JPH095147A - Electronic balance - Google Patents

Electronic balance

Info

Publication number
JPH095147A
JPH095147A JP15760295A JP15760295A JPH095147A JP H095147 A JPH095147 A JP H095147A JP 15760295 A JP15760295 A JP 15760295A JP 15760295 A JP15760295 A JP 15760295A JP H095147 A JPH095147 A JP H095147A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
current
proportional
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15760295A
Other languages
Japanese (ja)
Inventor
Toshiyuki Yamaguchi
敏之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15760295A priority Critical patent/JPH095147A/en
Publication of JPH095147A publication Critical patent/JPH095147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE: To enable detecting of a correct weighed value with a smaller magnetic circuit by making a current for deciding the weighed value flow to a coil arranged at the central part of a uniform magnetic field of a magnetic circuit and the remaining current to the other coil. CONSTITUTION: An integral current signal ip of displacements of a lever 2 is supplied to a coil 5 and a proportional and differential 12 current signal iPD of displacements of the lever 2 is supplied to a coil 6. During the period, a current i1 is taken into a microcomputer 15 and a load weighed value is determined. Since located at the center of a uniform magnetic field in a magnetic field space M produced by a magnetic circuit 7, the coil 5 through which the current i1 flows will not be diverted from the uniform magnetic field even when the lever 2 is somewhat displaced. In addition, the current iPD is down to zero when a system is balanced and an electromagnetic force determined by a product of the size of the current iPD and a magnetic field is also down to zero. Hence, there is no error in a weighed value determined by the current i1 even when the coil 6 is outside the range of the uniform magnetic field. This enables the obtaining of a highly accurate weighed value with a smaller circuit 7 despite the use of the two coils 5 and 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子天びんに関し、より
詳しくは、電磁力平衡型の電子天びんに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic balance, and more particularly to an electromagnetic force balance type electronic balance.

【0002】[0002]

【従来の技術】電磁力平衡型の電子天びんにおいては、
一般に、被測定荷重の負荷により変位するレバー等の可
動部にコイルを固着するとともに、そのコイルを永久磁
石を主体とする磁気回路が作る磁場中に配置し、そこに
電流を流すことによって発生する電磁力を被測定荷重と
対抗させ、両者が釣り合うようにコイルに流れる電流を
制御し、釣り合い状態でのコイル電流から被測定荷重の
大きさを求める。
2. Description of the Related Art In an electronic balance of the electromagnetic force balance type,
Generally, it is generated by fixing a coil to a movable part such as a lever that is displaced by the load of the load to be measured, arranging the coil in a magnetic field created by a magnetic circuit mainly composed of a permanent magnet, and passing an electric current through it. The electromagnetic force is opposed to the load to be measured, the current flowing through the coil is controlled so that they are balanced, and the magnitude of the load to be measured is obtained from the coil current in the balanced state.

【0003】コイルに流れる電流は、可動部の変位を変
位検出器によって検出し、その検出結果に応じた電流が
コイルに流れるようにフィードバック制御される。すな
わち、可動部の変位が0を維持するようなサーボ機構に
よって、コイル電流が制御される。ここで、変位検出結
果は、通常、PID(比例・積分・微分)演算された
後、もしくは、PD(比例・微分)演算された後、電流
信号としてコイルにフィードバックされ、各演算の定数
等を適宜に設定することにより、系の応答性と安定性が
確保されるように考慮されている。また、コイルに流れ
た電流は、例えば精密抵抗を通すことによって電圧信号
に変換され、A−D変換器で刻々とデジタル化した後、
マイクロコンピュータによって平均化演算やスパン係数
を乗じる等の演算を施すことで、表示すべき計量値を決
定する。
The current flowing through the coil is feedback-controlled so that the displacement of the movable part is detected by a displacement detector and a current according to the detection result flows through the coil. That is, the coil current is controlled by the servo mechanism that maintains the displacement of the movable portion at zero. Here, the displacement detection result is usually fed back to the coil as a current signal after PID (proportional / integral / derivative) calculation or PD (proportional / derivative) calculation, and constants for each calculation are calculated. It is considered that the responsiveness and stability of the system can be secured by appropriately setting. Further, the current flowing in the coil is converted into a voltage signal by passing through a precision resistor, for example, and is digitized by an AD converter every moment,
The metric value to be displayed is determined by performing an averaging operation or an operation such as multiplying by a span coefficient by a microcomputer.

