も高くなる。常圧下での熱処
理温度の上限に近い2800℃程度になると、熱伝導率
は330Wm-1-1程度と金属並みとなる。
As the fiber made of easily graphitizable carbon, mesophase pitch which is a kind of liquid crystal is melt-spun and
Typical examples are so-called mesophase pitch-based carbon fibers that have been infusibilized and then heat-treated in an inert atmosphere. Fibers made from such mesophase pitch desorb aromatic hydrogen in the pitch by heat treatment,
At the treatment temperature of 1200 ° C., the hydrogen content becomes extremely small, and the conversion to carbon is substantially completed. Along with this, various characteristics also become unique to carbon. At this time, the heat treatment at a temperature exceeding 1200 ° C. is responsible for the physical formation of the graphite crystal structure mainly due to the chemical change. With the formation of the graphite crystal structure by such heat treatment, the thermal conductivity in the fiber axis direction also increases. At about 2800 ° C., which is close to the upper limit of the heat treatment temperature under normal pressure, the thermal conductivity is about 330 Wm −1 K −1, which is similar to that of metal.

【0020】ガラス状カーボンは、一般に熱硬化性樹脂
を不活性雰囲気中で熱処理することにより製作すること
ができるが、本発明の基板でガラス状カーボン層1とし
て用いるものとしては、フェノール樹脂を熱硬化性樹脂
原料とするガラス状カーボンであることが好ましい。即
ち、フェノール樹脂は、炭化収率が60%を超え、種々
の熱硬化性樹脂のなかで最も高い部類に属するので、好
ましい。
The glass-like carbon can be generally produced by heat-treating a thermosetting resin in an inert atmosphere. As the glass-like carbon layer 1 used in the substrate of the present invention, phenol resin is used as the heat-resistant resin. It is preferable to use glassy carbon as a curable resin material. That is, the phenol resin is preferable because it has a carbonization yield of more than 60% and belongs to the highest category among various thermosetting resins.

【0021】上記の様なカーボン基板を製造するに当た
っては、易黒鉛化性炭素からなる繊維を含む層の両表面
を、熱硬化性樹脂で挟んで複合体とし、この複合体を不
活性雰囲気中で1200℃以上で熱処理して前記熱硬化
性樹脂をガラス状カーボンとした後、該ガラス状カーボ
ンの表面を鏡面研磨する様にすれば良い。このとき熱処
理温度は、1200℃以上とする必要があるが、これは
次の理由からである。即ち、熱処理温度が1200℃未
満であると、フェノール樹脂の炭化が不十分になり、特
にガラス状カーボンの形成過程で発生するミクロな開気
孔が十分に閉気孔化していないので、後述するHIP処
理を施しても微細化が効率良く進まない。また上述した
様に、メソフェーズピッチ系炭素繊維の物理的な黒鉛結
晶構造の形成を担うという観点からしても、1200℃
以上とする必要がある。
In producing the carbon substrate as described above, both surfaces of a layer containing fibers made of graphitizable carbon are sandwiched by thermosetting resins to form a composite, and the composite is placed in an inert atmosphere. After heat-treating at 1200 ° C. or above for forming the thermosetting resin into glassy carbon, the surface of the glassy carbon may be mirror-polished. At this time, the heat treatment temperature needs to be 1200 ° C. or higher, for the following reason. That is, when the heat treatment temperature is less than 1200 ° C., the carbonization of the phenol resin becomes insufficient, and the microscopic open pores particularly generated in the process of forming the glassy carbon are not sufficiently closed pores. Even if it is applied, miniaturization does not proceed efficiently. Further, as described above, from the viewpoint of being responsible for the physical formation of the graphite crystal structure of the mesophase pitch-based carbon fiber, 1200 ° C.
It is necessary to do above.

