JPH0950944A - Organic solvent-based electrolyte solution - Google Patents

Organic solvent-based electrolyte solution

Info

Publication number
JPH0950944A
JPH0950944A JP7222534A JP22253495A JPH0950944A JP H0950944 A JPH0950944 A JP H0950944A JP 7222534 A JP7222534 A JP 7222534A JP 22253495 A JP22253495 A JP 22253495A JP H0950944 A JPH0950944 A JP H0950944A
Authority
JP
Japan
Prior art keywords
organic solvent
lactone
electrolytic solution
hydrocarbon group
tetraethylammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7222534A
Other languages
Japanese (ja)
Inventor
Kuniaki Goto
邦明 後藤
Koichiro Maeda
耕一郎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP7222534A priority Critical patent/JPH0950944A/en
Publication of JPH0950944A publication Critical patent/JPH0950944A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolyte solution with good withstanding voltage and capable of high capacity suitable for an electric double-layer capacitor, a capacitor or a secondary battery. SOLUTION: An organic solvent-based electrolyte solution is obtained by dissolving an electrolytic solute (tetraethylammonium perclorate, lithium perclorate, tetraethylammonium tetrafluoride borate or tetraethylammonium hexafluoride borate and the like) of, for example, 0.01 to 3mol/l in an organic solvent containing hydrocarbon group substitution-δ-lactone (for example, δ- decalactone, δ-undecalactone and δ-dodecalactone).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電位窓が広く、比
誘電率の高い有機溶媒系電解液に関する。
TECHNICAL FIELD The present invention relates to an organic solvent-based electrolytic solution having a wide potential window and a high relative dielectric constant.

【0002】[0002]

【従来の技術】従来から用いられている電解液には水系
電解液と有機溶媒系電解液の2種類があるが、一般に有
機溶媒系電解液の方が分解電圧が高く、主として有機溶
媒系電解液が用いられている。
2. Description of the Related Art There are two types of electrolytes that have hitherto been used: an aqueous electrolyte and an organic solvent electrolyte. Generally, an organic solvent electrolyte has a higher decomposition voltage and is mainly used in an organic solvent electrolyte. Liquid is used.

【0003】有機溶媒系電解液の溶媒としては、プロピ
レンカーボネート、γ−ブチロラクトン、アセトニトリ
ル、ジメチルホルムアミドなどやこれらの混合液が用い
られている。これらは比誘電率が大きく、電位窓が広い
溶媒である。比誘電率が大きい電解液を用いるほど、キ
ャパシター、コンデンサーなどでは容量が大きくなる。
電位窓とは、酸化限界電位と還元限界電位の差であり、
これが広い溶媒を用いた電解液は耐電圧が高い。キャパ
シターではエネルギー密度が耐電圧の二乗に比例するな
ど電解液の特性に電位窓の広さは大きく影響する。
As the solvent of the organic solvent type electrolytic solution, propylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide and the like or a mixture thereof are used. These are solvents having a large relative permittivity and a wide potential window. The larger the relative dielectric constant of the electrolytic solution, the larger the capacity of the capacitor or the capacitor.
The potential window is the difference between the oxidation limit potential and the reduction limit potential,
An electrolytic solution using a solvent having a wide range has a high withstand voltage. In capacitors, the size of the potential window greatly affects the characteristics of the electrolyte, such as the energy density being proportional to the square of the withstand voltage.

【0004】しかし、これらの溶媒でも、実用上の電位
窓が最も広いプロピレンカーボネートでも酸化限界電圧
が約3.4V、還元限界電圧が−2.8Vであり、電位
窓は約6.2Vである。γ−ブチロラクトンは酸化限界
電圧が約4.8V、還元限界電圧が約−2.7Vであ
り、電位窓は約7.5Vであるが、ラクトン環の開環に
起因すると思われる電気特性の影響で、実用上の酸化限
界電圧は約2.0Vであり、実用上の電位窓は約4.7
Vでしかない。
However, even with these solvents, even in the case of propylene carbonate having the widest practical potential window, the oxidation limit voltage is about 3.4 V, the reduction limit voltage is -2.8 V, and the potential window is about 6.2 V. . γ-butyrolactone has an oxidation limit voltage of about 4.8 V, a reduction limit voltage of about -2.7 V, and a potential window of about 7.5 V, but the influence of electrical properties that are considered to be due to ring opening of the lactone ring. The practical oxidation limit voltage is about 2.0 V, and the practical potential window is about 4.7.
Only V.

