JPH0953896A - Method for suppressing bacteria in cooling tower - Google Patents

Method for suppressing bacteria in cooling tower

Info

Publication number
JPH0953896A
JPH0953896A JP7227426A JP22742695A JPH0953896A JP H0953896 A JPH0953896 A JP H0953896A JP 7227426 A JP7227426 A JP 7227426A JP 22742695 A JP22742695 A JP 22742695A JP H0953896 A JPH0953896 A JP H0953896A
Authority
JP
Japan
Prior art keywords
far
water
infrared
cooling
cooling tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227426A
Other languages
Japanese (ja)
Inventor
Hiroshi Oura
博 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOURA SHOKAI KK
Original Assignee
OOURA SHOKAI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOURA SHOKAI KK filed Critical OOURA SHOKAI KK
Priority to JP7227426A priority Critical patent/JPH0953896A/en
Publication of JPH0953896A publication Critical patent/JPH0953896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress proliferation of bacteria in a cooling tower by providing a far-infrared ray radiating article to radiate the far-infrared ray of the prescribed wavelength in the middle of a circulating passage of cooling water or a water feeding passage of supply water which is the refrigerant for heat exchange to be cooled in the cooling tower. SOLUTION: A far-infrared ray radiating article 3a which is formed of ceramic in a columnar shape with the mixture of carbide and metallic oxide and radiates the far-infrared ray of the wavelength of 6-15μm is provided in a water activation device 3 provided in the middle of a water supply tube. A coil 3b which is a far-infrared ray absorbing member whose absorbance and the emission ratio of the far-infrared ray is improved by baking the stainless steel, is provided with the far-infrared ray radiating substance 3a coiled around its outer circumference and fitted to a fitting plate 3c. When the supply water passes through the water activation device 3, it is brought into contact with the far-infrared ray radiating substance 3a, and the cluster condition of water is changed into the activated condition. The cooling water is activated by introducing the activated supply water into the cooling water to greatly suppress generation and proliferation of bacteria.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空調装置の熱交換
器の冷媒として使用される冷却水を空気によって冷却す
る冷却塔に於いて、その内部で発生する細菌の発生・増
殖を抑える方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling tower for cooling cooling water used as a refrigerant of a heat exchanger of an air conditioner with air, and a method for suppressing the generation and growth of bacteria generated therein. .

【0002】[0002]

【従来の技術】従来、空調装置の熱交換器の冷媒として
循環使用する冷却水は、屋上に設置される冷却塔(クー
リングタワー)内において散水され、強制空気流と接触
させて冷媒として使用できる温度まで冷却している。冷
却塔内部で強制空気流に接触し、冷却水の一部は大気へ
放散し減少するため冷却塔内部に貯えた冷却水の水位が
低下すると補給水が自動的に補給されるようになってい
る。この冷却塔内に循環して戻された冷却水の温度は3
7℃程度あり、これが冷却塔で冷却され32℃程度にさ
れる。この冷却塔は屋上にあり、夏の日差しのあるとき
は30〜40℃の温度となり、細菌の繁殖に適した温度
となり、レジオネラ属菌等の細菌が増殖し、これが強制
空気流とともに大気に放出し、他の冷却塔を汚染し、ビ
ル・家屋内に入り込んでレジオネラ肺炎・インフルエン
ザ等の熱性疾患のポンティアック熱を広い範囲で起し、
大きな環境汚染問題となっている。
2. Description of the Related Art Conventionally, cooling water which is circulated and used as a refrigerant for a heat exchanger of an air conditioner is sprinkled in a cooling tower (cooling tower) installed on a roof and brought into contact with a forced air flow to be used as a refrigerant. Cooling down. Since the cooling water contacts the forced air flow inside the cooling tower and part of the cooling water is released to the atmosphere and decreases, the makeup water is automatically replenished when the level of the cooling water stored in the cooling tower falls. There is. The temperature of the cooling water circulated and returned in this cooling tower is 3
There is about 7 ° C, and this is cooled by a cooling tower to about 32 ° C. This cooling tower is located on the rooftop, and has a temperature of 30 to 40 ° C during the summer sunshine, a temperature suitable for bacterial growth, and bacteria such as Legionella spp. Proliferate and are released into the atmosphere along with the forced air flow. However, it contaminates other cooling towers and enters the building / house to cause Pontiac fever in a wide range of febrile diseases such as Legionella pneumonia and influenza,
It has become a big environmental pollution problem.