【0022】一方、熱処理温度の上限については、特に
限定されるものではない。但し、HIP処理を施す場合
には、熱処理温度は2000℃以下であることが好まし
い。即ち、熱処理温度が2000℃を超えると、物理的
な構造変化が進行し過ぎるので、後述するHIP処理を
施しても微細化できない状態になってしまう。
On the other hand, the upper limit of the heat treatment temperature is not particularly limited. However, when the HIP treatment is performed, the heat treatment temperature is preferably 2000 ° C. or lower. That is, when the heat treatment temperature exceeds 2000 ° C., the physical structural change proceeds too much, and even if the HIP treatment described later is performed, the fineness cannot be obtained.

【0023】尚上記製造工程においては、「熱硬化性樹
脂で挟んで複合体とする」に際し、後記実施例に示す様
に、熱硬化性樹脂を予め加熱・加圧して板を成形し、こ
れで前記中間層と挟む様にしても良いが、熱硬化性樹脂
で中間層を挟んで一体的に加熱で加圧して成形する様に
しても良い。
In the above manufacturing process, at the time of "sandwiching between thermosetting resins to form a composite", the thermosetting resin is preliminarily heated and pressed to form a plate, as shown in Examples below. Alternatively, the intermediate layer may be sandwiched with the intermediate layer, or the intermediate layer may be sandwiched with a thermosetting resin so as to be integrally heated and pressed.

【0024】ところで本発明の基板の中間層2は、少な
くとも易黒鉛化性炭素からなる繊維を含むことによって
その機能を達成するものであるが、この中間層2は該繊
維以外は例えばガラス状カーボンによって構成される。
この中間層2を構成するガラス状カーボンは、ガラス状
カーボン層1と同様に、フェノール樹脂を熱硬化性樹脂
原料とするガラス状カーボンであることが好ましい。即
ち、フェノール樹脂を熱硬化性樹脂原料とするガラス状
カーボンは、炭化による重量減少が150〜800℃の
広い温度範囲に亘って穏やかに起こるので、炭素繊維と
複合化して中間層2とした場合に、炭化過程での収縮が
他の樹脂に比べて小さく、且つ緩やかであるので、炭素
繊維とマトリクスとしてのガラス状カーボンとの間の応
力の発生を極力抑えることができる。
By the way, the intermediate layer 2 of the substrate of the present invention achieves its function by containing at least a fiber made of graphitizable carbon. The intermediate layer 2 is made of, for example, glassy carbon other than the fiber. Composed by.
Like the glassy carbon layer 1, the glassy carbon constituting the intermediate layer 2 is preferably glassy carbon made of a phenol resin as a thermosetting resin material. That is, in the case of glassy carbon using phenolic resin as a thermosetting resin raw material, the weight loss due to carbonization occurs gently over a wide temperature range of 150 to 800 ° C. In addition, since the shrinkage in the carbonization process is smaller and gentler than that of other resins, it is possible to suppress the occurrence of stress between the carbon fibers and the glassy carbon as the matrix as much as possible.

【0025】従って、中間層2を構成するガラス状カー
ボンと、ガラス状カーボン層1を構成するガラス状カー
ボンを、フェノール樹脂を熱硬化性樹脂原料とするガラ
ス状カーボンとするのが、最も好ましい実施形態であ
る。但し、本発明の基板においては、中間層2を構成す
るガラス状カーボンと、ガラス状カーボン層1を構成す
るガラス状カーボンは、必ずしも同一の熱硬化性樹脂原
料から形成する必要はないことは勿論である。
Therefore, it is most preferable that the glassy carbon constituting the intermediate layer 2 and the glassy carbon constituting the glassy carbon layer 1 are glassy carbons using a phenol resin as a thermosetting resin material. It is a form. However, in the substrate of the present invention, the glassy carbon forming the intermediate layer 2 and the glassy carbon forming the glassy carbon layer 1 do not necessarily have to be formed from the same thermosetting resin raw material. Is.