【0005】技術の進歩に伴い、より耐電圧の高い電解
液が求められるようになったため、より電位窓の広い溶
媒を用いた有機溶媒系電解液の開発が求められている。
With the progress of technology, an electrolytic solution having a higher withstand voltage has come to be required, and therefore, the development of an organic solvent type electrolytic solution using a solvent having a wider potential window is required.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、より耐
電圧の高い電解液の開発を目的に鋭意努力の結果、電解
液溶媒として使用されていなかった炭化水素基置換−δ
−ラクトンの電位窓が広く、これを含有する電解液が耐
電圧が高いことを見い出し、本発明を完成させるにいた
った。
DISCLOSURE OF THE INVENTION The present inventors have made earnest efforts for the purpose of developing an electrolytic solution having a higher withstand voltage, and as a result, a hydrocarbon group substitution -δ which has not been used as a solvent for an electrolytic solution.
-The lactone potential window was wide, and it was found that the electrolytic solution containing the lactone has a high withstand voltage, leading to the completion of the present invention.

【0007】[0007]

【課題を解決する手段】かくして本発明によれば、電解
質を有機溶媒に溶解した有機溶媒系電解液であって、有
機溶媒中に炭化水素基置換−δ−ラクトン類を含有する
ことを特徴とする有機溶媒系電解液が提供される。
According to the present invention, there is provided an organic solvent-based electrolytic solution in which an electrolyte is dissolved in an organic solvent, wherein the organic solvent contains a hydrocarbon group-substituted -δ-lactone. An organic solvent-based electrolyte solution is provided.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(炭化水素基置換−δ−ラクトン)本発明に用いる有機
溶媒系電解液は、溶媒中に炭化水素基置換−δ−ラクト
ンを含有するものである。
(Hydrocarbon Group Substitution-δ-Lactone) The organic solvent-based electrolytic solution used in the present invention contains a hydrocarbon group substitution-δ-lactone in the solvent.

【0009】炭化水素基置換−δ−ラクトンは、通称δ
−ラクトン(または、δ−バレロラクトン、テトラヒド
ロ−2H−ピラン−2−オン)の3位、4位、5位、ま
たは6位の炭素に炭化水素置換基を有する化合物であっ
て、炭化水素置換基としては、好ましくは3以上、より
好ましくは5以上、好ましくは7以下の炭素数を有する
ものである。炭化水素基の炭素数が少なすぎると、炭素
数が多いほど電位窓が広くなる傾向がある。一方、炭素
数が多すぎると、比誘電率が低下し、電解液として機能
しにくくなる。
The hydrocarbon group-substituted -δ-lactone is commonly referred to as δ
A compound having a hydrocarbon substituent at the 3-, 4-, 5-, or 6-position carbon of lactone (or δ-valerolactone, tetrahydro-2H-pyran-2-one), The group preferably has 3 or more, more preferably 5 or more, and preferably 7 or less carbon atoms. When the number of carbon atoms in the hydrocarbon group is too small, the potential window tends to become wider as the number of carbon atoms increases. On the other hand, if the carbon number is too large, the relative dielectric constant decreases, and it becomes difficult to function as an electrolytic solution.