【0004】ところで、このような電子天びんにおいて
は、被測定荷重の大きさ、つまり計量値は、系がある程
度安定しているときにのみ正確に算出されれば足り、従
って計量値を決定するために必要な信号は、PID演算
機能を持つものにあっては、積分演算結果のみ、または
比例と積分演算結果のみで十分であり、残る比例と微
分、あるいは微分演算結果は必要としない。特に、微分
演算結果は、過渡応答時における系の応答性を向上させ
ることを主たる目的とするものであり、これをもデジタ
ル化して計量値の演算に供することは、計量値のS/N
を向上させるためにはむしろ好ましくない。同じよう
に、PD演算機能を持つものでは、計量値の決定には比
例演算結果のみを用いれば足りる。
By the way, in such an electronic balance, the magnitude of the load to be measured, that is, the measured value needs to be accurately calculated only when the system is stable to some extent, and therefore the measured value is determined. As for the signal required for the above, for the one having the PID calculation function, only the integral calculation result, or the proportional and integral calculation results are sufficient, and the remaining proportional and derivative or the differential calculation results are not required. In particular, the differential calculation result is mainly intended to improve the responsiveness of the system at the time of transient response, and it is also necessary to digitize the result and use it for calculation of the measured value by measuring the S / N of the measured value.
It is rather not preferable for improving Similarly, in the case of a device having a PD calculation function, it is sufficient to use only the proportional calculation result to determine the weighing value.

【0005】このようなことから、従来、2つのコイル
を磁場中に二重巻きにして配置し、その一方のコイルに
計量値の決定に供される演算結果に基づく電流信号、つ
まり積分演算結果または比例・積分演算結果、もしく
は、比例演算結果に基づく電流を流し、その電流のみを
電圧信号化〜デジタル化し、計量値の決定に供すべくマ
イクロコンピュータに導入するとともに、他方のコイル
には残る演算結果に基づく電流信号、つまり比例・微分
演算結果または微分演算結果を流すような対策を採るこ
とで、S/Nの高い高精度の電子天びんを得ている。
For this reason, conventionally, two coils are arranged in a magnetic field so as to be double-wound, and one of the coils is a current signal based on a calculation result used for determining a weighing value, that is, an integration calculation result. Or the result of proportional / integral calculation, or a current based on the result of proportional calculation is applied, and only that current is converted into a voltage signal and digitized, and introduced into the microcomputer to be used for determination of the measured value, while remaining calculation is performed in the other coil. By taking a measure to flow a current signal based on the result, that is, a proportional / differential calculation result or a differential calculation result, a highly accurate electronic balance with a high S / N is obtained.

【0006】[0006]

【発明が解決しようとする課題】ところで、電磁力平衡
型の天びんにおいては、コイルは均一磁場中に置かれ、
何らかの原因によって多少移動しようともその均一磁場
領域から外れないようにしなければ、被測定荷重に相当
した信号が得られず、正確な計量値が得られないことは
言うまでもないが、上記のように2つのコイルを二重巻
きにして磁場中に配置する場合、1つのコイルを磁場中
に配置する通常の電子天びんに比して、均一磁場の領域
をコイルの径方向に広くする必要が生じる。ここで、こ
の種の磁場を作る磁気回路は永久磁石およびポールピー
スによって構成されるが、均一磁場の領域を広くするた
めには大きな永久磁石とポールピースが必要となり、コ
ストアップの原因となるばかりでなく、天びんが大型化
していしまうという問題がある。
By the way, in an electromagnetic force balance type balance, the coil is placed in a uniform magnetic field,
It is needless to say that a signal corresponding to the load to be measured cannot be obtained and an accurate measured value cannot be obtained unless it is moved out of the uniform magnetic field area even if it moves for some reason. When one coil is double-wound and placed in the magnetic field, it is necessary to widen the region of the uniform magnetic field in the radial direction of the coil, as compared with a normal electronic balance in which one coil is placed in the magnetic field. Here, the magnetic circuit that creates this kind of magnetic field is composed of a permanent magnet and a pole piece, but a large permanent magnet and a pole piece are required to widen the area of the uniform magnetic field, which not only causes a cost increase. However, there is a problem that the balance becomes larger.

