JPH0954186A - Operation analyzer for control rod drive device - Google Patents
Operation analyzer for control rod drive deviceInfo
- Publication number
- JPH0954186A JPH0954186A JP7209716A JP20971695A JPH0954186A JP H0954186 A JPH0954186 A JP H0954186A JP 7209716 A JP7209716 A JP 7209716A JP 20971695 A JP20971695 A JP 20971695A JP H0954186 A JPH0954186 A JP H0954186A
- Authority
- JP
- Japan
- Prior art keywords
- processing
- waveform
- operation sound
- latch
- control rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子炉の制御棒を
駆動する装置に関し、特に加圧水型原子炉に用いられて
いるような電磁駆動ジャッキ型の制御棒駆動装置の作動
状況を遠隔的に解析する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for driving a control rod of a nuclear reactor, and more particularly, to remotely control the operating condition of an electromagnetically driven jack type control rod driving apparatus used in a pressurized water reactor. It relates to a device for analysis.
【0002】[0002]
【従来の技術】原子炉の制御棒は、原子炉内の核反応を
制御するものであるから、原子炉の制御棒を駆動する装
置所謂制御棒駆動装置は、原子炉を安全に運転する上で
極めて重要な装置である。従って、その運転時の作動状
況を常時監視し、不具合の発生を未然に防止するための
情報を得るための装置を設けるのが一般である。制御棒
駆動装置としては、水圧を利用するもの、電気モータの
回転力を利用するもの等があるが、軽水炉の一種である
加圧水型原子炉では、電磁駆動ジャッキ型のものが使用
される場合が多い。この電磁駆動ジャッキ型駆動装置
は、概念的に言えば、ジャッキ軸を電磁駆動ラッチで軸
方向に駆動するものである。2. Description of the Related Art Since a control rod of a nuclear reactor controls a nuclear reaction in the nuclear reactor, a device for driving the control rod of the nuclear reactor, a so-called control rod driving device, is used to safely operate the nuclear reactor. It is an extremely important device. Therefore, it is general to provide a device for constantly monitoring the operating condition during the operation and obtaining information for preventing the occurrence of a defect. Control rod drive devices include those that use water pressure and those that use the rotational force of an electric motor, but in a pressurized water reactor, which is a type of light water reactor, an electromagnetically driven jack type may be used. Many. Conceptually speaking, this electromagnetically driven jack type drive device drives the jack shaft in the axial direction by an electromagnetically driven latch.
【0003】電磁駆動ジャッキ型制御棒駆動装置の代表
的構造例を図10に示す。これを簡単に説明すれば、原
子炉容器の上蓋1に連結して立設された案内管3の中に
駆動軸5が配置され、これは下端で図示しない制御棒に
連結されている。駆動軸5には、所定の軸方向ピッチで
複数の円周溝5aが形成されている。3個のコイル、即
ち昇降コイル7、可動掴みコイル9及び固定掴みコイル
11が外装されたハウジング13が案内管3を囲んで設
けられている。可動掴みコイル9は、ラッチ15,リン
ク17及びプランジャ19を有する可動掴み機構を駆動
するもので、この可動掴み機構は、円周溝5aを利用し
て駆動軸5を上下方向可動に掴む。昇降コイル7は、そ
の可動掴み機構を駆動軸5を掴んだままで1ピッチ分だ
け(1ステップ)昇降するから、励磁を繰り返すことに
より駆動軸5を1ステップづつ上昇し、或いは下降す
る。固定掴みコイル11は、ラッチ21,リンク23及
びプランジャ25を有する固定掴み機構を駆動するもの
で、これは上下方向に不動の位置で駆動軸5を間欠的に
掴む。これらの可動掴みコイル9,昇降コイル7及び固
定掴みコイル11をシーケンシャルに励磁し、これを繰
り返して行けば、駆動軸5が間欠的に動き、駆動軸5に
連結された制御棒を原子炉容器内の炉心に挿入し、又は
炉心から引き抜く。An example of a typical structure of an electromagnetically driven jack type control rod drive device is shown in FIG. To briefly explain this, a drive shaft 5 is arranged in a guide tube 3 which is connected to the upper lid 1 of the reactor vessel and stands upright. The drive shaft 5 is connected at its lower end to a control rod (not shown). The drive shaft 5 is formed with a plurality of circumferential grooves 5a at a predetermined axial pitch. A housing 13 in which three coils, that is, an elevating coil 7, a movable gripping coil 9 and a fixed gripping coil 11 are packaged, is provided surrounding the guide tube 3. The movable gripping coil 9 drives a movable gripping mechanism having a latch 15, a link 17, and a plunger 19, and this movable gripping mechanism grips the drive shaft 5 vertically using the circumferential groove 5a. The elevating coil 7 ascends and descends by one pitch (1 step) while the movable gripping mechanism holds the drive shaft 5 so that the drive shaft 5 is raised or lowered step by step by repeating excitation. The fixed gripping coil 11 drives a fixed gripping mechanism having a latch 21, a link 23 and a plunger 25, which intermittently grips the drive shaft 5 in a vertically immovable position. The movable gripping coil 9, the lifting coil 7, and the fixed gripping coil 11 are sequentially excited, and if this is repeated, the drive shaft 5 moves intermittently, and the control rod connected to the drive shaft 5 is moved to the reactor vessel. Insert into or pull out of the core.