【0003】[0003]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の問題点を解消し、冷却塔における細
菌の発生及び増殖を著しく抑えることができ、しかも設
備費が安価で且つランニングコストが不要な冷却塔内の
細菌の抑制方法を提供することにある。
The problem to be solved by the present invention is to solve the problems of the prior art, to significantly suppress the generation and growth of bacteria in a cooling tower, and at a low equipment cost and running. It is to provide a method for suppressing bacteria in a cooling tower that does not require cost.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決した本
発明の構成は、 1) 冷却塔で冷却される熱交換用冷媒となる冷却水の
循環路又はその補給水の給水路の途中内部に、6〜15
μmの波長の遠赤外線を放射する遠赤外線放射物を設
け、上記冷却水又は補給水を遠赤外線放射物と接触させ
ることによって、冷却塔内に発生・増殖する細菌の増殖
を抑制することを特徴とする冷却塔内の細菌の抑制方法 2) 上記の遠赤外線をよく吸収して放出する遠赤外線
吸収部材を遠赤外線放射物の外周に配置した前記1)記
載の冷却塔内の細菌の抑制方法 3) 遠赤外線吸収部材としてステンレスを焼成処理し
たコイルを使用し、同コイルを柱状の複数の各遠赤外線
放射物の外周に巻付けて遠赤外線放射物を通水できる取
付板に固着し、遠赤外線放射物を固着した前記取付板を
循環路又は給水路の水路途中に所定間隔離して複数個邪
魔板とするように配置し、遠赤外線をよく冷却水に照射
させる前記2)記載の冷却塔内の細菌の抑制方法 4) 遠赤外線放射物を補給水の給水路中に設けた前記
1)〜3)何れか記載の冷却塔内の細菌の抑制方法にあ
る。遠赤外線放射物が放射する遠赤外線の波長として
は、6μm,12μmの波長帯のものが水をよく活性化
して望ましい。
[Means for Solving the Problems] The structure of the present invention which has solved the above problems is as follows: 1) Inside a circulation passage of cooling water which is a refrigerant for heat exchange cooled in a cooling tower or a water supply passage of its makeup water. , 6-15
A far-infrared radiator that emits far-infrared rays with a wavelength of μm is provided, and the cooling water or makeup water is brought into contact with the far-infrared radiator to suppress the growth of bacteria that are generated and multiply in the cooling tower. 2) The method for suppressing bacteria in the cooling tower according to 1), wherein the far-infrared absorbing member that absorbs and emits the far-infrared rays well is arranged on the outer periphery of the far-infrared radiator. 3) A coil made of stainless steel is used as the far infrared ray absorbing member, and the coil is wound around the outer periphery of each of a plurality of columnar far infrared ray radiators and fixed to a mounting plate through which the far infrared ray radiators can pass. The cooling tower according to the above 2), wherein the mounting plate to which infrared radiation is adhered is arranged in the waterway of a circulation path or a water supply path so as to be separated by a predetermined distance to form a plurality of baffles, and far infrared rays are well irradiated to the cooling water. To control bacteria inside 4) the 1) to 3) in either bacterial suppression method for cooling tower according provided with far-infrared emitting substance in the water supply path of the makeup water. The far-infrared radiation emitted by the far-infrared radiator preferably has a wavelength band of 6 μm and 12 μm because it activates water well.

【0005】[0005]