【0007】本発明の目的は、磁気回路が作る磁場中に
2つのコイルを配置して、比例・積分・微分もしくは比
例・微分演算結果のうち、計量値の決定に供した演算結
果に基づく電流信号と、残りの演算結果に基づく電流信
号とを、これら2つのコイルに個別に流すように構成さ
れた電子天びんにおいて、大きな磁気回路を用いること
なく、正確な計量値を得ることのできる電子天びんを提
供することにある。
An object of the present invention is to dispose two coils in a magnetic field created by a magnetic circuit, and to calculate a current based on a calculation result of proportional / integral / derivative or proportional / differential calculation result, which is used for determining a measured value. In an electronic balance configured to separately flow a signal and a current signal based on the remaining calculation result in these two coils, an electronic balance that can obtain an accurate weighing value without using a large magnetic circuit To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の電子天びんは、被測定荷重によって変位す
る可動部にコイルを固着し、かつ、そのコイルを磁気回
路が作る磁場中に配置するとともに、可動部の変位を変
位検出器によって検出し、その検出信号を比例・積分・
微分演算(もしくは比例・微分演算)した後、電流信号
としてコイルに流すことによって、被測定荷重と電磁力
とを平衡させ、その平衡状態でコイルに流れる電流から
計量値を決定する天びんにおいて、比例・積分・微分演
算(もしくは比例・微分演算)のうち、積分または比例
・積分演算後の信号(もしくは比例演算後の信号)のみ
を計量値の決定に供し、かつ、磁場中に2つのコイル
5,6を設けて、その各コイルに計量値の決定に供する
信号と残りの信号とをそれぞれ別個に流すよう構成する
とともに、計量値の決定に供する信号が流されるコイル
5を、磁気回路7が形成する磁場中における均一磁場の
中心部分に配置し、そのコイル5の軸方向上下いずれか
または双方に、他方のコイル6を配置していることによ
って特徴づけられる(図1参照)。
In order to achieve the above object, an electronic balance of the present invention has a coil fixed to a movable part which is displaced by a load to be measured, and the coil is placed in a magnetic field created by a magnetic circuit. Along with the placement, the displacement detector detects the displacement of the movable part, and the detected signal is proportional / integral /
By performing differential operation (or proportional / differential operation) and then passing it as a current signal through the coil, the load to be measured and the electromagnetic force are balanced, and in the balance state, the measured value is determined from the current flowing through the coil. -Of the integral / derivative operation (or proportional / derivative operation), only the integrated or the signal after the proportional / integral operation (or the signal after the proportional operation) is used for determining the weighing value, and the two coils 5 are placed in the magnetic field. , 6 are provided so that the signal used for determining the weighing value and the remaining signal are separately passed through the respective coils, and the magnetic circuit 7 is provided with the coil 5 through which the signal used for determining the weighing value is passed. It is characterized in that it is arranged at the central portion of the uniform magnetic field in the magnetic field to be formed, and the other coil 6 is arranged either above or below the coil 5 in the axial direction. See Figure 1).

【0009】ここで、本発明は、変位検出信号を比例・
積分・微分演算するタイプの電子天びんにあっては、積
分演算結果、または、比例および積分演算結果を計量値
の決定に供するもののほか、変位検出信号を比例・微分
演算するタイプの電子天びんにあっては、比例演算結果
を計量値の決定に供するものを含む。
In the present invention, the displacement detection signal is proportional to
Electronic balances that perform integral / derivative calculations include those that use the integral calculation result or the proportional and integral calculation results to determine the weighing value, as well as the electronic balance that proportionally and differentially calculates the displacement detection signal. Include those that use the proportional calculation result for determination of the measured value.

