JPH0950626A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0950626A
JPH0950626A JP19855295A JP19855295A JPH0950626A JP H0950626 A JPH0950626 A JP H0950626A JP 19855295 A JP19855295 A JP 19855295A JP 19855295 A JP19855295 A JP 19855295A JP H0950626 A JPH0950626 A JP H0950626A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording medium
film
protective film
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19855295A
Other languages
Japanese (ja)
Inventor
Kunio Hibino
邦男 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19855295A priority Critical patent/JPH0950626A/en
Publication of JPH0950626A publication Critical patent/JPH0950626A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve durability and corrosion resistance and to provide a magnetic recording medium having high reliability in practical use by solving the problem of microscopic ununiformity of a protective film caused in a process for producing a magnetic recording medium capable of high density magnetic recording and using a ferromagnetic metallic thin film as a magnetic recording layer. SOLUTION: This magnetic recording medium has a magnetic recording layer 2 made of a ferromagnetic metallic thin film on a polymer film 1 and a protective film 3 made of a hard carbon film on the recording layer 2. In this case, a substrate of a magnetic recording medium having >=1×10<8> Ω/sq. surface resistance or <=30nm surface roughness of a face opposite to the protective film forming face is used, adhesiveness to a can is ensured, thermal load on the substrate is relieved and the objective magnetic recording medium with a protective film made of a microscopically homogeneous hard carbon film is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高密度磁気記録に適した
金属薄膜型磁気記録媒体の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal thin film type magnetic recording medium suitable for high density magnetic recording.

【0002】[0002]

【従来の技術】磁気記録の分野においては、近年デジタ
ル化、小型化、長時間化などの高性能化が進んでいる
が、それに伴って、高密度磁気記録媒体への要求が高ま
り、磁気記録層を強磁性金属薄膜で構成した金属薄膜型
磁気記録媒体が、短波長記録に極めて有利なことから盛
んに検討されている。
2. Description of the Related Art In the field of magnetic recording, high performance such as digitalization, miniaturization and long time has been advanced in recent years, and the demand for high density magnetic recording medium has been increased accordingly, and magnetic recording A metal thin film magnetic recording medium having a layer made of a ferromagnetic metal thin film has been actively studied because it is extremely advantageous for short wavelength recording.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、強磁性
金属薄膜型の磁気記録媒体では、磁性層表面は極めて良
好な表面性を持つために、磁気信号の記録再生過程にお
ける、磁気ヘッドとの高速しゅう動下での摩擦、摩耗に
より、耐久性、走行性、耐蝕性などは大きな影響を受け
ており、その改善は大きな課題となっている。
However, in the magnetic recording medium of the ferromagnetic metal thin film type, since the surface of the magnetic layer has a very good surface property, high-speed contact with the magnetic head during the recording / reproducing process of the magnetic signal is carried out. Due to friction and wear under motion, durability, running property, corrosion resistance, etc. are greatly affected, and their improvement is a major issue.

【0004】そこで、磁性層表面にトップコート層を設
け、上記耐久性、走行性、耐蝕性の改善が試みられてい
る。例えば、脂肪酸金属塩の形成(特開昭54−113
303号公報)、イミド基を有する高分子化合物のスパ
ッタ膜の形成(特開昭57−116771号公報)、高
分子化合物をターゲットとしたスパッタ膜、カーボンや
BN,MoS2、SiO2などをスパッタ法や蒸着法によ
る薄膜化、ダイヤモンド状硬質炭素膜の形成(日本応用
磁気学会第46回研究会資料)、脂肪酸、脂肪酸アミド
などの潤滑剤の形成(例えば、特開昭56−30609
号公報)など、数多く試みられている。
Therefore, attempts have been made to improve the durability, running property and corrosion resistance by providing a top coat layer on the surface of the magnetic layer. For example, formation of a fatty acid metal salt (Japanese Patent Laid-Open No. 54-113).
303), formation of a sputtered film of a polymer compound having an imide group (Japanese Patent Laid-Open No. 57-116771), sputtered film targeting a polymer compound, carbon, BN, MoS 2 , SiO 2 etc. Method, thin film formation by vapor deposition method, formation of diamond-like hard carbon film (materials of the 46th meeting of Japan Society for Applied Magnetics), formation of lubricants such as fatty acids and fatty acid amides (for example, JP-A-56-30609).
No.) and many others have been tried.