【0010】また、炭化水素基置換−δ−ラクトンとし
ては、製造が容易な点で、3位、4位、または6位の炭
素に置換基を有するものが好ましく、特に6位に置換基
を有するものが好ましい。比誘電率の点で6位の炭素に
置換基を有するアルキル置換−δ−ラクトンが特に好ま
しい。複数種の炭化水素基置換−δ−ラクトンを併用す
る場合は、炭素数3〜7、好ましくは5〜7の置換基を
6位に有するアルキル置換−δ−ラクトンを全炭化水素
基置換−δ−ラクトン中の50重量%以上であることが
好ましく、70重量%以上であることがより好ましく、
90重量%以上であることが特に好ましく、100重量
%以下である。通常は、炭化水素基置換−δ−ラクトン
として6位にアルキル基を有するアルキル置換−δ−ラ
クトンのみを使用する。この場合、アルキル基は直鎖の
もの、分枝を有するもの、環状のもののいずれでもよい
が、直鎖のアルキル基が製造が容易で比誘電率が高い。
具体的には、δ−オクチルラクトン(または6−プロピ
ル−テトラヒドロ−2H−ピラン−2−オン)、δ−ノ
ニルラクトン(または6−ブチル−テトラヒドロ−2H
−ピラン−2−オン)、δ−デカラクトン(または6−
ペンチル−テトラヒドロ−2H−ピラン−2−オン)、
δ−ウンデカラクトン(または6−ヘキシル−テトラヒ
ドロ−2H−ピラン−2−オン)、δ−ドデカラクトン
(または6−ヘプチル−テトラヒドロ−2H−ピラン−
2−オン)などが例示され、特にδ−デカラクトン、δ
−ウンデカラクトン、δ−ドデカラクトンが電位窓の広
さ、比誘電率の高さ、沸点の高さなどの点で好ましく、
通常は、炭化水素基置換−δ−ラクトンとして、これら
を単独、またはこれらの混合液を使用する。
Further, as the hydrocarbon group-substituted-δ-lactone, those having a substituent at the carbon at the 3-position, 4-position or 6-position are preferable from the viewpoint of easy production, and particularly the substituent at the 6-position is preferable. Those having are preferred. Alkyl-substituted-δ-lactone having a substituent at the 6-position carbon is particularly preferable in terms of relative dielectric constant. When a plurality of kinds of hydrocarbon group-substituted-δ-lactone are used in combination, an alkyl-substituted-δ-lactone having a substituent having 3 to 7 carbon atoms, preferably 5 to 7 carbon atoms at the 6-position is a total hydrocarbon group-substituted-δ. -It is preferably 50% by weight or more, more preferably 70% by weight or more, in the lactone,
It is particularly preferably 90% by weight or more, and 100% by weight or less. Usually, only the alkyl-substituted-δ-lactone having an alkyl group at the 6-position is used as the hydrocarbon-substituted-δ-lactone. In this case, the alkyl group may be linear, branched, or cyclic, but a linear alkyl group is easy to manufacture and has a high dielectric constant.
Specifically, δ-octyl lactone (or 6-propyl-tetrahydro-2H-pyran-2-one), δ-nonyl lactone (or 6-butyl-tetrahydro-2H).
-Pyran-2-one), delta-decalactone (or 6-
Pentyl-tetrahydro-2H-pyran-2-one),
δ-undecalactone (or 6-hexyl-tetrahydro-2H-pyran-2-one), δ-dodecalactone (or 6-heptyl-tetrahydro-2H-pyran-
2-one) and the like, and particularly δ-decalactone, δ
-Undecalactone and δ-dodecalactone are preferable in terms of the width of the potential window, the high dielectric constant, the high boiling point, and the like,
Usually, these are used alone or a mixture thereof is used as the hydrocarbon group-substituted-δ-lactone.