【0004】以上のような電磁駆動ジャッキ型制御棒駆
動装置の作動を各コイルの励磁電流と関連付けて図11
を参照して説明する。図11において、制御棒駆動装置
が駆動軸5を1ステップだけ動かすための指令信号がス
テップ入力として入力される作動指令制御信号E、昇降
コイル電流A、可動掴みコイル電流B、固定掴みコイル
電流C、及びラッチ作動音検出波形信号Dが時間軸を横
軸として図示されいる。前述の制御棒駆動装置の1(上
昇)動作をこれらの各コイルの電流値の変化と関連づけ
て説明すると a.駆動軸5が静止しているときは、固定掴み機構のラ
ッチ21で駆動軸5を保持しているのであり、固定掴み
コイル11は励磁され、固定掴みコイル電流Cが流れて
いる。 b.制御信号Eとしてステップ動作信号が入ると、可動
掴みコイル電流Bが立ち上がり(点a)、ラッチ15が
駆動軸5を掴む(点c)。 c.固定掴みコイル11が解磁されて固定掴みコイル電
流Cが減少し(点b)、ラッチ21が駆動軸5から離れ
る(点d)。 d.昇降コイル電流Aが流れ、昇降コイル7が励磁され
てラッチ15で掴まれた駆動軸5を1ステップ分引き上
げる(点aから点c)。 e.固定掴みコイル電流Cを流して固定掴みコイル11
を励磁し、ラッチ21を駆動軸5に係合させてこれを掴
む(点aから点c)。 f.可動掴みコイル電流Bを切り(点b)、可動掴みコ
イル9を解磁すると、ラッチ15が駆動軸5から離れ
る。同時に昇降コイル電流Aを切り(b)、昇降コイル
7が解磁される。 g.制御信号Eのステップ信号が完了すると、固定掴み
コイル電流Cが当初の状態に戻り、ラッチ21が駆動軸
5を保持した状態となる。The operation of the electromagnetically driven jack type control rod driving device as described above is associated with the exciting current of each coil, as shown in FIG.
This will be described with reference to FIG. In FIG. 11, an operation command control signal E to which a command signal for the control rod drive device to move the drive shaft 5 by one step is input as a step input, a lifting coil current A, a movable gripping coil current B, and a fixed gripping coil current C. , And the latch operation sound detection waveform signal D is illustrated with the time axis as the horizontal axis. The above-mentioned 1 (raising) operation of the control rod drive device will be explained in association with changes in the current value of each of these coils. When the drive shaft 5 is stationary, the latch 21 of the fixed gripping mechanism holds the drive shaft 5, so that the fixed gripping coil 11 is excited and the fixed gripping coil current C flows. b. When the step operation signal is input as the control signal E, the movable gripping coil current B rises (point a), and the latch 15 grips the drive shaft 5 (point c). c. The fixed gripping coil 11 is demagnetized, the fixed gripping coil current C decreases (point b), and the latch 21 separates from the drive shaft 5 (point d). d. The lifting coil current A flows, the lifting coil 7 is excited, and the drive shaft 5 gripped by the latch 15 is pulled up by one step (point a to point c). e. Fixed grip coil 11 The fixed grip coil 11 is supplied with a current C.
Is excited, the latch 21 is engaged with the drive shaft 5, and this is grasped (point a to point c). f. When the movable gripping coil current B is cut off (point b) and the movable gripping coil 9 is demagnetized, the latch 15 separates from the drive shaft 5. At the same time, the lifting coil current A is turned off (b), and the lifting coil 7 is demagnetized. g. When the step signal of the control signal E is completed, the fixed gripping coil current C returns to the initial state, and the latch 21 holds the drive shaft 5.
【0005】電磁駆動ジャッキ型制御棒駆動装置の各電
磁コイルの電流は、上述のように作動中変化するから、
この制御棒駆動装置の作動状態を監視する従来技術で
は、これらの電流を監視し、作動を分析することとして
いる。なお、各掴み機構のラッチ15,21が作動して
駆動軸5に係合するとき、少なからず衝撃が発生するの
で、案内管3の上端上に検知器27が固定され(図1
0)、その検知信号がラッチ作動音検出波形信号Dとし
て利用される(図11)。更に、図11から分かるよう
に、制御棒駆動装置が正常に作動していれば、可動掴み
コイル9及び固定掴みコイル11が励磁されると、ラッ
チ15,21が枢動して駆動軸5の円周溝5aに係合
し、そして係合するに際し可動掴みコイル電流B及び固
定掴みコイル電流Cは独特の波形を示す。図12は、こ
れら可動掴みコイル電流B及び固定掴みコイル電流Cの
特徴的波形をモデル化して示したもので、各曲線の点c
の近傍で係合現象がディップ(凹み)の形で現れる。Since the current of each electromagnetic coil of the electromagnetically driven jack type control rod drive device changes during operation as described above,
The prior art for monitoring the operating condition of this control rod drive is to monitor these currents and analyze the operation. When the latches 15 and 21 of each gripping mechanism are activated and engage with the drive shaft 5, a considerable impact is generated, so that the detector 27 is fixed on the upper end of the guide tube 3 (see FIG. 1).