【0005】しかしながら、上記した例では、耐久性、
走行性、耐蝕性などを十分には満足できないため、積層
化して、それぞれの役割を分担させる考え方が増加して
きている。その例としては、脂肪酸金属塩の吸着層上に
フルオロカーボン系の潤滑剤層の形成(特開昭61−1
20331号公報)、硬質カーボン層の上にフッ素系潤
滑剤を配したもの(特開昭61−126627号公
報)、Si−N−O系薄膜上に潤滑剤層を形成したもの
(特開昭61−131231号公報)などがある。
However, in the above example, the durability,
Since the running property and the corrosion resistance are not sufficiently satisfied, there is an increasing number of ideas that the respective roles are shared by stacking them. As an example thereof, a fluorocarbon-based lubricant layer is formed on a fatty acid metal salt adsorption layer (JP-A-61-1).
No. 20331), a fluorocarbon lubricant disposed on a hard carbon layer (Japanese Patent Laid-Open No. 61-126627), and a lubricant layer formed on a Si—NO thin film (Japanese Patent Laid-Open No. Sho 61-126627). 61-131231).

【0006】しかしながら、磁気記録媒体の性能向上に
対する要求は厳しく、上記した構成では十分な特性であ
るといえず、耐久性、耐蝕性において一層の改善が望ま
れている。本発明は、上記事情を鑑みてなされたもの
で、耐久性、耐蝕性に優れ、極めて高い実用信頼性の磁
気記録媒体の製造方法を提供するものである。
However, demands for improving the performance of the magnetic recording medium are strict, and it cannot be said that the above-mentioned constitution has sufficient characteristics, and further improvement in durability and corrosion resistance is desired. The present invention has been made in view of the above circumstances, and provides a method of manufacturing a magnetic recording medium having excellent durability and corrosion resistance and extremely high practical reliability.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、高分子フィルム上に強磁性金属薄膜から
なる磁気記録層、その上に硬質炭素膜からなる保護膜層
を形成する磁気記録媒体の製造において、保護膜形成面
と反対側表面の表面抵抗が1×108 Ω/□以上である
磁気記録媒体の原反を用いるものであり、また、保護膜
形成面と反対側表面の表面粗さが30nm以下である磁
気記録媒体の原反を用いるものである。
In order to solve the above problems, the present invention forms a magnetic recording layer made of a ferromagnetic metal thin film on a polymer film, and a protective film layer made of a hard carbon film thereon. In manufacturing a magnetic recording medium, a raw material of a magnetic recording medium having a surface resistance of 1 × 10 8 Ω / □ or more on the surface opposite to the surface on which the protective film is formed is used. A raw material of a magnetic recording medium having a surface roughness of 30 nm or less is used.

【0008】[0008]

【作用】本発明は、保護膜形成の製造工程で、保護膜形
成面と反対側表面の表面抵抗が1×108 Ω/□以上で
ある磁気記録媒体の原反を用いることにより、反対側表
面での帯電をおこさせ、または、保護膜形成面と反対側
表面の表面粗さが30nm以下である磁気記録媒体の原
反を用い、キャンへの密着度を確保し磁気記録媒体原反
が受ける熱負荷を軽減し、ミクロ的にも均一な硬質炭素
膜を形成し、高湿環境保存時のダメージを軽減し、保存
後の繰り返し使用時におけるミクロなクラックの発生、
及び膜のハガレをなくすようにするものである。
According to the present invention, in the manufacturing process for forming the protective film, the surface of the surface opposite to the surface on which the protective film is formed has a surface resistance of 1 × 10 8 Ω / □ or more. The surface of the magnetic recording medium that causes charging on the surface or the surface opposite to the surface on which the protective film is formed has a surface roughness of 30 nm or less is used to secure the adhesion to the can and secure the magnetic recording medium. Reduces the heat load received, forms a uniform hard carbon film on a micro level, reduces damage during storage in a high humidity environment, and generates micro cracks during repeated use after storage,
And to prevent peeling of the film.