【0011】(電解液溶媒)本発明の電解液の溶媒中の
炭化水素基置換−δ−ラクトンの量は10重量%以上、
好ましくは30重量%以上、より好ましくは50重量%
以上、特に好ましくは80重量%以上、100重量%以
下である。炭化水素基置換−δ−ラクトンの量が少なす
ぎると、本願発明の効果が十分に発揮されない。炭化水
素基置換−δ−ラクトン以外の溶媒も併用する場合、そ
れらの溶媒は用いる炭化水素基置換−δ−ラクトンと相
溶性を有し、電解液としての機能を阻害するものでなけ
れば、特に限定されない。電解液として好ましく機能す
るように、併用する電解液としては、比誘電率が30以
上のものが好ましく、40以上のものがより好ましい。
このような溶媒としては、例えば、一般に電解液溶媒と
して用いられているエチレンカーボネート、プロピレン
カーボネート、γ−ブチロラクトン、アセトニトリル、
ジメチルホルムアミドなどやこれらの混合液が例示され
る。
(Electrolytic Solution Solvent) The amount of hydrocarbon group-substituted-δ-lactone in the solvent of the electrolytic solution of the present invention is 10% by weight or more,
Preferably 30% by weight or more, more preferably 50% by weight
More preferably, it is 80% by weight or more and 100% by weight or less. If the amount of the hydrocarbon group-substituted -δ-lactone is too small, the effects of the present invention will not be sufficiently exhibited. When a solvent other than the hydrocarbon group-substituted-δ-lactone is also used in combination, those solvents are compatible with the hydrocarbon group-substituted-δ-lactone to be used, and unless they impair the function as an electrolytic solution, Not limited. In order to function preferably as an electrolytic solution, the electrolytic solution used in combination preferably has a relative dielectric constant of 30 or more, more preferably 40 or more.
Examples of such a solvent include, for example, ethylene carbonate, propylene carbonate, γ-butyrolactone, acetonitrile, which are generally used as electrolyte solvent.
Examples thereof include dimethylformamide and the like, and a mixed solution thereof.

【0012】(電解液溶質)有機溶媒系電解液の溶質
は、特に限定されず、通常の有機溶媒系電解液の溶媒と
して使用されるもの、具体的には、アルカリ金属、アル
カリ土類金属、アンモニウム、またはテトラアルキルア
ンモニウムなどの、過塩素酸塩、六フッ化リン酸塩、四
フッ化ホウ酸塩、六フッ化ヒ素酸塩、四塩化アルミン酸
塩、またはトリフルオロアルカンスルホン酸塩などが例
示される。具体的には、過塩素酸テトラエチルアンモニ
ウム、過塩素酸リチウム、四フッ化ホウ酸テトラエチル
アンモニウム、六フッ化ホウ酸テトラエチルアンモニウ
ムなどが例示される。
(Solute of Electrolyte Solution) The solute of the organic solvent-based electrolyte solution is not particularly limited, and it is used as a solvent of the usual organic solvent-based electrolyte solution, specifically, alkali metal, alkaline earth metal, Perchlorate, hexafluorophosphate, tetrafluoroborate, hexafluoroarsenate, tetrachloroaluminate, or trifluoroalkanesulfonate such as ammonium or tetraalkylammonium It is illustrated. Specific examples include tetraethylammonium perchlorate, lithium perchlorate, tetraethylammonium tetrafluoroborate, and tetraethylammonium hexafluoroborate.

【0013】(有機溶媒系電解液)本発明の有機溶媒系
電解液の溶質濃度は、好ましくは0.01mol/l以
上、より好ましくは0.05mol/l以上、好ましく
は3mol/l以下、より好ましくは1.5mol/l
以下である。溶質濃度が低すぎると電荷を移動させるイ
オン量が少ないために電解液としての機能が不十分にな
る。溶質濃度が高すぎると電解液の粘度が高くなるため
イオンが移動しにくくなり、やはり、電解液としての機
能が不十分になる。
(Organic solvent type electrolytic solution) The solute concentration of the organic solvent type electrolytic solution of the present invention is preferably 0.01 mol / l or more, more preferably 0.05 mol / l or more, preferably 3 mol / l or less, Preferably 1.5 mol / l
It is the following. If the solute concentration is too low, the amount of ions that move charges is small, and the function as an electrolyte becomes insufficient. If the solute concentration is too high, the viscosity of the electrolytic solution becomes high, and it becomes difficult for the ions to move, and again the function as the electrolytic solution becomes insufficient.

【0014】本発明の有機溶媒系電解液は、耐電圧が高
くなる。例えば、本発明の有機溶媒系電解液を用いた電
気二重層キャパシターでは、電解液の耐電圧が高いほ
ど、エネルギー密度を高くすることができる。
The organic solvent type electrolytic solution of the present invention has a high withstand voltage. For example, in the electric double layer capacitor using the organic solvent-based electrolytic solution of the present invention, the higher the withstand voltage of the electrolytic solution, the higher the energy density can be.