【作用】本発明では、冷却水は冷却塔で冷却されて、ポ
ンプで空調装置の熱交換器に冷媒として送られ、熱交換
して昇温した後冷却塔に戻され、冷却されて循環使用さ
れる。冷却水が減少すれば補給水が給水路から給水され
る。この冷却水又はその補給水の給水路に遠赤外線放射
物を設け、冷却水又は補給水を遠赤外線放射物に接触さ
せることで、水が遠赤外線を吸収して活性化してレジオ
ネラ菌等の細菌の発生と増殖を強く抑制することができ
た。これによって、この遠赤外線放射物と接触させない
場合に比べ、細菌不検出又は1,000CFU/100
ml以下の要観察範囲以下の大巾に低い細菌の存在個体
数にできた。又併せて、スケール・スライム(汚れ)、
パンク(腐食)を剥離し、水管の寿命も長くできた。
又、遠赤外線をよく吸収し且つ放出する遠赤外線吸収部
材を遠赤外線放射物の外周に配置すれば、遠赤外線放射
物から放射される遠赤外線をよく吸収放出し、遠赤外線
を水に効率的に照射させることができる。特に、ステン
レスを焼成したコイルを遠赤外線吸収部材として用い、
このコイルで給水路途中の通水性のある邪魔板となる取
付板に遠赤外線放射物を取付けるものでは、遠赤外線の
効率的な照射の他に柱状遠赤外線放射物を取付板に簡単
に取付けられ、しかも取付板が邪魔板となって、水流を
乱流にして流速を少なくして遠赤外線が長く均一に照射
させるようにできる。遠赤外線放射物を補給水の給水路
に設ければ、汚れ・ゴミ・土砂等の進入が少ないので、
水路の詰りがなくメンテナンスもほとんどいらなくな
る。
In the present invention, the cooling water is cooled in the cooling tower, sent by the pump to the heat exchanger of the air conditioner as a refrigerant, exchanges heat to be heated and then returned to the cooling tower, cooled and circulated. To be done. If the cooling water decreases, makeup water is supplied from the water supply channel. By providing far-infrared radiation in the water supply channel of this cooling water or its makeup water, and by contacting the cooling water or makeup water with the far-infrared radiation, water absorbs far-infrared rays and is activated and bacteria such as Legionella bacteria It was possible to strongly suppress the occurrence and proliferation of the. As a result, no bacteria are detected or 1,000 CFU / 100, as compared with the case where the far infrared radiation is not contacted.
The number of bacteria present was extremely low, which was less than the required observation range of ml or less. In addition, scale slime,
Puncture (corrosion) was removed and the life of the water pipe was extended.
If a far-infrared absorbing member that absorbs and emits far-infrared rays well is arranged around the far-infrared radiator, far-infrared rays emitted from the far-infrared radiator are well absorbed and released, and far-infrared rays are efficiently absorbed by water. Can be irradiated. In particular, using a coil made by firing stainless steel as a far infrared absorbing member,
With this coil, the far-infrared radiator is attached to the mounting plate that serves as a water-permeable obstruction plate in the middle of the water supply channel.In addition to efficient irradiation of far-infrared radiation, columnar far-infrared radiator can be easily attached to the mounting plate. Moreover, the mounting plate acts as a baffle to make the water flow turbulent and reduce the flow velocity so that the far infrared rays can be radiated uniformly for a long time. If far infrared radiation is provided in the water supply channel for makeup water, dirt, dust, sand, etc. will enter less, so
The waterway is not clogged and maintenance is almost unnecessary.

【0006】[0006]