【0009】すなわち、保護膜層のダメージを防止する
ことによって、耐久性、耐蝕性を改善するものである。
That is, durability and corrosion resistance are improved by preventing damage to the protective film layer.

【0010】[0010]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1は本発明の実施例で使用した磁
気テープの構成を示す断面図である。図1において、1
は高分子フィルム、2は強磁性金属薄膜からなる磁気記
録層、3は硬質炭素膜からなる保護膜層、4は潤滑剤
層、5はバックコート層である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view showing the structure of a magnetic tape used in an example of the present invention. In FIG. 1, 1
Is a polymer film, 2 is a magnetic recording layer made of a ferromagnetic metal thin film, 3 is a protective film layer made of a hard carbon film, 4 is a lubricant layer, and 5 is a back coat layer.

【0011】本発明の磁気記録媒体に用いる高分子フィ
ルムは、ポリエチレンテレフタレートがよく用いられる
が、ポリエチレンナフタレートなどの他のポリエステル
フィルム、セルロースアセテートなどのセルロース誘導
体、ポリアミド、ポリイミドなどのプラスチックフィル
ムであってもよい。強磁性金属薄膜としては、真空蒸着
法、スパッタリング法、イオンプレーティング法で形成
した鉄、コバルト、ニッケルまたはそれらを主成分とす
る合金、あるいは、それらの部分酸化物、部分窒化物な
どを用いることができる。
Polyethylene terephthalate is often used as the polymer film used in the magnetic recording medium of the present invention, but other polyester films such as polyethylene naphthalate, cellulose derivatives such as cellulose acetate, and plastic films such as polyamide and polyimide. May be. As the ferromagnetic metal thin film, use iron, cobalt, nickel formed by vacuum deposition, sputtering, or ion plating or an alloy containing them as a main component, or a partial oxide or partial nitride thereof. You can

【0012】硬質炭素膜から成る保護膜は、炭化水素ガ
ス、あるいは、炭化水素とアルゴンの混合ガスのプラズ
マ重合、あるいはカーボン、グラファイトのスパッタリ
ングによって形成することが出来る。炭化水素ガスのプ
ラズマ重合によって形成する場合には、真空容器中に炭
化水素ガス、または、炭化水素ガスと不活性ガスの混合
ガスを導入し、0.001から1Torrの圧力を保持
した状態で、真空容器内部に放電させて、炭化水素ガス
のプラズマを発生させ、基体表面に硬質炭素膜を形成す
る。放電形式としては、外部電極方式、内部電極方式の
いずれでもよく、放電周波数については、実験的に決め
ることができる。また、基体側の電極に0から−3KV
の電圧を印加する事によって、膜の硬度の増大及び密着
性を向上させることができる。
The protective film made of a hard carbon film can be formed by plasma polymerization of a hydrocarbon gas, a mixed gas of hydrocarbon and argon, or sputtering of carbon or graphite. In the case of forming by plasma polymerization of hydrocarbon gas, hydrocarbon gas or a mixed gas of hydrocarbon gas and an inert gas is introduced into a vacuum vessel, and a pressure of 0.001 to 1 Torr is maintained, By discharging inside the vacuum container, plasma of hydrocarbon gas is generated and a hard carbon film is formed on the surface of the substrate. The discharge method may be either an external electrode method or an internal electrode method, and the discharge frequency can be experimentally determined. Moreover, 0 to -3KV is applied to the electrode on the substrate side.
By applying the voltage of, the hardness of the film and the adhesion can be improved.