【0015】(用途)本発明の有機溶媒系電解液は、リ
チウムイオン二次電池などの各種電池、電気二重層キャ
パシター、コンデンサーなどの電解液として有用であ
る。
(Use) The organic solvent-based electrolytic solution of the present invention is useful as an electrolytic solution for various batteries such as lithium-ion secondary batteries, electric double layer capacitors, and capacitors.

【0016】(態様)本発明の態様としては、(1)
電解質を有機溶媒に溶解した有機溶媒系電解液であっ
て、有機溶媒中に炭化水素基置換−δ−ラクトンを含有
することを特徴とする有機溶媒系電解液、(2) 溶媒
中の炭化水素基置換−δ−ラクトンの量が10〜100
重量%である(1)記載の有機溶媒系電解液、(3)
炭化水素基置換−δ−ラクトンの置換基の炭素数が2〜
7である(1)〜(2)記載の有機溶媒系電解液、
(4) 炭化水素基置換−δ−ラクトンの置換基の炭素
数が5〜7である(1)〜(3)記載の有機溶媒系電解
液、(5) 溶媒中に炭化水素基置換−δ−ラクトンと
して、δ−デカラクトン、δ−ウンデカラクトン、及び
δ−ドデカラクトンから選ばれた単独、またはこれらか
ら選ばれた2種以上のものの混合物のみを含有する
(1)〜(4)記載の有機溶媒系電解液、(6) 溶質
がアルカリ金属、アルカリ土類金属、アンモニウム、ま
たはテトラアルキルアンモニウムの、過塩素酸塩、六フ
ッ化リン酸塩、四フッ化ホウ酸塩、六フッ化ヒ素酸塩、
四塩化アルミン酸塩、またはトリフルオロアルカンスル
ホン酸塩である(1)〜(5)記載の有機溶媒系電解
液、(7) 溶質が過塩素酸テトラエチルアンモニウ
ム、過塩素酸リチウム、四フッ化ホウ酸テトラエチルア
ンモニウム、または六フッ化ホウ酸テトラエチルアンモ
ニウムである(1)〜(6)記載の有機溶媒系電解液、
(8) 溶質濃度が0.01〜3mol/lである
(1)〜(7)記載の有機溶媒系電解液、(9)
(1)〜(8)記載の電解液を用いた電気二重層キャパ
シター、(10) (1)〜(8)記載の電解液を用い
たコンデンサー、(11) (1)〜(8)記載の電解
液を用いた二次電池、(12) リチウムイオン二次電
池である(11)記載の二次電池、などが例示される。
(Aspect) As an aspect of the present invention, (1)
An organic solvent-based electrolytic solution in which an electrolyte is dissolved in an organic solvent, wherein the organic solvent contains a hydrocarbon group-substituted -δ-lactone, (2) hydrocarbon in the solvent The amount of the group-substituted δ-lactone is 10 to 100.
(3) The organic solvent-based electrolyte solution according to (1), which is% by weight.
Substitution of hydrocarbon group -δ-lactone has 2 to 8 carbon atoms
7, the organic solvent-based electrolytic solution according to (1) to (2),
(4) Hydrocarbon group-substituted-δ-lactone, wherein the substituent has 5 to 7 carbon atoms, the organic solvent-based electrolytic solution according to (1) to (3), (5) the hydrocarbon group-substituted-δ in the solvent. -The lactone contains only one selected from δ-decalactone, δ-undecalactone, and δ-dodecalactone, or only a mixture of two or more selected from these (1) to (4) Organic solvent-based electrolyte, (6) Perchlorate, hexafluorophosphate, tetrafluoroborate, arsenic hexafluoride whose solute is alkali metal, alkaline earth metal, ammonium or tetraalkylammonium Acid salt,
(1) to (5) the organic solvent-based electrolyte solution, which is a tetrachloroaluminate or a trifluoroalkanesulfonate, (7) the solute is tetraethylammonium perchlorate, lithium perchlorate, and tetrafluoroborate. (1) to (6), wherein the organic solvent-based electrolyte is tetraethylammonium acid tetraethylammonium or tetraethylammonium hexafluoroborate,
(8) The organic solvent-based electrolytic solution according to (1) to (7), wherein the solute concentration is 0.01 to 3 mol / l.
(1) to (8) the electric double layer capacitor using the electrolytic solution, (10) (1) to (8) the electrolytic solution using the capacitor, (11) (1) to (8) described Examples include a secondary battery using an electrolytic solution, (12) a secondary battery according to (11), which is a lithium ion secondary battery, and the like.