【0026】本発明で用いる炭素繊維としては、メソフ
ィーズピッチを溶融紡糸した後、不融化し、次いで不活
性雰囲気で熱処理した繊維のなかで、熱処理温度(一次
焼成温度)が400〜800℃のものであるのが好まし
い。不融化後のピッチ繊維を400〜800℃で熱処理
したものは、有機物であるピッチと無機物である炭素と
の中間状態に相当する。その為に、複合化するのに十分
な強度を有すると共に、複合化後の熱処理で繊維自体が
熱硬化性樹脂に合わせて収縮することができる。その結
果、繊維とマトリクスとの間の収縮を更に小さくするこ
とができ、内部での微細な欠陥の発生を抑制することが
できる。この様な微細な欠陥の発生を抑制することによ
って、基板の熱伝導率を高く保つことができるのであ
る。
As the carbon fiber used in the present invention, among the fibers obtained by melt-spinning mesophase pitch, infusibilized, and then heat treated in an inert atmosphere, the heat treatment temperature (primary firing temperature) is 400 to 800 ° C. It is preferably one. Heat treatment of the infusibilized pitch fiber at 400 to 800 ° C. corresponds to an intermediate state between the pitch which is an organic substance and the carbon which is an inorganic substance. Therefore, the fiber itself has sufficient strength to be composited, and the fiber itself can be shrunk in accordance with the thermosetting resin by the heat treatment after the composition. As a result, the contraction between the fibers and the matrix can be further reduced, and the generation of minute defects inside can be suppressed. By suppressing the generation of such fine defects, the thermal conductivity of the substrate can be kept high.

【0027】不融化後のピッチ繊維の熱処理温度が、4
00℃未満の場合には、炭化反応が不十分になって複合
化に耐えるだけの繊維強度が発現されない。また熱処理
温度が800℃を超えると、炭化反応が進行し過ぎるの
で、複合後の熱処理での収縮しろが小さくなり、マトリ
クスとの間での応力の発生を抑制することが困難にな
る。尚この一次焼成温度の好ましい範囲は、500〜6
50℃程度である。
The heat treatment temperature of the pitch fiber after infusibilization is 4
When the temperature is lower than 00 ° C., the carbonization reaction is insufficient and the fiber strength sufficient to withstand complexing is not expressed. Further, when the heat treatment temperature exceeds 800 ° C., the carbonization reaction proceeds too much, so that the shrinkage margin in the heat treatment after compounding becomes small and it becomes difficult to suppress the occurrence of stress between the matrix and the matrix. The preferable range of the primary firing temperature is 500 to 6
It is about 50 ° C.

【0028】本発明の製造方法においては、常圧下、不
活性雰囲気中で熱処理した後、更にHIP処理すること
が好ましい。この処理を施すことによって、マトリクス
であるガラス状カーボン自体の微細な閉気孔を減少させ
ると共に、マトリクスと繊維との密着性も基板全体が微
細化されることによって改善され、これらの効果とし
て、基板の熱伝導率を更に高めることができる。
In the production method of the present invention, it is preferable that after heat treatment under an atmospheric pressure in an inert atmosphere, further HIP treatment is carried out. By performing this treatment, the fine closed pores of the glassy carbon itself, which is the matrix, are reduced, and the adhesion between the matrix and the fibers is also improved by miniaturizing the whole substrate. The thermal conductivity of can be further increased.

【0029】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に適合し得る範囲で適当に変更
を加えて実施することも勿論可能であり、それらはいず
れも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples. The following examples are not intended to limit the present invention, and the present invention can be carried out with appropriate modifications within a range compatible with the gist of the preceding and the following. It goes without saying that all of them are within the technical scope of the present invention.

【0030】[0030]

【実施例】 実施例1 メソフェーズピッチ系炭素繊維の平織り布に、粒状フェ
ノール樹脂をエタノールに溶解させた後含漬し、プレプ
リグを作製した。このプレプリグの両表面を、粒状フェ
ノール樹脂を加熱・加圧下で成形した板で挟み、更に加
熱・加圧下で一体化した。この様な複合体を人造黒鉛板
で挟み、不活性雰囲気で1500℃まで炭化焼成した。
Example 1 A plain woven cloth of mesophase pitch carbon fibers was dissolved in ethanol and then impregnated with granular phenolic resin to prepare a prepreg. Both surfaces of this prepreg were sandwiched between plates formed by molding granular phenol resin under heat and pressure, and further integrated under heat and pressure. Such a composite was sandwiched between artificial graphite plates and carbonized and fired at 1500 ° C. in an inert atmosphere.