【0013】炭化水素ガスとしては、メタン、エタン、
プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オ
クタン、ベンゼンなどを用いることができる。また、硬
質膜を形成するには、できるだけ放電エネルギーを大き
くすることが望ましい。また、基体の温度もできるだけ
高くすることが望ましい。一方、スパッタ法には、直流
スパッタ、交流スパッタ、高周波スパッタ、マグネトロ
ンスパッタ、イオンビームスパッタなどがあるが、いづ
れの方法でもよい。硬質膜を形成するには、圧力は、
0.01Torr以下が望ましく、エネルギー密度は高
くするのがよく、例えば、高周波マグネトロンスパッタ
では、ターゲット面積あたり1W/cm2 以上が好まし
く、また、基体を保持する側の電極に0から−3KVの
電圧を印加しつつ、スパッタする事によって、プラズマ
重合の場合と同様に、膜の硬度の増大、密着性の向上を
図ることができる。
As the hydrocarbon gas, methane, ethane,
Propane, butane, pentane, hexane, heptane, octane, benzene and the like can be used. Further, in order to form a hard film, it is desirable to maximize the discharge energy. Further, it is desirable that the temperature of the substrate is as high as possible. On the other hand, sputtering methods include direct current sputtering, alternating current sputtering, high frequency sputtering, magnetron sputtering, and ion beam sputtering, but either method may be used. To form a hard film, the pressure is
0.01 Torr or less is desirable, and the energy density is preferably high. For example, in high frequency magnetron sputtering, 1 W / cm 2 or more per target area is preferable, and a voltage of 0 to -3 KV is applied to the electrode holding the substrate. By applying and applying the sputtering, the hardness of the film can be increased and the adhesion can be improved, as in the case of plasma polymerization.

【0014】硬質炭素膜の膜厚としては、50から30
0Åの範囲が適当で、これよりも、薄い場合には、十分
な保護膜効果が得られず、これよりも大きい場合には、
スペーシングによる出力の低下が大きく、実用性が低下
する。保護膜形成時に発生する熱負荷を軽減するため、
第一の方法としては、グロー放電などの帯電処理を行
い、帯電によるキャンへの密着化を行う。磁気記録媒体
原反の保護膜形成面と反対側表面の表面抵抗が1×10
8 Ω/□以上の場合には十分な帯電効果がみられるが、
これより低い場合には、帯電が不十分になりやすく、保
護膜形成時のキャンへの密着度が不足し、磁気記録媒体
原反に局部的に熱負荷が増加し不均質な硬質炭素膜が形
成される。また、第2の方法としては、保護膜形成面と
反対側表面の表面粗さが30nm以下である磁気記録媒
体の原反を用い、保護膜形成時のキャンへの密着化を行
う。これより大きい場合には、保護膜形成時のキャンへ
の密着度が不足し、磁気記録媒体原反に局部的に熱負荷
が増加し不均質な硬質炭素膜が形成される。第1、第2
の方法を達成するには、保護膜形成面と反対側表面に、
カーボンブラックと無機粒子の混合充填剤からなるコー
ティング層である磁気記録媒体の原反を用いる。あるい
は、保護膜形成面と反対側表面に、ポリエステル樹脂を
主成分とするコーティング層である磁気記録媒体の原反
を用いる。
The hard carbon film has a thickness of 50 to 30.
If the range of 0Å is appropriate, and if it is thinner than this, a sufficient protective film effect cannot be obtained, and if it is larger than this,
The output is greatly reduced due to the spacing, and the practicality is reduced. To reduce the heat load generated when the protective film is formed,
As a first method, a charging treatment such as glow discharge is performed to bring the toner into close contact with the can. The surface resistance of the original surface of the magnetic recording medium opposite to the surface on which the protective film is formed is 1 × 10.
When 8 Ω / □ or more, a sufficient charging effect can be seen,
If it is lower than this, the electrification tends to be insufficient, the adhesion to the can at the time of forming the protective film is insufficient, and the heat load is locally increased on the magnetic recording medium original fabric to form an inhomogeneous hard carbon film. It is formed. As a second method, a raw material of a magnetic recording medium whose surface roughness on the surface opposite to the protective film forming surface is 30 nm or less is used, and adhesion to a can is performed at the time of forming the protective film. If it is larger than this, the adhesion to the can at the time of forming the protective film is insufficient, the heat load is locally increased on the magnetic recording medium original fabric, and an inhomogeneous hard carbon film is formed. First, second
To achieve the above method, on the surface opposite to the surface on which the protective film is formed,
A raw material of a magnetic recording medium which is a coating layer composed of a mixed filler of carbon black and inorganic particles is used. Alternatively, a raw material of a magnetic recording medium, which is a coating layer containing a polyester resin as a main component, is used on the surface opposite to the protective film forming surface.