【0010】[0010]

【作用】正確な計量値を得るべく均一磁場中に置く必要
があるのは、計量値の決定に供される演算結果に基づく
電流信号が流されるコイル5のみであり、残る演算結果
に基づく電流信号が流されるコイル6は、ある程度不均
一な磁場中に配置しても計量値には影響を及ぼさない。
本発明はこの点に着目してなされたもので、計量値の決
定に供される演算結果に基づく電流信号が流されるコイ
ル5を磁気回路7が作る磁場中の均一磁場の中心部分に
置き、他方のコイル6についてはその上下いずれかもし
くは双方に置くことで、S/Nの高い電子天びんであり
ながら、小型の磁気回路7を用いて正確な計量値を得る
ことが可能となる。
In order to obtain an accurate measured value, it is only the coil 5 to which a current signal based on the calculation result used for determination of the measured value is applied that needs to be placed in the uniform magnetic field. The coil 6 through which the signal is passed does not affect the measured value even if it is arranged in a magnetic field that is somewhat inhomogeneous.
The present invention has been made paying attention to this point, and the coil 5 to which a current signal based on the calculation result used for determination of the measured value is made to flow is placed at the center of the uniform magnetic field in the magnetic field created by the magnetic circuit 7, By placing the other coil 6 either above or below it or both, it is possible to obtain an accurate measured value by using the small magnetic circuit 7 even though it is an electronic balance having a high S / N.

【0011】[0011]

【実施例】図1は本発明実施例の機構図と電気回路構成
を示すブロック図とを併記して示す全体構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an overall configuration diagram showing a mechanism diagram of an embodiment of the present invention and a block diagram showing an electrical circuit configuration together.

【0012】支点1を中心として回動自在のレバー2の
一端部に、被測定荷重Wを負荷するための皿3が設けら
れている。また、レバー2には、支点1を挟んで皿3と
反対側の位置に、支持部材4を介して、共通の鉛直軸を
中心として円筒状に巻回された第1のコイル5と第2の
コイル6が固着されている。ここで、第2のコイル6
は、第1のコイル5の上下に分割された2つのコイル6
a,6bからなり、この2つのコイル6a,6bは導線
6cによって相互に接続されて実質的に1つのコイルを
構成している。そして、これらの第1および第2のコイ
ル5および6は、磁気回路7が形成する磁場中に置かれ
ている。
A plate 3 for applying a load W to be measured is provided at one end of a lever 2 rotatable about a fulcrum 1. The lever 2 has a first coil 5 and a second coil 5 which are wound in a cylindrical shape around a common vertical axis at a position opposite to the tray 3 with the fulcrum 1 interposed therebetween, with a supporting member 4 interposed therebetween. The coil 6 of is fixed. Here, the second coil 6
Is the two coils 6 divided above and below the first coil 5.
a and 6b, and the two coils 6a and 6b are connected to each other by a conductor 6c to substantially form one coil. The first and second coils 5 and 6 are placed in the magnetic field formed by the magnetic circuit 7.

【0013】磁気回路7は、図示のように同極どうしが
鉛直軸に沿って対向するように配置された2つの永久磁
石71,72と、その間に配置された円柱ないしは円盤
状のポールピース73、およびこれらを囲む筒状のヨー
ク74によって構成されており、ポールピース73の外
周面とヨーク74の内周面との間の円筒状の空隙に静磁
場を形成している。前記した第1および第2のコイル5
および6は、その円筒状の磁場空間M内に、磁場の方向
に直交するように巻回された状態で配置されているが、
磁場空間M内の磁場の強度分布と各コイル5,6(6
a,6b)の位置関係は、図2に示す通りである。すな
わち、磁気回路7が作る磁場は、図2のグラフに示すよ
うに、2つの永久磁石71,72間の中央、換言すれば
ポールピース73の上下方向中央を通る線a−bを中心
とする上下方向所定領域は均一の強度となるが、その均
一磁場領域から上下に遠ざかるほど、磁場強度は低下す
る。第1のコイル5の上下方向位置は線a−bを中心と
しており、均一磁場領域内に全てが収まっている。ま
た、第1のコイル5の上下方向寸法は、均一磁場領域の
上下方向距離よりも短く、従って均一磁場領域は第1の
コイル5の上下にも所定距離ずつ広がっている。一方、
第2のコイル6を構成する上下2つのコイル6aと6b
は、それぞれの一部が均一磁場領域を外れた状態で配置
されている。
The magnetic circuit 7 includes two permanent magnets 71, 72 arranged so that the same poles face each other along the vertical axis as shown in the figure, and a columnar or disk-shaped pole piece 73 arranged between them. , And a cylindrical yoke 74 that surrounds them, and forms a static magnetic field in a cylindrical gap between the outer peripheral surface of the pole piece 73 and the inner peripheral surface of the yoke 74. First and second coils 5 described above
And 6 are arranged in the cylindrical magnetic field space M in a wound state so as to be orthogonal to the direction of the magnetic field,
The intensity distribution of the magnetic field in the magnetic field space M and the coils 5, 6 (6
The positional relationship of a, 6b) is as shown in FIG. That is, the magnetic field generated by the magnetic circuit 7 is centered on a line ab passing through the center between the two permanent magnets 71 and 72, in other words, passing through the vertical center of the pole piece 73, as shown in the graph of FIG. The predetermined area in the vertical direction has a uniform strength, but the magnetic field strength decreases as the distance from the uniform magnetic field increases and decreases. The vertical position of the first coil 5 is centered on the line a-b and is entirely within the uniform magnetic field region. Further, the vertical dimension of the first coil 5 is shorter than the vertical distance of the uniform magnetic field region, and thus the uniform magnetic field region extends above and below the first coil 5 by a predetermined distance. on the other hand,
Two upper and lower coils 6a and 6b which form the second coil 6.
Are arranged such that some of them are out of the uniform magnetic field region.