【0031】こうして作製したガラス状カーボン複合体
の表面を、粒径#2000のGC(ガラス状カーボン)
砥石で両面をラッピングしたのち、粒径:50nmのγ
アルミナ砥石で仕上げ研磨を施した。得られた基板の表
面粗度を、非接触光学式表面粗さ計で測定したところ、
Raで1.2nm、Rmaxで11nmであった。また
基板の面内方向(前記X,Y方向)の熱伝導率は、35
Wm-1-1であった。
The surface of the glassy carbon composite material thus prepared was subjected to GC (glassy carbon) having a particle size of # 2000.
After lapping both sides with a grindstone, γ of particle size: 50 nm
Finished polishing was performed with an alumina grindstone. The surface roughness of the obtained substrate was measured with a non-contact optical surface roughness meter,
Ra was 1.2 nm and Rmax was 11 nm. The thermal conductivity of the substrate in the in-plane direction (the X and Y directions) is 35.
It was Wm -1 K -1 .

【0032】実施例2 一次焼成温度を550℃としたメソフェーズピッチ系炭
素繊維のフェルトに、粒状フェノール樹脂をエタノール
に溶解させた後含漬し、プレプリグを作製した。このプ
レプリグの両表面を、粒状フェノール樹脂を加熱・加圧
下で成形した板で挟み、更に加熱・加圧下で一体化し
た。この様な複合体を、人造黒鉛板に挟み、不活性雰囲
気中で1600℃で炭化焼成した。
Example 2 A granular prepreg resin was dissolved in ethanol and immersed in a felt of mesophase pitch carbon fiber having a primary firing temperature of 550 ° C. to prepare a prepreg. Both surfaces of this prepreg were sandwiched between plates formed by molding granular phenol resin under heat and pressure, and further integrated under heat and pressure. Such a composite was sandwiched between artificial graphite plates and carbonized and baked at 1600 ° C. in an inert atmosphere.

【0033】こうして作製したガラス状カーボン複合体
の表面を、粒径#2000のGC砥石で両面をラッピン
グしたのち、粒径:50nmのγアルミナ砥石で仕上げ
研磨を施した。得られた基板の表面粗度を非接触光学式
表面粗さ計で測定したところ、Raで1.2nm、Rm
axで11nmであった。また基板の面内方向の熱伝導
率は、40Wm-1-1であった。
The surface of the glassy carbon composite material thus produced was lapped on both sides with a GC grindstone having a particle size of # 2000, and then subjected to final polishing with a γ-alumina grindstone having a particle size of 50 nm. When the surface roughness of the obtained substrate was measured by a non-contact optical surface roughness meter, Ra was 1.2 nm, Rm
It was 11 nm in ax. The thermal conductivity of the substrate in the in-plane direction was 40 Wm -1 K -1 .

【0034】実施例3 一次焼成温度を550℃としたメソフェーズピッチ系炭
素繊維のフェルトに、粒状フェノール樹脂をエタノール
に溶解させた後含漬し、プレプリグを作製した。このプ
レプリグの両表面を、粒状フェノール樹脂を加熱・加圧
下で成形した板で挟み、更に加熱・加圧下で一体化し
た。この様な複合体を、人造黒鉛板に挟み、不活性雰囲
気中で1600℃で炭化焼成した。この基板を、更にア
ルゴンを加熱媒体として、1900kgf/cm2 の等
方圧下、2600℃で熱処理(HIP処理)を施した。
Example 3 A granular prepreg resin was dissolved in ethanol and then immersed in a felt of mesophase pitch carbon fiber having a primary firing temperature of 550 ° C. to prepare a prepreg. Both surfaces of this prepreg were sandwiched between plates formed by molding granular phenol resin under heat and pressure, and further integrated under heat and pressure. Such a composite was sandwiched between artificial graphite plates and carbonized and baked at 1600 ° C. in an inert atmosphere. This substrate was further subjected to heat treatment (HIP treatment) at 2600 ° C. under an isotropic pressure of 1900 kgf / cm 2 using argon as a heating medium.