0), the detection signal is used as the latch operation sound detection waveform signal D (FIG. 11). Further, as can be seen from FIG. 11, when the control rod drive device is operating normally, when the movable gripping coil 9 and the fixed gripping coil 11 are excited, the latches 15 and 21 pivot to drive the drive shaft 5. The movable gripping coil current B and the fixed gripping coil current C exhibit unique waveforms when engaging and engaging the circumferential groove 5a. FIG. 12 shows modeled characteristic waveforms of the movable gripping coil current B and the fixed gripping coil current C, and points c of each curve.
In the vicinity of, the engagement phenomenon appears in the form of a dip (dent).
【0006】以上の前提の下で、監視のための作動解析
は、次のように行われる。 ア.作動指令制御信号Eは、ステップ入力信号としてコ
ンピュータにより精確に判別される。 イ.ラッチ作動音検出波形信号Dは、作動時大きなピー
ク値が発生するため、閾値を設け、閾値を超過したこと
によりラッチの作動を検出する。その閾値は、経験的に
設定する。 ウ.各コイルの励磁点a及び解磁点bは、任意に設定し
たレベル点を電流信号が切る点として定義する。 エ.ラッチ15,21が、実際に駆動軸5をラッチした
瞬間は、各コイル電流が点cの周囲に示す様に変化して
ディップを形成するので、この図形から作動を検出す
る。可動掴みコイル電流B及び固定掴みコイル電流C
を、図示しないフィルタ装置で交流成分やノイズ成分を
除去してモデル化すると図12(i),(ii)に示すよ
うになる。両コイル電流B,Cの点cの近傍の波形が図
12(iii )に抜き出して示されている。この図を参照
するに、点aから一定時間(t0)経過後から微小時間ご
とにデータを比較し、傾斜を求め、最初に負になった点
を最大点mとし、更に進めて最初に正になった点を最小
点nとする。そしてその差hが判定値を越え、且つディ
ップ内にラッチ作動音波形信号Dのピーク値が存在する
場合、最小点nを点cと定義する。この点cを、ラッチ
15,21が作動した点(時刻)として捉える。 オ.このようにして、制御棒駆動装置の各コイルの励磁
点、解磁点、ラッチの作動点及び作動指令制御信号の入
力点が解析され、検出されるので、その作動状況が解析
されることになる。Under the above-mentioned premise, the operation analysis for monitoring is performed as follows. A. The operation command control signal E is accurately discriminated by the computer as a step input signal. I. Since the latch operation sound detection waveform signal D has a large peak value during operation, a threshold value is set and the operation of the latch is detected when the threshold value is exceeded. The threshold value is set empirically. C. The excitation point a and the demagnetization point b of each coil are defined as the points where the current signal cuts the arbitrarily set level points. D. At the moment when the latches 15 and 21 actually latch the drive shaft 5, each coil current changes as shown around the point c to form a dip, so the operation is detected from this figure. Movable gripping coil current B and fixed gripping coil current C
12 is modeled by removing AC components and noise components with a filter device (not shown), as shown in FIGS. 12 (i) and 12 (ii). The waveforms near the point c of both coil currents B and C are extracted and shown in FIG. 12 (iii). Referring to this figure, after a certain time (t 0 ) has passed from the point a, the data is compared at every minute time, the slope is obtained, and the point which becomes negative at the beginning is set as the maximum point m, and further advance is performed first. The point that becomes positive is the minimum point n. When the difference h exceeds the judgment value and the peak value of the latch operation sound waveform signal D exists in the dip, the minimum point n is defined as the point c. This point c is regarded as the point (time) when the latches 15 and 21 are activated. E. In this way, the excitation point, demagnetization point, operating point of the latch, and input point of the operation command control signal of each coil of the control rod drive device are analyzed and detected, so that the operating condition is analyzed. Become.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、前述の
作動解析のベースとなる作動解析アルゴリズムでは、次
のような問題点がある。即ち、 a.可動掴みコイル及び固定掴みコイルの電流信号にお
けるディップの検出は、凹みの高さと時間幅で行ってい
るが、ディップの形状が浅かったり、不明瞭なときは、
検出不能となる場合がある。 b.ラッチの作動音は、制御棒駆動装置案内管の頂部に
設けた検出器(通常加速度計が使用される)のピーク信
号で検出されるが、作動音が小さかったり、又は極端に
大きかったりすると信号が振り切れてしまう。又、重複
波形の場合は、検出できない。 以上のような問題点にもかかわらず、電磁駆動ジャッキ
型制御棒駆動装置の作動状況を表す把握可能な信号とし
ては、各コイルの電流信号と作動音検出波形信号しか考
えられないという制約もある。従って、本発明の課題
は、電磁駆動ジャッキ型制御棒駆動装置のラッチの作動
を表すディップを有する各コイルの電流信号と作動音を
示す波形信号とを巧く使用解析して、前述の問題点を解
消した作動アルゴリズムによる制御棒駆動装置の作動解
析装置を提供するにある。However, the above-described motion analysis algorithm, which is the basis of the motion analysis, has the following problems. That is, a. The dips in the current signals of the movable gripping coil and the fixed gripping coil are detected by the height and time width of the dent, but when the dip shape is shallow or unclear,