【0017】[0017]

【実施例】以下に参考例、実施例、比較例を挙げて本発
明を具体的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Reference Examples, Examples and Comparative Examples.

【0018】実施例1 過塩素酸リチウムをδ−デカラクトンに濃度0.1mo
l/lになるように溶解して、本発明の電解液を調整し
た。
Example 1 Lithium perchlorate was added to δ-decalactone at a concentration of 0.1 mo.
The electrolytic solution of the present invention was prepared by dissolving so as to be 1 / l.

【0019】この電解液を用い、参照電極として銀・塩
化銀電極、対極として白金電極、作用極としてグラファ
イト電極を用いて、窒素パージしたグローブ内、27℃
で、電圧を0.5V/分で変化させて、電流量を測定
し、電流量の変化から測定したδ−デカラクトンの酸化
限界電圧、還元限界電圧を測定し、電位窓を求めた。結
果を表1に示す。
Using this electrolyte, a silver / silver chloride electrode as a reference electrode, a platinum electrode as a counter electrode, and a graphite electrode as a working electrode were used, and a nitrogen-purged glove was used at 27 ° C.
Then, the voltage was changed at 0.5 V / min to measure the current amount, and the oxidation limit voltage and reduction limit voltage of δ-decalactone measured from the change in the current amount were measured to obtain the potential window. The results are shown in Table 1.

【0020】また、プレシジョンLCRメーター(ヒュ
ーレットパッカード社製、HP−4284A型)、液体
測定用電極(安藤電気株式会社製、LE−22型クロム
メッキ品)を用い、主電極として50mmφ相当のガー
ド電極付きのものを用い、対向電極との間隔を1.00
mm、測定周波数1kHz、測定電圧1.001V、室
温21〜23℃、湿度55〜65%RHで測定したδ−
デカラクトンの比誘電率を測定した。結果を表1に示
す。
A precision LCR meter (HP-4284A type manufactured by Hewlett-Packard Co.) and a liquid measuring electrode (LE-22 type chrome plated product manufactured by Ando Electric Co., Ltd.) are used, and a guard electrode equivalent to 50 mmφ is used as a main electrode. Use the one with a gap of 1.00
mm, measurement frequency 1 kHz, measurement voltage 1.001 V, room temperature 21 to 23 ° C., humidity 55 to 65% δ-
The relative permittivity of decalactone was measured. The results are shown in Table 1.

【0021】実施例2 δ−デカラクトンの代わりにδ−ウンデカラクトンを用
いる以外は実施例1と同様に測定した。δ−ウンデカラ
クトンの酸化限界電圧、還元限界電圧、電位窓、比誘電
率を表1に示す。
Example 2 The same measurement as in Example 1 was carried out except that δ-undecalactone was used instead of δ-decalactone. Table 1 shows the oxidation limit voltage, reduction limit voltage, potential window, and relative dielectric constant of δ-undecalactone.

【0022】実施例3 δ−デカラクトンの代わりにδ−ドデカラクトンを用い
る以外は実施例1と同様に測定した。δ−ドデカラクト
ンの酸化限界電圧、還元限界電圧、電位窓、比誘電率を
表1に示す。
Example 3 The measurement was performed in the same manner as in Example 1 except that δ-dodecalactone was used instead of δ-decalactone. Table 1 shows the oxidation limit voltage, reduction limit voltage, potential window, and relative permittivity of δ-dodecalactone.