【0014】さて、レバー2の皿3の装着端とは反対側
の先端には変位検出器8が配設されており、この変位検
出器8によってレバー2の変位が検出される。変位検出
器8の出力はプリアンプ10で増幅された後、I(積
分)用演算処理アンプ11およびPD(比例・微分)用
演算処理アンプ12に導入されている。I用演算処理ア
ンプ11は、変位検出器10によるレバー2の変位検出
値に積分演算を施した後、その演算結果に応じた大きさ
の電流信号iI を出力し、PD用演算処理アンプ12
は、同じく変位検出器10からの変位検出結果に比例演
算および微分演算を施した後、その演算結果に応じた大
きさの電流信号iPDを出力する。そして、I用演算処理
アンプ11からの出力電流iI は第1のコイル5に流さ
れ、PD用演算処理アンプ12からの出力電流iPDは第
2のコイル6に流される。
A displacement detector 8 is provided at the tip of the lever 2 opposite to the mounting end of the tray 3, and the displacement detector 8 detects the displacement of the lever 2. The output of the displacement detector 8 is amplified by a preamplifier 10 and then introduced into an I (integration) operation processing amplifier 11 and a PD (proportional / derivative) operation processing amplifier 12. The I arithmetic processing amplifier 11 performs integral calculation on the displacement detection value of the lever 2 by the displacement detector 10, and then outputs a current signal i I having a magnitude corresponding to the calculation result, and the PD arithmetic processing amplifier 12
Similarly, after performing a proportional calculation and a differential calculation on the displacement detection result from the displacement detector 10, outputs a current signal i PD having a magnitude corresponding to the calculation result. The output current i I from the I arithmetic processing amplifier 11 is passed through the first coil 5, and the output current i PD from the PD arithmetic processing amplifier 12 is passed through the second coil 6.

【0015】第1のコイル5を流れた電流iI は、抵抗
13によって電圧信号に変換された後、A−D変換器1
4によってデジタル化され、計量値決定用荷重データと
して刻々とマイクロコンピュータ15に取り込まれる。
マイクロコンピュータ15では、このA−D変換器14
からの荷重データを平均化するとともに、スパン係数を
乗じる等の公知の演算によって被測定荷重Wの大きさを
求め、表示器16に計量値として表示する。
The current i I flowing through the first coil 5 is converted into a voltage signal by the resistor 13 and then converted into a voltage signal by the AD converter 1.
It is digitized by 4, and is loaded into the microcomputer 15 every moment as load data for determining the measured value.
In the microcomputer 15, this AD converter 14
The load data from 1 is averaged, and the magnitude of the load W to be measured is obtained by a known calculation such as multiplication by a span coefficient, and displayed on the display 16 as a measured value.