It may become undetectable. b. The operating noise of the latch is detected by the peak signal of the detector (usually an accelerometer is used) installed at the top of the control rod driving device guide tube. However, when the operating noise is low or extremely high, it is a signal. Is shaken off. Further, in the case of overlapping waveforms, it cannot be detected. In spite of the above problems, there is a limitation that only the current signal of each coil and the operation sound detection waveform signal can be considered as graspable signals that represent the operation status of the electromagnetically driven jack type control rod drive device. . Therefore, an object of the present invention is to use the current signal of each coil having a dip indicating the operation of the latch of the electromagnetically driven jack type control rod drive device and the waveform signal indicating the operation sound by skillfully analyzing the signal, and the above-mentioned problems. It is an object of the present invention to provide an operation analysis device of a control rod drive device by an operation algorithm that solves
【0008】[0008]
【課題を解決するための手段】以上の課題を達成するた
め、本発明によれば、電磁コイルによって駆動されるラ
ッチを有する電磁駆動ジャッキ型制御棒駆動装置の作動
状況を解析する装置は、前記電磁コイルの電流値を表す
電流信号に並行的に屈曲点処理と原波形処理とを施すデ
ィップ検出処理装置と、前記制御棒駆動装置に付設した
作動音検出器の出力信号に波形抽出処理と作動音検出処
理とを順次施す作動音検出処理装置とから構成される。
制御棒駆動装置は、電磁コイルの数に制限は無いが、制
御棒を定位置で保持するための固定掴みコイルと1ステ
ップだけ可動に駆動棒を保持する可動掴みコイルを含ん
でいる。コイル電流信号は、ディップ検出処理装置の屈
曲点処理において、微分処理、データの絶対値変換及び
ノイズとの分離処理が施される。一方波形処理において
は、ディップの大きさ検出及びレベル判定が行われる。
そして、作動音検出処理装置の波形抽出処理において
は、原波形を絶対値変換し、ノイズの分離を施し、デー
タの積算をした後これに微分処理を施して波形の抽出が
行われる。作動音検出処理では、単発波形及び重複波形
といった波形の状態に応じてピーク値を探知する。In order to achieve the above object, according to the present invention, an apparatus for analyzing the operating condition of an electromagnetically driven jack type control rod drive device having a latch driven by an electromagnetic coil is provided as described above. A dip detection processing device that performs bending point processing and original waveform processing in parallel on a current signal that represents the current value of the electromagnetic coil, and waveform extraction processing and operation on the output signal of the operation sound detector attached to the control rod drive device. The operation sound detection processing device sequentially performs sound detection processing.
The control rod driving device includes a fixed gripping coil for holding the control rod in a fixed position and a movable gripping coil for movably holding the drive rod by one step, although the number of electromagnetic coils is not limited. The coil current signal is subjected to differentiation processing, data absolute value conversion, and noise separation processing in the bending point processing of the dip detection processing device. On the other hand, in the waveform processing, dip size detection and level determination are performed.
In the waveform extraction process of the operation sound detection processing device, the original waveform is subjected to absolute value conversion, noise separation is performed, data is integrated, and then differential processing is performed to extract the waveform. In the operation sound detection process, the peak value is detected according to the state of the waveform such as the one-shot waveform and the overlapping waveform.
【0009】[0009]
【発明の実施の形態】以下、添付の図面を参照して本発
明の実施形態を説明する。図1は、本発明による作動解
析装置のディップ検出処理装置の処理のフローチャート
を示しており、図2に示すようなコイル電流信号の原波
形31に屈曲点処理と原波形処理が施される。図2にお
いて、原波形31には、一点鎖線円内にディップ39が
現れている。図において符号DPは、ディップ39の山の電
流値,符号D3はその谷の時間軸上の位置、符号DHはディ
ップ39の高さ、符号DLは、その山と谷の(時間軸上
の)距離である。又、△Tは、微分処理を行うときの時
間刻みである。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a flowchart of processing of a dip detection processing device of an operation analysis device according to the present invention, in which an original waveform 31 of a coil current signal as shown in FIG. 2 is subjected to bending point processing and original waveform processing. In FIG. 2, in the original waveform 31, the dip 39 appears in the one-dot chain line circle. In the figure, the code D P is the current value of the peak of the dip 39, the code D 3 is the position of the valley on the time axis, the code D H is the height of the dip 39, and the code D L is the time of the peak and the valley. Distance (on axis). Further, ΔT is a time step when the differential processing is performed.
