JPH095026A - Photoelectric position measuring device - Google Patents

Photoelectric position measuring device

Info

Publication number
JPH095026A
JPH095026A JP8133795A JP13379596A JPH095026A JP H095026 A JPH095026 A JP H095026A JP 8133795 A JP8133795 A JP 8133795A JP 13379596 A JP13379596 A JP 13379596A JP H095026 A JPH095026 A JP H095026A
Authority
JP
Japan
Prior art keywords
grating
measuring device
scanning
photoelectric position
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8133795A
Other languages
Japanese (ja)
Inventor
Walter Huber
ヴアルター・フーバー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of JPH095026A publication Critical patent/JPH095026A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric position measuring device using a well- known scanning principle, which generates the signal on the basis of an interference of a light beam diffracted by a grid scale and of which structure is simplified and which can be manufactured at a low cost. SOLUTION: Light of a light source L is modulated in response to the position by plural grids 1, 2 having a constant scale cycle and to be moved in relation to each other in the measuring direction X, and the light beams to be deflected by at least one grid are interfered with each other, and plural light detecting unit D0 , D1 , D2 for detecting the dependent signal are provided at positions, of which the phase is displaced from each other, are provided. At least one grid 1 is arranged in order in the measuring direction X among each scale period (d) directed to the measuring direction X, and has at least three areas B1 , B2 , B3 vertically extended in the measuring direction X, and each area B1 , B2 , B3 has the light selective characteristic different from each other, and each signal beam obtained from these areas B1 , B2 , B3 enter a corresponding light detecting units D0 , D1 , D2 , and these light detecting units are arranged in the lateral direction in relation to the measuring direction X.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、格子により回折
する光ビーム束が互いに干渉し、位相のずれ干渉信号を
複数の光検出器で検出し、格子が互いにずれると、これ
等の格子により光源の光が位置に応じて変調される、光
電位置測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source which is caused by such gratings when light beams diffracted by the gratings interfere with each other and a plurality of photodetectors detect a phase shift interference signal. Relates to a photoelectric position-measuring device in which the light is modulated according to the position.

【0002】[0002]

【従来の技術】この種の位置測定装置は、例えば欧州特
許第 0 163 262 B1 号明細書に開示されている。その場
合、反射性の目盛格子は走査格子に対して相対的に移動
できるように配置されている。この走査格子は、互いに
120°位相のずれた電気信号を発生させるため、ウェブ
と溝の比が一定の割合の位相格子として形成されてい
る。後置されている3つの検出器の各々には、一群の同
じ方向を向いた回折ビームが集束する。同じ方向に向く
これ等の軍の回折ビームでは、所謂得られた回折次数と
も称される。得られたn回折次数の回折ビームは、目盛
板での反射を無視すると一方の格子によりのみn回折次
数に偏向するかのように、両方の格子の全系から方向に
合わせて生じるビームのグループに相当する。
2. Description of the Related Art A position measuring device of this kind is disclosed, for example, in EP 0 163 262 B1. In that case, the reflective scale grating is arranged so as to be movable relative to the scanning grating. This scanning grating is
In order to generate an electrical signal that is 120 ° out of phase, it is formed as a phase grating with a constant ratio of web to groove. A group of co-directed diffracted beams is focused on each of the three detectors that are placed downstream. In these military diffracted beams pointing in the same direction, it is also called the so-called obtained diffraction order. The resulting diffracted beam of n diffraction orders is a group of beams generated from the whole system of both diffraction gratings in the same direction as if it were deflected by only one diffraction grating to the n diffraction order, ignoring the reflection on the scale plate. Equivalent to.

【0003】使用する走査格子は、異なった回折次数が
所望の位相差の信号に相当するように光学的に設計ある
いは寸法決めされている。検出器側で異なった信号成分
を空間的に分離することを確実にするため、配設されて
いる結像光学系は走査格子と検出器の間で一定の最小焦
点距離を有する必要がある。目盛周期 T= 20 μm で使
用する波長が 880 nm であるこの種の構成の測定系で
は、集束レンズの焦点距離は約 30 mmである。これは、
走査ヘッドの構造をかなり大きくする。
The scanning grating used is optically designed or dimensioned so that the different diffraction orders correspond to the signals of the desired phase difference. To ensure that the different signal components are spatially separated at the detector side, the imaging optics provided must have a certain minimum focal length between the scanning grating and the detector. The focal length of the focusing lens is about 30 mm in a measuring system of this kind with a wavelength of 880 nm and a graduation period T = 20 μm. this is,
The scan head structure is made quite large.