【0015】潤滑剤としては、フッ素系潤滑剤が有効で
あり、パーフルオロカルボン酸およびそのエステル、パ
ーフルオロポリエーテルおよびその誘導体があり、単独
あるいは混合して用いることができる。以下、さらに具
体的な実施例を示す。 (実施例1)平滑な表面上に粒径180Åのシリカ微粒
子を分散させた変性シリコーンと増粘剤とからなる波状
突起と粒状突起を有する厚み6.4ミクロンのポリエチ
レンテレフタレートフィルム上に、酸素を導入しながら
電子ビーム法で連続斜め蒸着を行い、膜厚1500Åの
Co−O膜を形成した。ついで、蒸着層と反対側面に、
カーボンブラックと炭酸カルシウム1:4重量比の混合
物を芳香族ポリエステルとニトロセルロース3:1重量
比の樹脂成分中に分散させた塗工液をリバースロール方
式の塗工機で塗布し、120℃の温度で乾燥させ0.5
ミクロンの膜厚でバックコート層を形成した。バックコ
ート層の表面抵抗を測定したところ、3×108 Ω/□
であった。さらに、(図2)の保護膜形成装置を用い、
硬質炭素膜を形成した。巻出し部6からでた磁気記録媒
体原反7は放電処理部8で帯電した後、キャン9に密着
し、ノズル部10において、ガス導入口12よりメタ
ン、アルゴン(2:1)の混合ガスの高周波(10KH
z)プラズマにより、電極11と磁気テープ原反自身を
対向電極として、磁気テープ原反に−1.25KVの直
流電圧を印加し、放電を行ない250Å膜厚の硬質炭素
膜を形成した後、巻取り部13に巻取られる。さらに、
その上に、フッ素系カルボン酸とフッ素系カルボン酸エ
ステルの混合潤滑剤を10mg/m2の条件でリバース
ロールコータで塗布し、80℃の温度で乾燥し、潤滑剤
層を形成した。次に、スリッターで磁気テープ原反を8
mm幅に裁断し8mmVTR用磁気テープとした。
Fluorine-based lubricants are effective as the lubricant, and there are perfluorocarboxylic acid and its ester, and perfluoropolyether and its derivative, which can be used alone or in combination. Hereinafter, more specific examples will be shown. (Example 1) Oxygen was deposited on a 6.4-micron-thick polyethylene terephthalate film having wavy projections and granular projections composed of a modified silicone in which silica fine particles having a particle diameter of 180Å are dispersed on a smooth surface and a thickener. While being introduced, continuous oblique vapor deposition was performed by an electron beam method to form a Co—O film having a film thickness of 1500 Å. Then, on the side opposite to the vapor deposition layer,
A coating liquid prepared by dispersing a mixture of carbon black and calcium carbonate in a ratio of 1: 4 by weight in a resin component of aromatic polyester and nitrocellulose in a ratio of 3: 1 by weight was applied by a reverse roll type coating machine, and the temperature of 120 ° C. Dry at temperature 0.5
The back coat layer was formed with a film thickness of micron. When the surface resistance of the back coat layer was measured, it was 3 × 10 8 Ω / □
Met. Furthermore, using the protective film forming device (FIG. 2),
A hard carbon film was formed. The raw material 7 of the magnetic recording medium discharged from the unwinding portion 6 is charged in the discharge processing portion 8 and then adheres to the can 9, and in the nozzle portion 10, a mixed gas of methane and argon (2: 1) is introduced from the gas inlet 12 in the nozzle portion 10. High frequency (10KH
z) By applying a direct current voltage of -1.25 KV to the magnetic tape raw material by using the electrode 11 and the magnetic tape raw material itself as counter electrodes by plasma, discharge is performed to form a hard carbon film of 250 Å film thickness, and then winding. It is wound around the take-up section 13. further,
A mixed lubricant of a fluorine-based carboxylic acid and a fluorine-based carboxylic acid ester was applied thereon with a reverse roll coater under the condition of 10 mg / m 2 , and dried at a temperature of 80 ° C to form a lubricant layer. Next, use a slitter to remove the original magnetic tape 8
It was cut to a width of 8 mm to obtain a magnetic tape for 8 mm VTR.