【発明の実施の形態】本発明の遠赤外線放射物の形状
は、棒状・球状・板状・塊粒状のものがあり、その素材
としてコージェライト,ラムライト,ペタライト,チタ
ン酸アルミ等の酸化物,炭化珪素・窒化珪素等の非酸化
物等がある。自然石では赤石・ほたる石等の岩石が利用
でき、外部からの熱エネルギーを与えずに6〜15μm
の波長の遠赤外線をよく放出する物質である。6,12
μmの波長帯体のものを強く放射するものがよい。望ま
しくは、この遠赤外線放出物の外周にコイル状金属線を
巻きつけることで、遠赤外線の照射をより強化できる。
又この遠赤外線放射物は、冷却水の循環水路でも又は補
給水路中いずれの水路途中に設けてもよいが、水中の汚
れ、アカ・ゴミ・土砂等の侵入のない補給水路に設ける
ことが詰りもなくメンテナンスも不要にでき望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The far-infrared radiation product of the present invention may be in the shape of a rod, a sphere, a plate or a lump, and its material is an oxide such as cordierite, lambrite, petalite or aluminum titanate. , Non-oxides such as silicon carbide and silicon nitride. As natural stones, rocks such as Akaishi and Fluorite can be used, and 6 to 15 μm without giving heat energy from the outside.
It is a substance that emits far infrared rays of the wavelength 6,12
It is preferable to strongly radiate a wavelength band of μm. Desirably, by wrapping a coil-shaped metal wire around the outer periphery of the far-infrared radiation product, far-infrared irradiation can be further enhanced.
This far-infrared radiation may be provided in the cooling water circulation channel or in any of the replenishment channels, but it should be provided in a replenishment channel without dirt, dirt, dirt, etc. in the water. No maintenance is required and it is desirable.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基いて説明す
る。本実施例は冷却塔の冷却水の補給水の給水路の途中
に柱状に形成されたセラミック製の遠赤外線放射物を設
け、同遠赤外線放射物の外側にステンレスを焼成したコ
イルを巻きつけ、これを通水孔の開口がある円板状取付
板に複数個取付けた状態とし、この状態の取付板を補給
水路の途中に設けた拡巾したパイプ内に複数枚取付けて
活水器とした例である。図1は本発明の実施例の冷却水
循環路を示す説明図、図2は実施例の活水器の縦断面
図、図3は図2のA−A断面図、図4は実施例の遠赤外
線放射物の斜視図である。図中1は冷却塔、1aは散水
管、1bは空気流と接触し、垂直の水路を多数区画して
設けた冷却用コア、1cは外気を取り込んで、コア内に
強制空気流を生起させるファン、1dは補給水管、1e
は同補給水管の吐水口を開閉するフロートバルブ、1f
は同フロートバルブのフロート、1gは排水パイプ、1
hは冷却塔ケーシング、1iは同冷却塔ケーシングに開
口した空気取込口、1jはファン1cによって空気を放
出する放出口、1lは冷却水貯水部である。2は冷却水
の循環水路、3は補給水管1dの途中に設けた活水器、
3aは粘土・珪石・炭化珪素・窒化ケイ素を含んだ炭化
物・金属酸化物を混合して柱状にセラミック成形をした
1〜2cm長さの6〜14μmの波長の遠赤外線を常温
でよく放射する遠赤外線放射物、3bはステンレスを焼
成して遠赤外線の吸収率及び放出率を高めた遠赤外線吸
収部材であるコイルであって、遠赤外線放射物3aを外
周に巻付けて取付板3cに取付ている。3cは金属製の
円板状取付板、3dは同取付板の通水孔、3eは活水器
3のケーシングである拡巾したステンレス製パイプ、4
はポンプ、5は空調装置の為の熱交換器、6は補給水の
水タンク、7は建物の屋上床壁である。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a far infrared radiator made of a ceramic formed in a column shape is provided in the middle of a water supply channel for the cooling water of the cooling tower, and a coil made of stainless steel is wound around the far infrared radiator. An example in which a plurality of disc-shaped mounting plates with openings for water passage holes are mounted, and a plurality of mounting plates in this state are mounted in a widened pipe provided in the middle of the make-up water channel to form a water pump. Is. FIG. 1 is an explanatory view showing a cooling water circulation path of an embodiment of the present invention, FIG. 2 is a vertical sectional view of a water activator of the embodiment, FIG. 3 is a sectional view taken along line AA of FIG. 2, and FIG. 4 is a far infrared ray of the embodiment. It is a perspective view of a radiator. In the figure, 1 is a cooling tower, 1a is a sprinkler pipe, 1b is in contact with an air flow, and a cooling core is provided by dividing a large number of vertical water channels, and 1c takes in outside air to generate a forced air flow in the core. Fan 1d is make-up water pipe 1e
Is a float valve that opens and closes the outlet of the makeup water pipe, 1f
Is the float of the float valve, 1g is drain pipe, 1
Reference numeral h is a cooling tower casing, 1i is an air inlet opening in the cooling tower casing, 1j is an outlet for discharging air by the fan 1c, and 1l is a cooling water reservoir. 2 is a circulation channel for cooling water, 3 is a water heater provided in the middle of the makeup water pipe 1d,
3a is a far-infrared ray that radiates far-infrared rays having a wavelength of 6 to 14 μm with a length of 1 to 2 cm and a columnar ceramic molded by mixing clay, silica stone, silicon carbide, carbide containing silicon nitride, and metal oxide. Infrared radiator 3b is a coil which is a far infrared absorbing member in which the absorption rate and the emission rate of far infrared rays are increased by firing stainless steel, and the far infrared radiator 3a is wound around the outer periphery and attached to the mounting plate 3c. There is. 3c is a disc mounting plate made of metal, 3d is a water passage hole of the mounting plate, 3e is a widened stainless pipe which is a casing of the water-activating device 3, 4
Is a pump, 5 is a heat exchanger for an air conditioner, 6 is a water tank for makeup water, and 7 is a roof floor wall of the building.