【0004】説明した光学系の最小焦点距離は使用する
目盛あるいは格子の目盛周期に近似的に比例するので、
粗い目盛周期の目盛板をこの測定原理に基づき走査した
い場合には、特にこれが構造の大きさの問題を与える。
ドイツ特許第 34 16 864 C2 号明細書によれば、絞り構
造体を有する走査板で目盛板を走査する横目盛のある位
置測定装置が知られている。この横目盛は、この位置測
定装置の場合、測定方向に隣接して配置され、測定方向
に平行に延びる格子ウェブを有する多数の帯状回折要素
で構成されている。個々の回折要素はその横方向周期に
関して異なっているので、発生した光束を異なった方向
に偏向させる。この横方向目盛が走査板の隙間を通して
照明されると、偏向各が横方向の目盛周期と照明された
横方向の格子領域に依存する偏向された光ビーム束が発
生する。これにより、目盛板の位置を導ける。異なった
方向に偏向された光ビーム束は、レンズを通過してこの
レンズの焦点面内の種々の光検出器の上に集束する。
Since the minimum focal length of the optical system described is approximately proportional to the scale period of the scale or grating used,
This presents a structural size problem, especially when it is desired to scan a graduation plate with a coarse graduation period on the basis of this measuring principle.
German Patent 34 16 864 C2 discloses a position-measuring device with a lateral scale, in which a scanning plate with a diaphragm structure scans the scale plate. In the case of this position-measuring device, the lateral scale is composed of a number of strip-shaped diffractive elements which are arranged adjacent to each other in the measuring direction and have a grating web extending parallel to the measuring direction. Since the individual diffractive elements differ with respect to their lateral period, they cause the generated light beam to be deflected in different directions. When this lateral scale is illuminated through the gap in the scanning plate, a deflected light beam bundle is produced, each deflection of which depends on the lateral scale period and the illuminated lateral grating area. Thereby, the position of the scale plate can be guided. The light beam bundles deflected in different directions pass through a lens and are focused on various photodetectors in the focal plane of the lens.

【0005】位置に依存して変調する信号は、この周知
の位置測定装置では、モアレ原理に基づき発生する。つ
まり、干渉する部分ビーム束の評価は位置の測定のため
使用されない。欧州特許第 0 220 757 B1 号明細書の周
知の位置測定装置でも、目盛板は測定方向に順次配置さ
れた横方向目盛を有する領域と反射あるいは透過領域を
有する。横目盛領域は位相格子として構成され、その格
子パラメータは発生する0回折次数が消失し、他の全て
の回折次数が光検出器に入射しないように選択される。
横方向目盛を有する領域は光検出器により反射しないあ
るいは透過する領域と見なされ、多数存在する光検出器
に関して方向選択性として作用しない。
The position-dependently modulated signal is generated on the basis of the moire principle in this known position measuring device. That is, the evaluation of the interfering partial beam bundles is not used for position measurement. In the known position-measuring device of EP 0 220 757 B1 as well, the graduation plate has an area with lateral graduations arranged in sequence in the measuring direction and a reflective or transmissive area. The lateral scale region is configured as a phase grating, the grating parameters of which are chosen so that the zero diffraction orders that occur are eliminated and all other diffraction orders do not enter the photodetector.
Areas with a lateral scale are considered areas that are not reflected or transmitted by the photodetectors and do not act as direction selectivity with respect to the multiple photodetectors.

【0006】[0006]

【発明が解決しようとする課題】この発明の課題は、簡
単に形成され、価格的に有利に製造される光電位置測定
装置を提供することにある。その場合、例えば欧州特許
第 0 163 362 B1 号明細書により周知の走査原理を使用
できるべきである。つまり、信号発生が一つあるいはそ
れ以上の格子目盛で回折した光ビーム束の干渉に基づ
く。その場合、走査ヘッドの構造をコンパクトにして特
に粗い目盛周期を走査できる可能性も必要である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a photoelectric position measuring device which is simple to form and which can be manufactured in a cost-effective manner. In that case, it should be possible to use the scanning principle known, for example, from EP 0 163 362 B1. That is, signal generation is based on the interference of light beam bundles diffracted by one or more grating scales. In that case, it is also necessary to make the structure of the scanning head compact and to scan a particularly coarse graduation period.