【0010】原波形31に図1の微分処理33を施す
と、図3に示すような微分波形41,42,43が得ら
れる。微分波形41は1回の微分処理、微分波形42は
2回の微分処理、微分波形43は3回の微分処理を行っ
たものである。符号D1は、微分波形41の最下限位置を
示している。微分波形43に、図1のフローチャートの
絶対値変換35を施すと図4に示すように絶対値波形4
5が得られる。そして、其のピーク値をPmとし、ノイズ
マージンNmを差し引いてノイズ分離37を行う。尚、図
4において、符号D2,PPは、それぞれピーク値Pmの前の
最下限位置、ピーク値Pmの時間軸位置である。一方、図
1の原波形処理において、ディップの大きさである電流
値DP、時間軸位置D3は、従来と同様の方法で検出され
る。When the original waveform 31 is subjected to the differential processing 33 of FIG. 1, differential waveforms 41, 42 and 43 as shown in FIG. 3 are obtained. The differential waveform 41 is one-time differential processing, the differential waveform 42 is two-time differential processing, and the differential waveform 43 is three-time differential processing. Reference numeral D 1 indicates the lower limit position of the differential waveform 41. When the absolute value conversion 35 of the flowchart of FIG. 1 is applied to the differential waveform 43, as shown in FIG.
5 is obtained. Then, the peak value is set to P m , the noise margin N m is subtracted, and the noise separation 37 is performed. In FIG. 4, reference numeral D 2, P P is the lowest limit position in front of the peak value P m respectively, the time axis position of the peak value P m. On the other hand, in the original waveform processing of FIG. 1, the current value D P , which is the size of the dip, and the time axis position D 3 are detected by the same method as the conventional method.
【0011】次に、前述のようにして求めた最下限位置
D1、D2及び谷の位置D3を使用してディップの有無を判定
する要領を図5のフローチャートを参照して説明する。 ステップSA:図3、図4で求めたD1とD2を比較し、 D1<D2のとき D1=DX として DX1 =DX−2△T
を計算 D1>D2のとき D2=DX として DX1 =DX−2△T
を計算 DX1 を原波形処理(図1)に再入力して改めてD3を求め
る。 ステップSB:D3<D1 及びD3<D2 ならば、ディップ無
しと判定。 ステップSC:D1>(D2+△T),D1>(PP+3△T) でな
ければディップ無しと判定。 ステップSD DH=0 で平行部の△Tカウント数C<2 ならばディップ
無しと判定。 ステップSE ステップSB,SC,SD の条件が反対の結果であれば、ディ
ップ有りと判定し、D3をディップ位置とする。Next, the lower limit position obtained as described above
A procedure for determining the presence or absence of a dip using D 1 , D 2 and the valley position D 3 will be described with reference to the flowchart of FIG. Step S A : D 1 and D 2 obtained in FIGS. 3 and 4 are compared, and when D 1 <D 2 , D 1 = D X and D X1 = D X −2ΔT
When D 1 > D 2 , D 2 = D X and D X1 = D X -2 △ T
Recalculate D X1 to the original waveform processing (Fig. 1) and obtain D 3 again. Step S B : If D 3 <D 1 and D 3 <D 2, it is determined that there is no dip. Step S C : If there is no D 1 > (D 2 + △ T), D 1 > (P P + 3 △ T), it is judged that there is no dip. In step S D D H = 0, if the ΔT count C of the parallel part is C <2, it is judged that there is no dip. If the results of the steps S E, S B , S C , and S D are opposite, it is determined that there is a dip, and D 3 is the dip position.
【0012】次に、ラッチ作動音の検出処理の仕方を図
6のフローチャートと図7の波形変化図を参照して説明
する。作動音検出器からの出力波形信号は、原波形51
として処理装置に入るがこの波形のパターンとして図7
に示すように、単発型波形、単発重複型波形、連続重複
型波形がある。これらに絶対値変換53を施すと図示の
ような波形になり、これにノイズ分離(ノイズカット)
55の処理をする。ノイズ分離に用いるノイズマージン
Nmは、従来のデータから経験的に設定したものである
が、概念的に図7に示されているから、これを越える部
分の絶対値波形のデータ(値)積算57を行うと、各型
波形毎に図7のようなデータ積算曲線が得られる。デー
タ積算曲線は、時間的に前の値に後の値を加算して行く
ので、概して右上がりの曲線となる。このデータ積算曲
線に微分処理59を施すと、微分処理曲線が得られる。
図7から容易に分かるように、各微分処理曲線は、原波
形の形に対応した形状になっており、それぞれの山がピ
ーク値P1, P2, P3を有しているので、これらの位置及び
大きさが測定される。以上で、作動音波形の抽出処理が完
了する。Next, a method of detecting the latch operation sound will be described with reference to the flowchart of FIG. 6 and the waveform change diagram of FIG. The output waveform signal from the operation sound detector is the original waveform 51.