【0023】比較例1 δ−デカラクトンの代わりにプロピレンカーボネートを
用いる以外は実施例1と同様に測定した。プロピレンカ
ーボネートの酸化限界電圧、還元限界電圧、電位窓、比
誘電率を表1に示す。
Comparative Example 1 Measurement was carried out in the same manner as in Example 1 except that propylene carbonate was used instead of δ-decalactone. Table 1 shows the oxidation limit voltage, reduction limit voltage, potential window, and relative dielectric constant of propylene carbonate.

【0024】比較例2 δ−デカラクトンの代わりにγ−ブチロラクトンを用い
る以外は実施例1と同様に測定した。なお、γ−ブチロ
ラクトンの酸化限界電圧は約4.8Vであったが、ラク
トン環の開環に起因すると思われる電気特性の影響で、
実用上の酸化限界電圧は約2.0Vであった。γ−ブチ
ロラクトンの実用上の酸化限界電圧、還元限界電圧、電
位窓、比誘電率を表1に示す。表1中の括弧内の数値
は、定義上の値である。
Comparative Example 2 The same measurement as in Example 1 was carried out except that γ-butyrolactone was used instead of δ-decalactone. Note that the oxidation limit voltage of γ-butyrolactone was about 4.8 V, but due to the influence of the electrical characteristics that are thought to be due to the opening of the lactone ring,
The practical oxidation limit voltage was about 2.0V. Table 1 shows the practical oxidation limit voltage, reduction limit voltage, potential window, and relative dielectric constant of γ-butyrolactone. Numerical values in parentheses in Table 1 are values by definition.

【0025】比較例3 δ−デカラクトンの代わりにδ−ラクトン(δ−バレロ
ラクトン)を用いる以外は実施例1と同様に測定した。
δ−ラクトンの酸化限界電圧、還元限界電圧、電位窓、
比誘電率を表1に示す。
Comparative Example 3 The same measurement as in Example 1 was carried out except that δ-lactone (δ-valerolactone) was used instead of δ-decalactone.
δ-lactone oxidation limit voltage, reduction limit voltage, potential window,
Table 1 shows the relative permittivity.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明の電解液は、溶媒の電位窓が広い
ため、耐電圧が高く、電気二重層キャパシター、コンデ
ンサー、二次電池などに用いた場合に、容量の大きなも
のが得られる。
EFFECTS OF THE INVENTION The electrolytic solution of the present invention has a wide potential window of the solvent, so that it has a high withstand voltage, and when it is used for an electric double layer capacitor, a capacitor, a secondary battery, etc., a large capacity can be obtained.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07D 309/30 C07D 307/32 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C07D 309/30 C07D 307/32 E

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質を有機溶媒に溶解した有機溶媒系
電解液であって、有機溶媒中に炭化水素基置換−δ−ラ
クトンを含有することを特徴とする有機溶媒系電解液。
1. An organic solvent-based electrolytic solution in which an electrolyte is dissolved in an organic solvent, wherein the organic solvent contains a hydrocarbon group-substituted -δ-lactone.
JP7222534A 1995-08-08 1995-08-08 Organic solvent-based electrolyte solution Pending JPH0950944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7222534A JPH0950944A (en) 1995-08-08 1995-08-08 Organic solvent-based electrolyte solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7222534A JPH0950944A (en) 1995-08-08 1995-08-08 Organic solvent-based electrolyte solution

Publications (1)

Publication Number Publication Date
JPH0950944A true JPH0950944A (en) 1997-02-18

Family

ID=16783949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7222534A Pending JPH0950944A (en) 1995-08-08 1995-08-08 Organic solvent-based electrolyte solution

Country Status (1)