【0016】また、バックコート剤のカーボンブラック
(米国 キャボット社製、商品名モナーク280とバル
カンXC72R)と炭酸カルシウム(白石工業(株)製
商品名 ホモカルD)の混合比(磁気テープ2;1:
3、磁気テープ3;1:2、磁気テープ4;2:3、磁
気テープ5;1:1)を変えて、その他は同様にして、
磁気テープを作成した(磁気テープ1〜5)。また、比
較例として、ウレタン樹脂を主成分とし、カーボンブラ
ックを分散させた塗工液でバックコート層を形成し、実
施例と同様にして、磁気テープ6を作製した。
Further, the backcoat agent carbon black (trade name Monarch 280 and Vulcan XC72R manufactured by Cabot Corporation, USA) and calcium carbonate (trade name Homocal D manufactured by Shiraishi Industry Co., Ltd.) are mixed (magnetic tape 2; 1 :).
3, magnetic tape 3; 1: 2, magnetic tape 4; 2: 3, magnetic tape 5; 1: 1)
Magnetic tapes were prepared (magnetic tapes 1 to 5). Further, as a comparative example, a magnetic tape 6 was produced in the same manner as in the example, except that a back coat layer was formed with a coating liquid containing urethane resin as a main component and carbon black dispersed therein.

【0017】(実施例2)平滑な表面上に粒径180Å
のシリカ微粒子を分散させた変性シリコーンと増粘剤と
からなる波状突起と粒状突起を有し、磁性層形成面と反
対側面の粗さの異なる厚み6.3ミクロンのポリエチレ
ンテレフタレートフィルムをも用い、その他は実施例1
と同様にして、磁気テープを作成した(磁気テープ7〜
12)。表面粗さの測定は、原子間力顕微鏡(セイコー
電子(株)社製 SAF300)を用い、平均表面粗さ
SRaを算出した。
(Example 2) Particle size of 180Å on a smooth surface
Using a polyethylene terephthalate film having a thickness of 6.3 μm, which has wavy projections and granular projections composed of a modified silicone in which silica fine particles are dispersed and a thickener, and has different roughness on the side opposite to the magnetic layer forming surface, Others are Example 1
A magnetic tape was prepared in the same manner as (magnetic tape 7-
12). The surface roughness was measured by using an atomic force microscope (SAF300 manufactured by Seiko Denshi KK) to calculate the average surface roughness SRa.

【0018】これらの磁気テープ1〜12を用い、市販
の8mmVTR(EV−S900、ソニー社製)の改造
機を用い、スチル耐久性、保存特性を測定した。スチル
耐久性は、5℃80%RHの環境で試料数2で5回測定
し、初期出力から6dB低下するまでの時間を測定し、
その平均値をテープのスチル寿命とした。
Using these magnetic tapes 1 to 12, the still durability and storage characteristics were measured by using a commercially available remodeling machine of 8 mm VTR (EV-S900, manufactured by Sony Corporation). The still durability was measured 5 times with 2 samples in an environment of 5 ° C. and 80% RH, and the time until the initial output decreased by 6 dB was measured.
The average value was defined as the still life of the tape.