【0016】以上の本発明実施例において、皿3に被測
定荷重Wが作用するとレバー2が回動変位し、その変位
量は変位検出器8によって検出されるとともに、その変
位検出結果はI用演算処理アンプ11で積分されて第1
のコイル5に電流信号iI として供給されると同時に、
PD用演算処理アンプ12で比例および微分されて第2
のコイル6に電流信号iPDとして供給され、これらの各
電流が各コイルに流れることによって発生する電磁力が
レバー2に作用し、被測定荷重Wに抗してレバー2を平
衡させる。そして、この間、第1のコイル5に流れる電
流iI の大きさが荷重データとしてマイクロコンピュー
タ15に取り込まれ、計量値が決定される。このとき、
計量値の決定に供される電流iI が流れる第1のコイル
5は、磁気回路7が作る磁場空間M中で均一磁場領域の
中心に配置されているため、レバー2が多少変位しても
この第1のコイル5が均一磁場領域から逸脱することは
なく、また、第2のコイル6に流れる電流iPDは、系が
バランス状態にあるときには0となり、この第2のコイ
ル6に電流iPDが流れることによって発生する、電流i
PDの大きさと磁場との積によって決まる電磁力も0とな
るため、第2のコイル6が均一磁場領域外にあっても、
上記した電流iI に基づいて決定した計量値に誤差が生
じることがない。
In the above-described embodiment of the present invention, when the load W to be measured acts on the dish 3, the lever 2 is rotationally displaced, the displacement amount is detected by the displacement detector 8, and the displacement detection result is for I. First integrated by the arithmetic processing amplifier 11
Is supplied as a current signal i I to the coil 5 of
Secondly proportional and differentiated by the PD processing amplifier 12
Is supplied to the coil 6 as a current signal i PD , and the electromagnetic force generated by each of these currents flowing in each coil acts on the lever 2 to balance the lever 2 against the load W to be measured. Then, during this period, the magnitude of the current i I flowing through the first coil 5 is loaded into the microcomputer 15 as load data, and the measured value is determined. At this time,
Since the first coil 5 through which the current i I used for determining the measured value flows is arranged at the center of the uniform magnetic field region in the magnetic field space M created by the magnetic circuit 7, even if the lever 2 is slightly displaced. The first coil 5 does not deviate from the uniform magnetic field region, and the current i PD flowing through the second coil 6 becomes 0 when the system is in a balanced state, and the current i PD flowing through the second coil 6 is i. Current i generated by PD flowing
Since the electromagnetic force determined by the product of the PD size and the magnetic field is also 0, even if the second coil 6 is outside the uniform magnetic field region,
There is no error in the measured value determined based on the current i I described above.

【0017】そして、この本発明実施例によれば、磁気
回路7は、第1のコイル5のみが均一磁場領域内に収ま
る程度の磁場を形成すればよいため、2つのコイル5,
6を設けているにも係わらず、全フィードバック電流が
1つのコイルに流される通常の電子天びんの磁気回路と
同等の大きさでよい。
According to this embodiment of the present invention, the magnetic circuit 7 only needs to form a magnetic field such that only the first coil 5 is within the uniform magnetic field region.
Despite the provision of 6, all the feedback current may be of the same size as the magnetic circuit of a conventional electronic balance in which one coil is made to flow.

【0018】なお、以上の実施例では、計量値決定に供
されない電流iPDが流される第2のコイル6を上下に2
分割したが、本発明はこれに限定されず、第2のコイル
を分割せず、これを均一磁場領域の中心に置かれた第1
のコイル5の上または下に配置してもよい。
In the above embodiment, the second coil 6 in which the current i PD which is not used for determination of the measured value is flowed is vertically arranged.
However, the present invention is not limited to this, and the second coil is not divided and the first coil is placed in the center of the uniform magnetic field region.
It may be arranged above or below the coil 5.

【0019】また、以上の実施例では、変位検出器8に
よる変位検出結果をP(比例)・I(積分)・D(微
分)演算して、そのうちのI(積分)結果のみを計量値
の決定に供したが、PID各演算結果のうち、PとIの
演算結果を計量値の決定に供するように構成することも
でき、この場合、均一磁場領域の中央に置かれる第1の
コイル5にPとIの演算結果に基づく電流信号を流せば
よい。
Further, in the above embodiment, the displacement detection result by the displacement detector 8 is calculated by P (proportional), I (integral) and D (differential) operations, and only the I (integral) result is the measured value. Although it is provided for the determination, it can be configured to provide the calculation result of P and I among the PID calculation results for the determination of the measured value. In this case, the first coil 5 placed at the center of the uniform magnetic field region It suffices to pass a current signal based on the calculation result of P and I.