【0008】この実施例では、冷却塔1の冷却水貯水部
1eの内部に貯えられた30℃程の冷却水は、循環水路
2を通ってポンプ4によって空調装置の熱交換器5へ送
られ、熱交換され5℃程昇温して冷却塔1内の散水管1
aに送り込まれ、散水管1aから散水され、コア1bを
通過して下方の冷却水貯水部1lに貯えられる。このコ
ア1bを通過するときに、空気がファン1cによって冷
却塔ケーシング1hの空気取込口1iから吸引され、コ
ア1bを通過して放出口1jから放出される。従ってコ
ア1bにおいて外気の空気流に触れて冷却水は冷却され
て5℃程度温度が低下し、冷却水貯水部1lに貯まり、
循環水路2へ送られる。この冷却水の一部は蒸発・水滴
の状態で放出口1jから大気に放出され、減少する。冷
却水貯水部1l内の水位が所定水位より低下するとフロ
ート1fが下がり、フロートバルブ1eが作動して補給
水管1d内の水が冷却水貯水部1l内に給水され、所定
水位を保つようになっている。この補給水が活水器3内
を通過するときに、活水器3内の遠赤外線放射物3aに
触れ、補給水は遠赤外線を受け、水のクラスター状態が
変化し、活性状態となる。この活性状態はコイル3bに
よってより効果的に高められる。この活性化された補給
水が冷却水内に入ることで、冷却水が活性化し、細菌の
発生と増殖を大巾に抑えることができた。活水器3内で
補給水は複数の取付板3c及び柱状遠赤外線放射物3a
及びコイル3bとによって邪魔されながら流れが乱れ、
渦流・帯流を生起しながら遠赤外線放射物3aのあるパ
イプ3e内の空間に長くとどまって、遠赤外線放射線を
遠赤外線放射物3a及びコイル3bから受けて吸収し、
補給水の活性力は高められる。補給水が給水されないと
きは、パイプ3e内で十分に遠赤外線で活性化される。
又、活水器3は補給水管1dにあり、冷却水の循環水路
2にないので、冷却塔で侵入するゴミ・土砂及び汚れ・
錆がなく、汚れ・ゴミ・土砂等が付着・沈澱することが
なく、メンテナンスはほとんど不要となる。又活性化さ
れた水は水路、コア1bノ錆・アカ・附着物をよく剥離
していた。
In this embodiment, the cooling water of about 30 ° C. stored in the cooling water storage section 1e of the cooling tower 1 is sent to the heat exchanger 5 of the air conditioner by the pump 4 through the circulating water passage 2. , The heat is exchanged and the temperature rises by about 5 ° C., and the sprinkler pipe 1 in the cooling tower 1
It is sent to a, is sprinkled from the sprinkling pipe 1a, passes through the core 1b, and is stored in the cooling water storage section 1l below. When passing through the core 1b, air is sucked by the fan 1c from the air intake 1i of the cooling tower casing 1h, passes through the core 1b, and is discharged from the discharge port 1j. Therefore, in the core 1b, the cooling water is cooled by coming into contact with the air flow of the outside air, the temperature of the cooling water is lowered by about 5 ° C., and the cooling water is stored in the cooling water storage section 11 and
It is sent to the circulating water channel 2. A part of this cooling water is discharged to the atmosphere from the discharge port 1j in the state of evaporation / water droplets and decreases. When the water level in the cooling water reservoir 1l drops below a predetermined level, the float 1f lowers and the float valve 1e operates to supply the water in the makeup water pipe 1d into the cooling water reservoir 1l to maintain the predetermined level. ing. When this makeup water passes through the inside of the water purifier 3, it touches the far-infrared radiation 3a inside the water activater 3, the makeup water receives far infrared rays, the water cluster state changes, and the water becomes active. This active state is enhanced more effectively by the coil 3b. When this activated makeup water entered the cooling water, the cooling water was activated, and the generation and growth of bacteria could be greatly suppressed. In the water activating device 3, makeup water is supplied by a plurality of mounting plates 3c and columnar far-infrared radiators 3a.
And the flow is disturbed while being disturbed by the coil 3b,
Staying long in the space inside the pipe 3e where the far infrared radiation 3a is generated while generating a vortex / band flow, receiving far infrared radiation from the far infrared radiation 3a and the coil 3b, and absorbing it.
The activity of makeup water is increased. When the makeup water is not supplied, the infrared rays are sufficiently activated in the pipe 3e.
Also, since the water activating device 3 is in the makeup water pipe 1d and not in the cooling water circulation channel 2, dust, dirt, dirt, and dirt entering the cooling tower
There is no rust, and dirt, dust, earth and sand do not adhere and settle, and maintenance is almost unnecessary. In addition, the activated water often peeled off the water channel, core 1b, rust, redness, and attachments.