As a pattern of this waveform, it enters into the processing device as shown in FIG.
As shown in, there are a single-shot type waveform, a single-shot overlapping type waveform, and a continuous overlapping type waveform. When these are subjected to absolute value conversion 53, the waveforms shown in the figure are obtained, and noise separation (noise cut)
Process 55. Noise margin used for noise separation
N m is set empirically from the conventional data, but since it is conceptually shown in FIG. 7, when the data (value) integration 57 of the absolute value waveform of the portion exceeding it is performed, A data integration curve as shown in FIG. 7 is obtained for each mold waveform. The data integration curve is generally a curve that rises to the right because the previous value is added to the later value in terms of time. When the differential processing 59 is applied to this data integration curve, a differential processing curve is obtained.
As can be easily seen from FIG. 7, each differential processing curve has a shape corresponding to the shape of the original waveform, and each peak has peak values P 1 , P 2 , and P 3 , and therefore these The position and size of is measured. This completes the process of extracting the operating sound waveform.
【0013】次に、以上の抽出波形からラッチの作動音
を検出する処理について説明する。先ず、単発型波形及
び単発重複型波形の処理について、図6及び図8を参照
して説明する。最初に前述の微分処理曲線を用いて最大
ピーク点検出61を行う。単発型波形の場合、ピーク値
はP1のみであり、最大ピーク点PM=P1とする(a)。単
発重複型波形の場合は、P2<0.9P1 ならば PM=P1
とし、P2>0.9P1 ならば PM=P2 とする(b)。
以後の処理は、両波形とも共通であるが、その他のピー
ク点の有無チェック53を行う。最大ピーク点PMの30
%の位置P0.3を求め(c)、位置P0.3より前(時間的
に)にある最小値をP0とする。 P0から後方にPMの30
%の位置P0.15を求める(d)。そして、P0.15>ノイズ
マージンNmならば、作動音有りとし、その時間軸上の位
置が作動音位置となる。P0.15<ノイズマージンNmなら
ば、作動音無しと判定する。Next, the process of detecting the operating noise of the latch from the above extracted waveform will be described. First, the processing of the single-shot waveform and the single-shot overlapping waveform will be described with reference to FIGS. 6 and 8. First, maximum peak point detection 61 is performed using the above-mentioned differential processing curve. In the case of a single-shot waveform, the peak value is only P 1 , and the maximum peak point P M = P 1 (a). For single overlap type waveform, P 2 <0.9P 1 if P M = P 1
If P 2 > 0.9P 1, then P M = P 2 (b).
The subsequent processing is common to both waveforms, but the presence / absence check 53 of other peak points is performed. 30 of the maximum peak point P M
The position P 0.3 of% is obtained (c), and the minimum value (temporally) before the position P 0.3 is set to P 0 . 30 P M from P 0 to the rear
Find the position P 0.15 of% (d). If P 0.15 > noise margin N m, it is determined that there is an operating sound, and the position on the time axis is the operating sound position. If P 0.15 <noise margin N m, it is determined that there is no operating noise.
【0014】連続重複型波形についての作動音検出処理
について説明すると、図9において、最大ピーク点をP1
とし、0.3P1の線を引く。 隣接ピークと判定できない許容範囲±△xの線をPMの位
置から両側に引く。△xは、従来のデータから経験的に
求められたものである。±△xの外側にあり、且つPMに
最も近く、0.3PMを越す第2番目のピーク値P2を求め
る 同様にして、第3番目のピーク値を求め、ピーク値P3と
する。始点からxの点に一番近いピーク値をPMとする。
xは、従来のデータから経験的に求めたものである。こ
のPMについて、図8について説明したと同様な処理を施
し、作動音の有無、位置を求める。このようにして、本
実施形態によれば、ラッチを駆動する電磁コイルの電流
信号を微分処理し最小限位置を検出し、ディップの形が
明瞭でないものでもその作動が判別される。又、ラッチ
作動音も、波形が小さい場合や波形が重複している場合
等でも作動音の検出がされる。The operation sound detection process for the continuous overlapping waveform will be described. In FIG. 9, the maximum peak point is P 1
And draw a line of 0.3P1. Draw a line in the allowable range ± Δx that cannot be determined as adjacent peaks from the P M position on both sides. Δx is empirically determined from conventional data. ± △ is outside the x, and closest to P M, similarly determine the second peak value P 2 in excess of 0.3P M, it obtains a third peak value, a peak value P 3 . Let P M be the peak value closest to the point x from the start point.
x is obtained empirically from conventional data. With respect to this P M , the same processing as that described with reference to FIG. 8 is performed to determine the presence or absence of the operating noise and the position. In this way, according to the present embodiment, the current signal of the electromagnetic coil that drives the latch is differentiated to detect the minimum position, and the operation is determined even if the dip shape is not clear. Also, as for the latch operation sound, the operation sound is detected even when the waveform is small or the waveforms overlap.