【0020】更に、本発明は、変位検出器8による変位
検出結果に対し、P(比例)およびD(微分)演算を施
してフィードバック電流を形成する方式の電子天びんに
も適用可能であり、この場合、P演算結果に応じた電流
を第1のコイル5に流すと同時に計量値の決定に供すれ
ばよい。
Further, the present invention can be applied to an electronic balance of the type in which the P (proportional) and D (differential) operations are performed on the displacement detection result by the displacement detector 8 to form a feedback current. In this case, a current corresponding to the P calculation result may be supplied to the first coil 5 and used for determining the measured value at the same time.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
磁気回路が作る磁場中のコイルにフィードバック電流を
流して系を平衡させ、その平衡させるに要する電流の大
きさから計量値を決定するサーボ機構を備えた電子天び
んにおいて、フィードバック電流を決定する変位検出値
のPID演算結果、もしくは、PD演算結果のうち、I
またはPとI、もしくは、Pの演算結果に基づく電流の
みを計量値の決定に供するとともに、磁場中に2種のコ
イルを設けて、その一方を、磁気回路が作る磁場中の均
一磁場の中央部分に配置し、他方をその上下いずれかあ
るいは双方に配置して、均一磁場の中央部分に配置され
たコイルに計量値の決定に供した電流を、他方のコイル
に残りの電流を流すように構成したから、磁場中に2種
のコイルを設けて一方に計量値決定に供する電流を流す
ことで、高いS/Nの高精度の電子天びんを得ながら、
1つのコイルを用いた通常の電子天びんと同等の磁気回
路を用いることができ、コイルを二重巻きにする場合に
比してコストの低減と小型化を達成できる。
As described above, according to the present invention,
Displacement detection that determines the feedback current in an electronic balance equipped with a servo mechanism that causes a feedback current to flow through a coil in a magnetic field created by a magnetic circuit to balance the system and determine the measured value from the magnitude of the current required for the balancing. I of the PID calculation result of the value or the PD calculation result
Alternatively, P and I, or only the current based on the calculation result of P is used for determining the measured value, and two types of coils are provided in the magnetic field, one of which is the center of the uniform magnetic field in the magnetic field created by the magnetic circuit. The coil is placed in the central part of the uniform magnetic field, and the remaining current is applied to the other coil by arranging the other part above and below the other part or both. Since it is configured, by providing two types of coils in the magnetic field and passing a current for determining the measured value in one side, while obtaining a highly accurate electronic balance with high S / N,
A magnetic circuit equivalent to that of a normal electronic balance using one coil can be used, and cost reduction and miniaturization can be achieved as compared with the case where the coil is double wound.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の機構図と電気回路構成を示すブ
ロック図とを併記して示す全体構成図
FIG. 1 is an overall configuration diagram showing a mechanism diagram of an embodiment of the present invention and a block diagram showing an electrical circuit configuration together.

【図2】その第1のコイル5と第2のコイルの磁場空間
M中での位置の説明図
FIG. 2 is an explanatory view of the positions of the first coil 5 and the second coil in the magnetic field space M.

【符号の説明】[Explanation of symbols]