【0009】本実施例の活水器3を使用することで、冷
却塔で発生するレジオネラ属菌の発生と増殖の抑制効果
を比較試験で証する。 比較試験 屋上に設置された空調用の10ケ所の冷却塔に、図面に
示す活水器3を補給水路に取付けた実施例の場合と、こ
の活水器3を取付けない従来の場合で、比較開始時に化
学洗滌をしたAグループと、化学洗滌をしないBグルー
プと、化学洗滌し活水器3を取付けて毎月1回清掃した
Cグループに分けて、レジオネラ属菌の発生・増殖の状
態を測定した。その結果は、下記の表1の如くとなっ
た。尚、冷却塔No5,6,7には、従来の活水器3の
取付けがない冷却塔が近接して設けられていてその影響
を受け易いものとなっている。
A comparative test demonstrates the effect of suppressing the generation and growth of Legionella spp. Generated in the cooling tower by using the water activation device 3 of this embodiment. Comparative test At the start of comparison, there are 10 cooling towers for air-conditioning installed on the roof, and an embodiment in which the water activator 3 shown in the drawing is attached to the makeup water channel, and a conventional case in which the water activator 3 is not attached. The state of generation and proliferation of Legionella spp. Was measured by dividing into A group that was chemically washed, B group that was not chemically washed, and C group that was cleaned once a month with the chemical water washing device 3 attached. The results are shown in Table 1 below. The cooling towers Nos. 5, 6, and 7 are provided with cooling towers in the vicinity of which the conventional water activating device 3 is not attached, and are easily affected by the cooling towers.

【0010】[0010]

【表1】 [Table 1]

【0011】この結果の表から分るように、化学洗滌し
て殺菌を行ったAグループでは、活水器3を取付けて処
理した実施例のものでは、13日間の間レジオネラ属菌
の発生は不検出であり、1カ月経過しても不検出か50
0CFU/100ml以下の状態であった。これに対し
て活水器3を取付けないものでは、2か月経過後は1
0,000CFU/100ml以上で要注意範囲となっ
ている。このAグループでは、活水器3のレジオネラ属
菌の発生・増殖の抑制力は著しいものである。同様に、
殺菌を行なわないBグループでは、活水器3を取付けた
ものでは2か月経過しても不検出か要観察範囲の状態で
あるのに対し、活水器3を取付けないものでは、10
0,000CFU/100ml以上の要緊急処理範囲と
なっていて、このBグループでも活水器3のある場合の
レジオネラ属菌の発生・増殖の抑制力は顕著である。更
に、化学洗滌と毎月1回の清掃をしたCグループでは、
活水器3を取付けたものでは、不検出又は望ましい範囲
であった。以上のように、本実施例の試験から、冷却塔
内のレジオネラ属菌の発生と増殖は、活水器3によって
著しく抑えられ、不検出又は望ましい範囲、要観察範囲
のものであることが分る。
As can be seen from the table of the results, in the group A, which was chemically washed and sterilized, in the case of the example in which the water heater 3 was attached, the generation of Legionella spp. Detected, or not detected even after 1 month has passed 50
The state was 0 CFU / 100 ml or less. On the other hand, in the case where the water activating device 3 is not attached, it is 1 after 2 months have passed.
It is in the range of caution when it is over 10,000 CFU / 100 ml. In this group A, the activity of the water activating device 3 to suppress the generation and growth of Legionella spp. Is remarkable. Similarly,
In Group B, which is not sterilized, the one with the water activator 3 remains in the undetectable state or the observation required range even after 2 months, whereas the one without the water activator 3 has 10
The urgent treatment range is 10,000 CFU / 100 ml or more, and even in this group B, the inhibitory effect on the generation / proliferation of Legionella spp. Furthermore, in Group C, which has undergone chemical cleaning and monthly cleaning,
In the case where the water activating device 3 was attached, it was not detected or was in a desirable range. As described above, from the test of this example, it is found that the generation and growth of Legionella spp. In the cooling tower are significantly suppressed by the water activator 3, and are in the undetectable or desirable range and the observation required range. .