【0019】保存特性は、40℃80%RHの環境に1
ヶ月放置し、表面を光学顕微鏡にて倍率100倍で観察
するとともにドロップアウトを測定した。その後、10
0パスの繰り返し走行試験を行い、出力の変化を測定し
た。ドロップアウトは試料数2で10分間録画再生し、
3μsec、10dB以上の出力低下する信号欠陥の数
を測定し、1分間の平均値を算出し、保存前の値を1.
0とし、増加率を算出した。
The storage characteristics are 1 in an environment of 40 ° C. and 80% RH.
After leaving for a month, the surface was observed with an optical microscope at a magnification of 100 times and the dropout was measured. Then 10
A 0-pass repeated running test was performed to measure the change in output. Dropout recorded and played for 10 minutes with 2 samples,
For 3 μsec, the number of signal defects with an output decrease of 10 dB or more was measured, the average value for 1 minute was calculated, and the value before storage was 1.
The rate of increase was calculated as 0.

【0020】[0020]

【表1】 [Table 1]

【0021】及びAnd

【0022】[0022]

【表2】 [Table 2]

【0023】にテープ試作条件と評価結果をまとめて示
す。(表1)、(表2)から明らかなように、表面抵抗
が1×108 Ω/□以上のバック面を持つ磁気テープ1
〜3およびベースフィルム走行面の表面粗さが30nm
以下のものを用いて製造した磁気テープ7〜9は、長期
間保存後のドロップアウトの増加も少なく、また、繰り
返し走行後の出力低下も少なく、耐蝕性の低下がみられ
ず、スチル耐久性の低下も見られないのに対し、表面抵
抗が1×10 8 Ω/□未満の磁気テープ4〜6およびベ
ースフィルム走行面の表面粗さが30nm以上のものを
用いて製造した磁気テープ10〜11は、スチル耐久性
の低下がみられ、保存後のドロップアウトの増加も大き
く耐蝕性の低下を示している。
The tape trial conditions and evaluation results are summarized in
You. As is clear from (Table 1) and (Table 2), surface resistance
Is 1 × 108Magnetic tape with a back surface of Ω / □ or more 1
~ 3 and the surface roughness of the base film running surface is 30 nm
Magnetic tapes 7-9 manufactured using
There is little increase in dropout after storage, and
Output reduction after return running is small and corrosion resistance is reduced
No deterioration of the still durability was observed, while the surface resistance was
Anti 1 × 10 8Magnetic tapes less than Ω / □ 4-6 and tape
If the surface roughness of the running film is 30 nm or more
The magnetic tapes 10-11 produced by using them are still durable.
Of the dropout, and the increase in dropout after storage is also large.
The corrosion resistance is low.

【0024】また、保存後の磁気テープ表面を光学顕微
鏡で倍率100倍で観察したところ、磁気テープ1〜
3、7〜9では、腐蝕生成物が観察されなかったが、磁
気テープ4〜6、10〜11では、部分的な変色がみら
れ、腐蝕が始まっていることを示していた。
Further, when the surface of the magnetic tape after storage was observed with an optical microscope at a magnification of 100 times, the magnetic tape 1
No corrosion products were observed in Nos. 3 and 7 to 9, but in the magnetic tapes 4 to 6 and 10 to 11, partial discoloration was observed, indicating that corrosion had started.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、保護膜
の製造工程に熱負荷の軽減によって、ミクロ的にも均質
な保護膜を形成することができ、スチル耐久性の向上、
保存性の向上を図ることができるものであり、金属薄膜
型の磁気記録媒体の実用特性を向上させる優れた効果が
ある。
As described above, according to the present invention, by reducing the heat load in the manufacturing process of the protective film, it is possible to form a protective film that is also microscopically uniform and improves the still durability.
The storability can be improved, and there is an excellent effect of improving the practical characteristics of the metal thin film type magnetic recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例で使用した磁気テープの
構成を示す模式拡大断面図
FIG. 1 is a schematic enlarged sectional view showing the configuration of a magnetic tape used in a first embodiment of the present invention.