1 支点 2 レバー 3 皿 5 第1のコイル 6 第2のコイル 7 磁気回路 71,72 永久磁石 73 ポールピース 74 ヨーク 8 変位検出器 11 I(積分)用演算処理アンプ 12 PD(比例・微分)用演算処理アンプ 13 抵抗 14 A−D変換器 15 マイクロコンピュータ 1 fulcrum 2 lever 3 plate 5 first coil 6 second coil 7 magnetic circuit 71, 72 permanent magnet 73 pole piece 74 yoke 8 displacement detector 11 for I (integration) processing amplifier 12 for PD (proportional / derivative) Operation processing amplifier 13 Resistance 14 A-D converter 15 Microcomputer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定荷重によって変位する可動部にコ
イルを固着し、かつ、そのコイルを磁気回路が作る磁場
中に配置するとともに、上記可動部の変位を変位検出器
によって検出し、その検出信号を比例・積分・微分演
算、もしくは、比例・微分演算した後、電流信号として
上記コイルに流すことによって、被測定荷重と電磁力と
を平衡させ、その平衡状態でコイルに流れる電流から計
量値を決定する天びんにおいて、上記比例・積分・微分
演算、もしくは、比例・微分演算のうち、積分または比
例・積分演算後の信号、もしくは、比例演算後の信号の
みを上記計量値の決定に供し、かつ、上記磁場中に2つ
のコイルを設けて、その各コイルに上記計量値の決定に
供する信号と残りの信号とをそれぞれ別個に流すよう構
成するとともに、計量値の決定に供する信号が流される
コイルを、上記磁気回路が形成する磁場中における均一
磁場の中心部分に配置し、そのコイルの軸方向上下いず
れかまたは双方に、他方のコイルを配置していることを
特徴とする電子天びん。
1. A coil is fixed to a movable part that is displaced by a load to be measured, the coil is placed in a magnetic field created by a magnetic circuit, and the displacement of the movable part is detected by a displacement detector, and the detection is performed. Proportional / integral / derivative operation or proportional / integral operation of the signal is performed, and then the current is applied as a current signal to the coil to balance the measured load and the electromagnetic force. In the balance for determining, the above proportional / integral / derivative operation, or among the proportional / derivative operations, the integral or the signal after the proportional / integral operation, or only the signal after the proportional operation is provided for determining the weighing value. In addition, two coils are provided in the magnetic field, and the signals used for determining the measured value and the remaining signals are separately supplied to the respective coils. The coil through which the signal used for determining the value flows is arranged in the central portion of the uniform magnetic field in the magnetic field formed by the magnetic circuit, and the other coil is arranged either above or below the axial direction of the coil, or both. An electronic balance characterized in that
JP15760295A 1995-06-23 1995-06-23 Electronic balance Pending JPH095147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15760295A JPH095147A (en) 1995-06-23 1995-06-23 Electronic balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15760295A JPH095147A (en) 1995-06-23 1995-06-23 Electronic balance

Publications (1)

Publication Number Publication Date
JPH095147A true JPH095147A (en) 1997-01-10

Family

ID=15653316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15760295A Pending JPH095147A (en) 1995-06-23 1995-06-23 Electronic balance

Country Status (1)

Country Link
JP (1) JPH095147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227089B2 (en) 2004-01-19 2007-06-05 Shimadzu Corporation Electric balance with synthetic PID control signal
US10494572B2 (en) 2013-04-04 2019-12-03 Achim Methling Joesef Ranftl GbR Method for the degrading of synthetic polymers and device for carrying out said method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227089B2 (en) 2004-01-19 2007-06-05 Shimadzu Corporation Electric balance with synthetic PID control signal
CN100365396C (en) * 2004-01-19 2008-01-30 株式会社岛津制作所 Electronic balance
US10494572B2 (en) 2013-04-04 2019-12-03 Achim Methling Joesef Ranftl GbR Method for the degrading of synthetic polymers and device for carrying out said method

Similar Documents

Publication Publication Date Title
US8884615B2 (en) Magnetoresistive sensor arrangement for current measurement
EP0133695B1 (en) Sensing system for measuring a parameter
US10393775B2 (en) Current-measuring device and method for determining an electric current
JP3445362B2 (en) AC current sensor
US4093917A (en) Velocity measurement system
US6661224B1 (en) Method for inductive measurement of a dimension of an object
JP2005517937A (en) Magnetic field sensor
JP2002541460A (en) Ammeter
EP1166132B1 (en) An improved current sensing device for low-voltage power circuit breakers
JP2006162302A (en) Electronic balance
JP2002156390A (en) Current sensor
JPH095147A (en) Electronic balance
KR0138623B1 (en) Force measuring instrument
JP2730617B2 (en) Equipment for measuring paramagnetic substance components
JP3250364B2 (en) Electromagnetic balance or force measuring device
JP2000055930A (en) Acceleration sensor
JP3289463B2 (en) Electromagnetic balance or force measuring device
US2572556A (en) Long-scale electkical measuring
JPH07280587A (en) Position detector using differential transformer
JP3191525B2 (en) Electronic balance
JPS61107115A (en) Force generation mechanism
JPS61201119A (en) Electronic balance
JPH0733171Y2 (en) Non-contact type DC ammeter
JP2712161B2 (en) Electronic balance
JPH07119777B2 (en) Current sensor