【0012】[0012]

【発明の効果】以上の様に、本発明によれば冷却塔で発
生・増殖し、又ファンによって大気に放散されて周囲の
環境を汚染するレジオネラ属菌の発生と増殖を大巾に抑
え、不検出か要観察範囲以下の衛生的なレベルにするこ
とができる。しかも簡単な遠赤外線放射物体の配置の付
加のみでよいので安価な設備費で済み、ランニングコス
トも不要にすることができた。
As described above, according to the present invention, the generation and growth of Legionella spp. Which grow and multiply in the cooling tower and are emitted to the atmosphere by the fan and pollute the surrounding environment are greatly suppressed. It can be set to a hygienic level below the non-detection or observation-needed range. Moreover, since it is only necessary to add a simple arrangement of the far-infrared radiation object, the equipment cost can be reduced and the running cost can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の冷却水循環路を示す説明図である。FIG. 1 is an explanatory diagram showing a cooling water circulation path according to an embodiment.

【図2】実施例の活水器の縦断面図である。FIG. 2 is a vertical cross-sectional view of a water activating device according to an embodiment.

【図3】図2のA−A断面図である。FIG. 3 is a sectional view taken along line AA of FIG. 2;

【図4】実施例の遠赤外線放射物の斜視図である。FIG. 4 is a perspective view of a far-infrared radiation product of the embodiment.

【符号の説明】[Explanation of symbols]

1 冷却塔 2 循環水路 3 活水器 3a 遠赤外線放射物 3b コイル 3c 取付板 3d 通水孔 3e パイプ 4 ポンプ 5 熱交換器 6 水タンク 1 Cooling Tower 2 Circulating Water Channel 3 Activator 3a Far Infrared Radiant 3b Coil 3c Mounting Plate 3d Water Passage Hole 3e Pipe 4 Pump 5 Heat Exchanger 6 Water Tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷却塔で冷却される熱交換用冷媒となる
冷却水の循環路又はその補給水の給水路の途中内部に、
6〜15μmの波長の遠赤外線を放射する遠赤外線放射
物を設け、上記冷却水又は補給水を遠赤外線放射物と接
触させることによって、冷却塔内に発生・増殖する細菌
の増殖を抑制することを特徴とする冷却塔内の細菌の抑
制方法。
1. A cooling water circulation passage cooled by a cooling tower, which is a coolant for heat exchange, or a water supply passage for the makeup water, inside the cooling water circulation passage,
Suppressing the growth of bacteria that are generated and proliferate in the cooling tower by providing a far-infrared radiator that emits far-infrared rays having a wavelength of 6 to 15 μm and bringing the cooling water or makeup water into contact with the far-infrared radiator. A method for suppressing bacteria in a cooling tower, comprising:
【請求項2】 上記の遠赤外線をよく吸収して放出する
遠赤外線吸収部材を遠赤外線放射物の外周に配置した請
求項1記載の冷却塔内の細菌の抑制方法。
2. The method for suppressing bacteria in a cooling tower according to claim 1, wherein the far-infrared absorbing member that absorbs and emits the far-infrared rays well is arranged around the far-infrared radiation product.
【請求項3】 遠赤外線吸収部材としてステンレスを焼
成処理したコイルを使用し、同コイルを柱状の複数の各
遠赤外線放射物の外周に巻付けて遠赤外線放射物を通水
できる取付板に固着し、遠赤外線放射物を固着した前記
取付板を循環路又は給水路の水路途中に所定間隔離して
複数個邪魔板とするように配置し、遠赤外線をよく冷却
水に照射させる請求項2記載の冷却塔内の細菌の抑制方
法。
3. A far-infrared absorbing member is made of a coil obtained by baking stainless steel, and the coil is wound around an outer periphery of each of a plurality of columnar far-infrared radiators and fixed to a mounting plate through which the far-infrared radiators can pass. The far infrared rays are well radiated to the cooling water by arranging the mounting plate to which the far infrared radiation is adhered so as to be a baffle plate by separating the mounting plate by a predetermined distance in the middle of the water channel of the circulation path or the water supply path. Method for controlling bacteria in the cooling tower of.
【請求項4】 遠赤外線放射物を補給水の給水路中に設
けた請求項1〜3何れか記載の冷却塔内の細菌の抑制方
法。
4. The method for suppressing bacteria in a cooling tower according to claim 1, wherein the far-infrared radiation product is provided in a water supply channel for makeup water.
JP7227426A 1995-08-11 1995-08-11 Method for suppressing bacteria in cooling tower Pending JPH0953896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227426A JPH0953896A (en) 1995-08-11 1995-08-11 Method for suppressing bacteria in cooling tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227426A JPH0953896A (en) 1995-08-11 1995-08-11 Method for suppressing bacteria in cooling tower