Country Link
JP (1) JPH0950944A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
EP1000949A4 (en) * 1997-06-20 2001-10-31 Hitachi Ltd Organosilicon nanocluster and process for producing the same
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
JP2002083630A (en) * 2000-09-06 2002-03-22 Toshiba Corp LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2004013878A1 (en) 2002-08-06 2004-02-12 Matsushita Electric Industrial Co., Ltd. Method for selecting electrolyte for electric double layer capacitor
WO2005027159A1 (en) * 2003-09-11 2005-03-24 Matsushita Electric Industrial Co., Ltd. Production method for electric double-layer capacitor
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
JP2006318760A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1000949A4 (en) * 1997-06-20 2001-10-31 Hitachi Ltd Organosilicon nanocluster and process for producing the same
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP4666540B2 (en) * 1999-11-25 2011-04-06 株式会社ブリヂストン Non-aqueous electrolyte secondary battery
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2002083630A (en) * 2000-09-06 2002-03-22 Toshiba Corp LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
US7067219B2 (en) 2000-09-07 2006-06-27 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
JPWO2002021628A1 (en) * 2000-09-07 2004-02-12 株式会社ブリヂストン Non-aqueous electrolyte additive, non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
WO2002021630A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for nonaqueous-electrolyte secondary battery
WO2002021628A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP5001507B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP5001506B2 (en) * 2000-09-07 2012-08-15 株式会社ブリヂストン Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
WO2002021629A1 (en) * 2000-09-07 2002-03-14 Bridgestone Corporation Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
US7414826B2 (en) 2002-08-06 2008-08-19 Matsushita Electric Industrial Co., Ltd. Method for selecting electrolytic solution for electric double layer capacitor
WO2004013878A1 (en) 2002-08-06 2004-02-12 Matsushita Electric Industrial Co., Ltd. Method for selecting electrolyte for electric double layer capacitor
CN100444293C (en) * 2002-08-06 2008-12-17 松下电器产业株式会社 Method for selecting electrolyte for electric double layer capacitor
KR100764321B1 (en) * 2002-08-06 2007-10-05 마쯔시다덴기산교 가부시키가이샤 Method for selecting electrolyte for electric double layer capacitor
WO2005027159A1 (en) * 2003-09-11 2005-03-24 Matsushita Electric Industrial Co., Ltd. Production method for electric double-layer capacitor
US7247177B2 (en) 2003-09-11 2007-07-24 Matsushita Electric Industrial Co., Ltd. Production method for electric double-layer capacitor
KR100691312B1 (en) * 2003-09-11 2007-03-12 마쯔시다덴기산교 가부시키가이샤 Method of Manufacturing Electric Double Layer Capacitor
JP2006318760A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery
JP2006318761A (en) * 2005-05-12 2006-11-24 Sony Corp Electrolyte and battery

Similar Documents

Publication Publication Date Title
Reber et al. Anion Selection Criteria for Water‐in‐Salt Electrolytes
JP3493873B2 (en) Non-aqueous electrolyte secondary battery
Morales et al. Ion transport and association study of glyme-based electrolytes with lithium and sodium salts
JPH0950944A (en) Organic solvent-based electrolyte solution
EP1329975B1 (en) Non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
Maeda et al. Charge dependence of one-electron redox potentials of Keggin-type heteropolyoxometalate anions
Ruther et al. Stable electrolyte for high voltage electrochemical double-layer capacitors
DE19700656A1 (en) Fluorinated dioxolane compounds with wide redox potential
JPWO2016084792A1 (en) Ionic liquid, its production method and its use
EP1205480A2 (en) Tetrakis fluoroalkylborate salts and their use as electrolyte salts
JP2017212153A (en) Electrolyte solution for lithium ion battery
Izutsu History of the use of nonaqueous media in electrochemistry
KR20010043562A (en) Novel electrolytes for electrochemical double layer capacitors
JP4000603B2 (en) Electric double layer capacitor
KR102104687B1 (en) Electrolyte solution for capacitors, electric double layer capacitor, and lithium ion capacitor
JP2007109698A (en) Electrolyte containing ionic liquid and organic solvent
CA2704034C (en) Dodecaborate salt radical anion compositions and methods for making and using such compositions
JP2009123789A (en) Electrolyte for electric double-layer capacitor and electric double-layer capacitor
Emets et al. Electric double layer on a renewable liquid (Cd–Ga) electrode in acetonitrile solutions
JP2002222740A (en) Nonaqueous electrolyte for capacitor
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP2006351915A (en) Electric-double-layer capacitor and electrolyte therefor
JP2005175239A (en) Electric double-layer capacitor and electrolyte thereof
JP2005175239A5 (en)
EP1883086A1 (en) Electrolyte solution, electrochemical device using same, and electronic device