【0015】[0015]
【発明の効果】以上説明したように、本発明によれば、
電磁駆動ジャッキ型制御棒駆動装置において、電磁コイ
ル電流に現れるディップの形が若干不明瞭であつても、
微分処理を含む屈曲点処理をコイル電流信号に施すこと
によりラッチ作動点を明確に解析、検出することができ
る。又、別の態様でラッチの作動を現すラッチ作動音検
出器の出力信号に波形抽出処理を施し、波形の型に応じ
て出力信号を処理するので、より精確に作動の位置を検
出することができ、ひいては、電磁駆動ジャッキ型制御
棒駆動装置の作動解析を精確に行うことができる。As described above, according to the present invention,
In the electromagnetically driven jack type control rod drive, even if the shape of the dip appearing in the electromagnetic coil current is slightly unclear,
By applying a bending point process including a differential process to the coil current signal, the latch operating point can be clearly analyzed and detected. In addition, since the output signal of the latch operation sound detector representing the operation of the latch in another mode is subjected to the waveform extraction processing and the output signal is processed according to the type of the waveform, the position of the operation can be detected more accurately. As a result, the operation analysis of the electromagnetically driven jack type control rod drive device can be accurately performed.
【図1】本発明の実施形態の一部であるディップ検出処
理装置の処理手順を示すフローチャートである。FIG. 1 is a flowchart showing a processing procedure of a dip detection processing device which is a part of an embodiment of the present invention.
【図2】前記実施形態において処理されるコイル電流信
号の一例を示すグラフである。FIG. 2 is a graph showing an example of a coil current signal processed in the embodiment.
【図3】前記フローチャートにおける1処理の結果を示
すグラフである。FIG. 3 is a graph showing a result of one process in the flowchart.
【図4】前記フローチャートにおける1処理の結果を示
すグラフである。FIG. 4 is a graph showing a result of one process in the flowchart.
【図5】前記フローチャートにおける1処理の手順を示
すフローチャートである。FIG. 5 is a flowchart showing a procedure of one process in the flowchart.
【図6】前記実施形態の一部である作動音検出処理装置
の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing a processing procedure of the operation sound detection processing device which is a part of the embodiment.
【図7】図6のフローチャートの処理の流れを説明する
説明図である。FIG. 7 is an explanatory diagram illustrating a processing flow of the flowchart of FIG. 6;
【図8】図6のフローチャートの処理の流れを説明する
説明図である。FIG. 8 is an explanatory diagram illustrating a processing flow of the flowchart of FIG. 6;
【図9】図6のフローチャートの処理の流れを説明する
説明図である。9 is an explanatory diagram illustrating a processing flow of the flowchart of FIG. 6;
【図10】制御棒駆動装置の一例を示す断面図である。FIG. 10 is a sectional view showing an example of a control rod drive device.
【図11】従来の解析の要領を示すグラフである。FIG. 11 is a graph showing a procedure of conventional analysis.
【図12】従来の解析の要領を示す説明図である。FIG. 12 is an explanatory diagram showing a procedure of conventional analysis.