Publications (1)

Publication Number Publication Date
JPH0953896A true JPH0953896A (en) 1997-02-25

Family

ID=16860669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227426A Pending JPH0953896A (en) 1995-08-11 1995-08-11 Method for suppressing bacteria in cooling tower

Country Status (1)

Country Link
JP (1) JPH0953896A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132592A (en) * 2002-10-09 2004-04-30 Denkai Giken:Kk Electrochemical water treatment method and water treatment system
JP2004191021A (en) * 2002-12-13 2004-07-08 Kuken Kogyo Co Ltd Cooling tower
US7094342B2 (en) * 2002-08-09 2006-08-22 Kikuo Tamura Water activation device
KR101981431B1 (en) * 2018-07-16 2019-05-27 김형진 Counterflow type cooling tower
WO2020240610A1 (en) * 2019-05-24 2020-12-03 都市拡業株式会社 Cooling device and cooling water circulation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094342B2 (en) * 2002-08-09 2006-08-22 Kikuo Tamura Water activation device
JP2004132592A (en) * 2002-10-09 2004-04-30 Denkai Giken:Kk Electrochemical water treatment method and water treatment system
JP2004191021A (en) * 2002-12-13 2004-07-08 Kuken Kogyo Co Ltd Cooling tower
KR101981431B1 (en) * 2018-07-16 2019-05-27 김형진 Counterflow type cooling tower
WO2020240610A1 (en) * 2019-05-24 2020-12-03 都市拡業株式会社 Cooling device and cooling water circulation method

Similar Documents

Publication Publication Date Title
TW552390B (en) Portable, potable water recovery and dispensing apparatus
US4351270A (en) Terrarium/aquarium
JP2010142698A (en) Fluid treating apparatus
WO2017138889A1 (en) Dual stage evaporative cooling system and control method thereof
CN1833151A (en) System and method of cooling
JPH0953896A (en) Method for suppressing bacteria in cooling tower
JP5891254B2 (en) Air conditioning and cleaning equipment
CN215842351U (en) Spraying organic waste gas purification treatment system
US7428823B2 (en) Evaporative cooler with antimicrobial provisions
CN112728687A (en) Hierarchical type micro-mist filler humidifier
WO2014077122A1 (en) Plant cultivation system
CN107631386A (en) Semi-conductor condensation type air purification humidifier
JPH0355489A (en) Method and apparatus for precooling dry cooling and cooling of the same type
JP4797629B2 (en) Humidifier
CN214528144U (en) Suspension-connection type ozone generator
CN214426136U (en) Hierarchical type micro-mist filler humidifier
CN210803268U (en) Spectrophotometer for biological experiments
CN112629293A (en) A waste gas deodorization and heat recovery integrated device for beasts and birds are bred
JPS58213136A (en) Process for achieving dust and bacterium-proof airconditioning and apparatus thereof
CN206944742U (en) Cooling tower
JP2000083511A (en) Cooler for aquarium
CN205783517U (en) Stir water wheels and air humidifying equipment
CN205066501U (en) Clean formula cooling tower
KR101518278B1 (en) Transparent heatexchanger for greenhouse
JPH08136014A (en) Multipurpose artificial watercourses

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050316