【0035】こうして作製したガラス状カーボン複合体
の表面を、粒径#2000のGC砥石で両面をラッピン
グしたのち、粒径:50nmのγアルミナ砥石で仕上げ
研磨を施した。得られた基板の表面粗度を非接触光学式
表面粗さ計で測定したところ、Raで1.0nm、Rm
axで10nmであった。また基板の面内方向の熱伝導
率は、120Wm-1-1であった。
The surface of the glassy carbon composite material thus produced was lapped on both sides with a GC grindstone with a particle size of # 2000, and then subjected to finish polishing with a γ-alumina grindstone with a particle size of 50 nm. When the surface roughness of the obtained substrate was measured by a non-contact optical surface roughness meter, Ra was 1.0 nm, Rm
It was 10 nm in ax. The thermal conductivity of the substrate in the in-plane direction was 120 Wm -1 K -1 .

【0036】実施例4 メソフェーズピッチ系炭素繊維の平織り布に、粒状フェ
ノール樹脂をエタノールに溶解させた後含漬し、プレプ
リグを作製した。このプレプリグの両表面を、粒状フェ
ノール樹脂を加熱・加圧下で成形した板で挟み、更に加
熱・加圧下で一体化した。この様な複合体を、人造黒鉛
板に挟み、不活性雰囲気中で1200℃で炭化焼成し
た。この基板を、更に2600℃で熱処理した。
Example 4 A plain woven cloth of mesophase pitch carbon fibers was dissolved in ethanol with granular phenol resin and then impregnated to prepare a prepreg. Both surfaces of this prepreg were sandwiched between plates formed by molding granular phenol resin under heat and pressure, and further integrated under heat and pressure. Such a composite was sandwiched between artificial graphite plates and carbonized and fired at 1200 ° C. in an inert atmosphere. This substrate was further heat-treated at 2600 ° C.

【0037】こうして作製したガラス状カーボン複合体
の表面を、粒径#2000のGC砥石で両面をラッピン
グしたのち、粒径:50nmのγアルミナ砥石で仕上げ
研磨を施した。得られた基板の表面粗度を非接触光学式
表面粗さ計で測定したところ、Raで1.2nm、Rm
axで11nmであった。また基板の面内方向の熱伝導
率は、75Wm-1-1であった。
The surface of the glassy carbon composite material thus prepared was lapped on both sides with a GC grindstone having a particle size of # 2000, and then subjected to final polishing with a γ-alumina grindstone having a particle size of 50 nm. When the surface roughness of the obtained substrate was measured by a non-contact optical surface roughness meter, Ra was 1.2 nm, Rm
It was 11 nm in ax. The thermal conductivity of the substrate in the in-plane direction was 75 Wm -1 K -1 .

【0038】比較例1 粒状フェノール樹脂を加熱・加圧下で成形した板を、人
造黒鉛板に挟んで不活性雰囲気中で1600℃で熱処理
した。こうして作製した基板を、粒径#2000のGC
砥石で両面をラッピングしたのち、粒径:50nmのγ
アルミナ砥石で仕上げ研磨を施した。得られた基板の表
面粗度を非接触光学式表面粗さ計で測定したところ、R
aで1.0nm、Rmaxで10nmであった。また基
板の面内方向の熱伝導率は、5Wm-1-1であった。
Comparative Example 1 A plate obtained by molding a granular phenol resin under heat and pressure was sandwiched between artificial graphite plates and heat-treated at 1600 ° C. in an inert atmosphere. The substrate manufactured in this manner was used as a GC with a grain size of # 2000.
After lapping both sides with a grindstone, γ of particle size: 50 nm
Finished polishing was performed with an alumina grindstone. When the surface roughness of the obtained substrate was measured with a non-contact optical surface roughness meter, R
a was 1.0 nm and Rmax was 10 nm. The thermal conductivity of the substrate in the in-plane direction was 5 Wm -1 K -1 .