31 原波形 33 微分処理 35 絶対値変換 37 ノイズ分離 39 ディップ 41,42,43 微分波形 45 絶対値波形 51 原波形 53 絶対値変換 55 ノイズ分離 57 データ積算 59 微分処理 31 original waveform 33 differential processing 35 absolute value conversion 37 noise separation 39 dip 41, 42, 43 differential waveform 45 absolute value waveform 51 original waveform 53 absolute value conversion 55 noise separation 57 data integration 59 differential processing
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高田 良則 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshinori Takada 1-1-1 Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries Ltd. Kobe Shipyard
Claims (1)
有する電磁駆動ジャッキ型制御棒駆動装置の作動状況を
解析する装置であって、前記電磁コイルの電流値を表す
電流信号に並行的に屈曲点処理と原波形処理とを施すデ
ィップ検出処理装置と、前記制御棒駆動装置に付設した
作動音検出器の出力信号に波形抽出処理と作動音検出処
理とを順次施す作動音検出処理装置とからなる制御棒駆
動装置の作動解析装置。1. An apparatus for analyzing an operating condition of an electromagnetically driven jack type control rod driving apparatus having a latch driven by an electromagnetic coil, wherein the bending point processing is performed in parallel with a current signal representing a current value of the electromagnetic coil. And a source waveform processing and a dip detection processing apparatus, and an operation sound detection processing apparatus that sequentially performs waveform extraction processing and operation sound detection processing on the output signal of the operation sound detector attached to the control rod drive device. Operation analysis device for rod drive.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7209716A JPH0954186A (en) | 1995-08-17 | 1995-08-17 | Operation analyzer for control rod drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7209716A JPH0954186A (en) | 1995-08-17 | 1995-08-17 | Operation analyzer for control rod drive device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0954186A true JPH0954186A (en) | 1997-02-25 |
Family
ID=16577468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7209716A Withdrawn JPH0954186A (en) | 1995-08-17 | 1995-08-17 | Operation analyzer for control rod drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0954186A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071877A (en) * | 2000-08-29 | 2002-03-12 | Mitsubishi Heavy Ind Ltd | Monitoring method, and apparatus thereof |
KR100484018B1 (en) * | 2002-08-09 | 2005-04-20 | 한국전기연구원 | Method for recognizing step movement sequence of control rod drive mechanism of nuclear reactor |
JP2007198954A (en) * | 2006-01-27 | 2007-08-09 | Mitsubishi Heavy Ind Ltd | Soundness evaluating system and soundness evaluating method for control rod driver |
JP2011027685A (en) * | 2009-07-29 | 2011-02-10 | Shikoku Res Inst Inc | Device and method for monitoring of control rod operation |
JP2022523534A (en) * | 2019-02-28 | 2022-04-25 | ウェスティングハウス エレクトリック カンパニー エルエルシー | Control rod drive mechanism diagnostic tool using voltage and current recording |
EP4009335A4 (en) * | 2019-08-28 | 2022-09-14 | China Nuclear Power Technology Research Institute Co., Ltd | Method for monitoring hook action of control rod driving mechanism of nuclear power station, and electronic device |
-
1995
- 1995-08-17 JP JP7209716A patent/JPH0954186A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002071877A (en) * | 2000-08-29 | 2002-03-12 | Mitsubishi Heavy Ind Ltd | Monitoring method, and apparatus thereof |
KR100484018B1 (en) * | 2002-08-09 | 2005-04-20 | 한국전기연구원 | Method for recognizing step movement sequence of control rod drive mechanism of nuclear reactor |
JP2007198954A (en) * | 2006-01-27 | 2007-08-09 | Mitsubishi Heavy Ind Ltd | Soundness evaluating system and soundness evaluating method for control rod driver |
JP2011027685A (en) * | 2009-07-29 | 2011-02-10 | Shikoku Res Inst Inc | Device and method for monitoring of control rod operation |
JP2022523534A (en) * | 2019-02-28 | 2022-04-25 | ウェスティングハウス エレクトリック カンパニー エルエルシー | Control rod drive mechanism diagnostic tool using voltage and current recording |
EP4009335A4 (en) * | 2019-08-28 | 2022-09-14 | China Nuclear Power Technology Research Institute Co., Ltd | Method for monitoring hook action of control rod driving mechanism of nuclear power station, and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0954186A (en) | Operation analyzer for control rod drive device | |
CN116046883B (en) | Crane steel wire rope magnetic leakage-vision multi-mode fusion detection device and method | |
EP4024063A1 (en) | Fault-arc identification method, device and apparatus, and storage medium | |
CN1110790C (en) | Controller for starting vehicle by means of phoneme | |
US4704681A (en) | Electrocardiogram signal processing apparatus for determining the existence of the Wolff-Parkinson-White syndrome | |
EP4009230A1 (en) | Current waveform fluctuation starting point identification method, electronic device and readable storage medium | |
US5933807A (en) | Screen control apparatus and screen control method | |
JP2010197998A (en) | Audio signal processing system and autonomous robot having such system | |
KR100714721B1 (en) | Method and apparatus for detecting voice region | |
US5295190A (en) | Method and apparatus for speech recognition using both low-order and high-order parameter analyzation | |
KR960002389B1 (en) | Detecting device and method of fast significant sample | |
JP2003202260A (en) | Sound source identifying device, sudden event detecting device, and device for automatically recording sudden event | |
KR920009957B1 (en) | Excessive voice detecting device | |
JPH0749926A (en) | Character recognizing device | |
JP2002267789A (en) | Device for analyzing operating state of control rod drive mechanism | |
JP3484559B2 (en) | Voice recognition device and voice recognition method | |
JP2511130B2 (en) | Control rod drive operation analysis device | |
JPH0566790A (en) | Speech recognition method | |
US20220414390A1 (en) | Non-intrusive detection method and device for pop-up window button | |
JP3587646B2 (en) | Etching end point determination method | |
JP3299574B2 (en) | Recognition device | |
KR20060095237A (en) | Noise exclusion method of voice recognition system on vehicle | |
JPS5830624B2 (en) | End point detection method | |
KR101339578B1 (en) | Method and apparatus for recognizing speech | |
JPH0684838A (en) | Semiconductor-substrate dry etching apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021105 |