【図2】本発明の第1,2の実施例で使用した保護膜形
成装置の概略図
FIG. 2 is a schematic view of a protective film forming apparatus used in the first and second embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1 高分子フィルム 2 磁気記録層 3 保護膜層 4 潤滑剤層 5 バックコート層 6 巻出し部 7 磁気記録媒体原反 8 放電処理部 9 キャン 10 ノズル 11 電極 12 ガス導入部 13 巻取り部 14 電源部 15 真空ポンプ 16 真空チャンバー DESCRIPTION OF SYMBOLS 1 Polymer film 2 Magnetic recording layer 3 Protective film layer 4 Lubricant layer 5 Back coat layer 6 Unwinding part 7 Magnetic recording medium original material 8 Discharge processing part 9 Can 10 Nozzle 11 Electrode 12 Gas introduction part 13 Winding part 14 Power supply Part 15 Vacuum pump 16 Vacuum chamber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子フィルム上に強磁性金属薄膜から
なる磁気記録層、前記強磁性金属薄膜上に硬質炭素膜か
らなる保護膜層を形成する製造工程において、保護膜形
成面と反対側表面の表面抵抗が1×108 Ω/□以上で
ある磁気記録媒体の原反を用いることを特徴とする磁気
記録媒体の製造方法。
1. A surface opposite to a surface on which a protective film is formed in a manufacturing process of forming a magnetic recording layer made of a ferromagnetic metal thin film on a polymer film and a protective film layer made of a hard carbon film on the ferromagnetic metal thin film. A method for manufacturing a magnetic recording medium, characterized in that a raw material of the magnetic recording medium having a surface resistance of 1 × 10 8 Ω / □ or more is used.
【請求項2】 高分子フィルム上に強磁性金属薄膜から
なる磁気記録層、前記強磁性金属薄膜上に硬質炭素膜か
らなる保護膜層を形成する製造工程において、保護膜形
成面と反対側表面の表面粗さが30nm以下である磁気
記録媒体の原反を用いることを特徴とする磁気記録媒体
の製造方法。
2. A surface opposite to a surface on which a protective film is formed in a manufacturing process of forming a magnetic recording layer made of a ferromagnetic metal thin film on a polymer film and a protective film layer made of a hard carbon film on the ferromagnetic metal thin film. A method of manufacturing a magnetic recording medium, comprising using a raw material of a magnetic recording medium having a surface roughness of 30 nm or less.
JP19855295A 1995-08-03 1995-08-03 Production of magnetic recording medium Pending JPH0950626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19855295A JPH0950626A (en) 1995-08-03 1995-08-03 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19855295A JPH0950626A (en) 1995-08-03 1995-08-03 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0950626A true JPH0950626A (en) 1997-02-18

Family

ID=16393078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19855295A Pending JPH0950626A (en) 1995-08-03 1995-08-03 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0950626A (en)

Similar Documents

Publication Publication Date Title
JP4193268B2 (en) Thin film forming apparatus, thin film forming method, and guide guide roll
US5798135A (en) Method for producing a magnetic recording medium having a carbon protective layer
JPH0950626A (en) Production of magnetic recording medium
JP3208972B2 (en) Magnetic recording media
JPH08167146A (en) Production of magnetic recording medium
JPH05128503A (en) Manufacture of magnetic recording medium
JP3035972B2 (en) Magnetic recording media
JP3232948B2 (en) Manufacturing method of magnetic recording medium
JP2000195035A (en) Magnetic recording medium and method of manufacturing the same
JP4090678B2 (en) Lubricant composition and magnetic recording medium
JPH07282445A (en) Production of magnetic recording medium
JP2979829B2 (en) Manufacturing method of magnetic recording medium
JP2001195723A (en) Magnetic recording medium and method for producing same
JP2959110B2 (en) Manufacturing method of magnetic tape
JPH05128504A (en) Manufacture of magnetic recording medium
JPH06333230A (en) Magnetic recording medium
JPH05282662A (en) Magnetic recording medium
JPH0944846A (en) Production of magnetic recording medium
JPH04172621A (en) Production of magnetic tape
JPH06103560A (en) Magnetic recording medium and production of magnetic recording medium
JP2002216340A (en) Magnetic recording medium
JP2004348837A (en) Magnetic recording medium
JP2002352413A (en) Magnetic recording medium
JPS6247819A (en) Base material for magnetic recording medium
JP2002367135A (en) Magnetic recording medium and manufacturing method therefor