【0039】比較例2 粒状フェノール樹脂を加熱・加圧下で成形した板を、人
造黒鉛板に挟んで不活性雰囲気中で1600℃で熱処理
した。この基板を、更にアルゴンを加熱媒体として、1
900kgf/cm2 の等方圧下、2600℃で熱処理
(HIP処理)を施した。
Comparative Example 2 A plate obtained by molding a granular phenol resin under heat and pressure was sandwiched between artificial graphite plates and heat-treated at 1600 ° C. in an inert atmosphere. This substrate is further heated with argon as a heating medium.
Heat treatment (HIP treatment) was performed at 2600 ° C. under an isotropic pressure of 900 kgf / cm 2 .

【0040】こうして作制したこの基板を、粒径#20
00のGC砥石で両面をラッピングしたのち、粒径:5
0nmのγアルミナ砥石で仕上げ研磨を施した。得られ
た基板の表面粗度を非接触光学式表面粗さ計で測定した
ところ、Raで1.0nm、Rmaxで10nmであっ
た。また基板の面内方向の熱伝導率は、9Wm-1-1
あった。
This substrate thus prepared was treated with a grain size of # 20.
After lapping both sides with 00 GC grindstone, particle size: 5
Final polishing was performed with a 0 nm γ-alumina grindstone. When the surface roughness of the obtained substrate was measured by a non-contact optical surface roughness meter, Ra was 1.0 nm and Rmax was 10 nm. The thermal conductivity of the substrate in the in-plane direction was 9 Wm -1 K -1 .

【0041】[0041]

【発明の効果】本発明は以上の様に構成されており、易
黒鉛化性炭素からなる繊維を含む中間層をガラス状カー
ボン層間に介在させることによって、ガラス状カーボン
が有している欠点を解消しつつ、半導体集積回路チップ
実装用として最適なカーボン基板が実現できた。
EFFECT OF THE INVENTION The present invention is constituted as described above, and by interposing the intermediate layer containing the fiber made of graphitizable carbon between the glassy carbon layers, the drawbacks of the glassy carbon are While eliminating these problems, we were able to realize an optimal carbon substrate for mounting semiconductor integrated circuit chips.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基板の構成を示す概略説明図である。FIG. 1 is a schematic explanatory diagram showing a configuration of a substrate of the present invention.

【符号の説明】[Explanation of symbols]

1 ガラス状カーボン層 2 中間層 3 鏡面研磨された表面 1 glassy carbon layer 2 intermediate layer 3 mirror-polished surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 易黒鉛化性炭素からなる繊維を含む中間
層の両側に、表面が鏡面研磨されたガラス状カーボン層
が設けられると共に、前記中間層を構成する層はその繊
維軸がガラス状カーボン層と平行になる様に設けたもの
であることを特徴とする半導体集積回路チップ実装用カ
ーボン基板。
1. A glassy carbon layer having a mirror-polished surface is provided on both sides of an intermediate layer containing a fiber made of graphitizable carbon, and the fiber axis of the layer constituting the intermediate layer is glassy. A carbon substrate for mounting a semiconductor integrated circuit chip, which is provided so as to be parallel to the carbon layer.
【請求項2】 易黒鉛化性炭素からなる繊維が、メソフ
ェーズピッチを溶融紡糸し、次いで不融化および炭素化
した炭素繊維である請求項1に記載の半導体集積回路チ
ップ実装用カーボン基板。
2. The carbon substrate for mounting a semiconductor integrated circuit chip according to claim 1, wherein the fiber made of graphitizable carbon is a carbon fiber obtained by melt-spinning mesophase pitch, and then infusibilized and carbonized.
【請求項3】 請求項1または2に記載のカーボン基板
を製造するに当たり、易黒鉛化性炭素からなる繊維を含
む層の両表面を、熱硬化性樹脂で挟んで複合体とし、こ
の複合体を不活性雰囲気中で1200℃以上で熱処理し
て前記熱硬化性樹脂をガラス状カーボンとした後、該ガ
ラス状カーボンの表面を鏡面研磨することを特徴とする
半導体集積回路チップ実装用カーボン基板の製造方法。
3. In manufacturing the carbon substrate according to claim 1 or 2, both surfaces of a layer containing fibers made of graphitizable carbon are sandwiched by thermosetting resins to form a composite. Of a carbon substrate for mounting a semiconductor integrated circuit chip, comprising: heat-treating a glassy carbon at 1200 ° C. or higher in an inert atmosphere to form glassy carbon, and then mirror-polishing the surface of the glassy carbon. Production method.
【請求項4】 前記熱硬化性樹脂がフェノール樹脂であ
る請求項3に記載の製造方法。
4. The method according to claim 3, wherein the thermosetting resin is a phenol resin.
【請求項5】 易黒鉛化性炭素からなる繊維が、メソフ
ェーズピッチを溶融紡糸し、次いで不融化した後に、4
00〜800℃で一次焼成されたものである請求項3ま
たは4に記載の製造方法。
5. Fibers made of easily graphitizable carbon are melt-spun mesophase pitch and then infusibilized after 4
The production method according to claim 3 or 4, which is a product that is primarily fired at 00 to 800 ° C.
【請求項6】 不活性雰囲気中で1200℃以上で熱処
理した後、更に熱間静水圧加圧処理する請求項3〜5の
いずれかに記載の製造方法。
6. The production method according to claim 3, wherein after the heat treatment at 1200 ° C. or higher in an inert atmosphere, a hot isostatic pressing treatment is further performed.
JP20721595A 1995-08-14 1995-08-14 Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture Withdrawn JPH0955453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20721595A JPH0955453A (en) 1995-08-14 1995-08-14 Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20721595A JPH0955453A (en) 1995-08-14 1995-08-14 Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture

Publications (1)

Publication Number Publication Date
JPH0955453A true JPH0955453A (en) 1997-02-25

Family

ID=16536154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20721595A Withdrawn JPH0955453A (en) 1995-08-14 1995-08-14 Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture

Country Status (1)

Country Link
JP (1) JPH0955453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007129640A1 (en) * 2006-05-01 2009-09-17 積水化学工業株式会社 Resin fired product and electronic device equipped with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007129640A1 (en) * 2006-05-01 2009-09-17 積水化学工業株式会社 Resin fired product and electronic device equipped with the same

Similar Documents

Publication Publication Date Title
EP0619282B1 (en) Diamond/carbon/carbon composite useful as an integral dielectric heat sink and method for making same
EP1168438A2 (en) High thermal conductivity composite material, and method for producing the same
JPH1084059A (en) Silicon nitride circuit board
JPS63156075A (en) High heat conductivity electric insulation aluminum nitride sintered body and manufacture
CN111848172B (en) Molybdenum disilicide/silicon carbide three-dimensional polymer precursor ceramic and preparation method thereof
CN114106756A (en) Seed crystal bonding glue and seed crystal bonding method
US20020192453A1 (en) Composite material having a high thermal conductivity and method for manufacturing the composite material
KR101705024B1 (en) Aln substrate and method for producing same
JPH0955453A (en) Carbon substrate for semiconductor integrated circuit chip mounting use and its manufacture
US6953538B2 (en) Electroconductive low thermal expansion ceramic sintered body
JPH09102562A (en) High-heat-conductivity substrate and its manufacture
CN112358300A (en) Method for preparing h-BN-based ceramic material with high directional heat conduction based on 3D printing technology
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2005119887A (en) High thermal conductivity member, its producing method, and heat dissipation system using the member
KR20200052841A (en) MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
JP2006232569A (en) SiC/Si COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP2000355018A (en) Mold for resin molding
JPH09153666A (en) Board for chip mounting and manufacture thereof
JP3620908B2 (en) Circuit board and semiconductor device including the circuit board
JP2003213351A (en) High thermal conductivity composite material and production method therefor
JP2002294358A (en) Thermally conductive composite material
JPS5815953B2 (en) Board for electrical equipment
Suryanarayana Thermally conductive ceramics for electronic packaging
JP4002325B2 (en) Method for producing sintered silicon carbide
JP2003002770A (en) Highly thermal conductive composite material and production method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105