【0007】[0007]

【課題を解決するための手段】上記の課題は、この発明
により、一定の目盛周期を有し、測定方向Xに互いに相
対的に移動する複数の格子1,2により光源Lの光を位
置に応じて変調し、少なくとも一方の格子で回折する光
ビーム束が互いに干渉し、互いに位相のずれた位置に依
存する信号を検出する複数の光検出器D0,1,2 を設
け、少なくとも一つの格子1が測定方向Xに向いた目盛
周期dの各々の中に、測定方向Xに順次配置され、測定
方向Xにほぼ垂直に延びる少なくとも3つの領域B1,
2,3 を有し、これ等の領域B1,2,3 の各々が異な
った光選択特性を有し、これ等の領域B1,2,3 から
得られた信号ビーム束の各々が付属する光検出器D0,
1,2 に入射し、これ等の光検出器が測定方向Xに対し
てほぼ横方向に配置されている光電位置測定装置によっ
て解決されている。
SUMMARY OF THE INVENTION According to the present invention, the above-mentioned problem is caused by the fact that a plurality of gratings 1 and 2 having a constant scale period and moving relative to each other in the measuring direction X cause the light of a light source L to be positioned. A plurality of photodetectors D 0, D 1, D 2 for detecting the signals depending on the positions where the light beam bundles that are modulated in accordance with each other and are diffracted by at least one grating interfere with each other and are out of phase with each other, and at least At least three regions B 1 and B 1 in which one grating 1 is sequentially arranged in the measuring direction X and extends substantially perpendicular to the measuring direction X in each of the graduation periods d facing the measuring direction X.
2, B 3 , each of these regions B 1, B 2, B 3 having different light-selective properties, the signal beam obtained from these regions B 1, B 2, B 3 Photodetectors D 0, D with each bundle attached
This is solved by a photoelectric position measuring device which is incident on 1, D 2 and whose photodetectors are arranged substantially transverse to the measuring direction X.

【0008】この発明による他の有利な構成は、特許請
求の範囲の従属請求項に記載されている。
[0008] Other advantageous configurations according to the invention are set out in the dependent claims.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0010】[0010]

【実施例】以下、図面に示す実施例に基づきこの発明を
より詳しく説明する。この発明による位置測定装置の基
本機能原理を、先ず図1に基づき簡単に説明する。対応
する光学図形を図2に示す。この場合、光源の光はコリ
メータレンズKを経由して平行にされ、一定の目盛周期
dを有する位相格子1に入射する。この発明による位置
測定装置の内部では、目盛格子2と走査格子1が測定方
向Xに互いに移動する場合、多数の位相のずれ位置に依
存する走査信号を発生させるため、第一格子1が特別な
横方向パターンを有する走査格子1として形成されてい
る。図3には、この発明による走査格子1が示してあ
る。第4図は図3の走査格子1の拡大部分を示す。この
走査格子1は、図示する実施例の場合、測定方向Xに周
期的に繋がっている一部横方向にパターン化された領域
1,2,3 を有する。測定方向Xに見て、領域B1,
2,3 はほぼ等しい幅である。第一、第二および第三領
域B1,2,3 の幅の和は走査格子の目盛周期dに一致
する。この目盛周期は目盛格子2の目盛周期cと同一で
あるが、必ずしも同一である必要はない。各領域B1,
2,3 の幅は、この実施例の場合、d/3である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. The basic functional principle of the position measuring device according to the present invention will first be briefly described with reference to FIG. The corresponding optical diagram is shown in FIG. In this case, the light from the light source is collimated via the collimator lens K and is incident on the phase grating 1 having a constant scale period d. In the position measuring device according to the invention, when the graduation grating 2 and the scanning grating 1 move relative to each other in the measuring direction X, the first grating 1 is special because it generates scanning signals depending on a number of phase shift positions. It is formed as a scanning grating 1 having a lateral pattern. FIG. 3 shows a scanning grating 1 according to the invention. FIG. 4 shows an enlarged portion of the scanning grating 1 of FIG. In the case of the exemplary embodiment shown, this scanning grating 1 has partially laterally patterned regions B 1, B 2, B 3 which are connected periodically in the measuring direction X. Areas B 1 and B viewed in the measurement direction X
2, B 3 have almost equal widths. The sum of the widths of the first, second and third areas B 1, B 2, B 3 corresponds to the graduation period d of the scanning grating. This graduation period is the same as the graduation period c of the graduation grating 2, but it does not necessarily have to be the same. Each area B 1, B
The width of 2, B 3 is d / 3 in this example.

【0011】第二および第三領域B2,3 は測定方向X
に対して横方向に配置された格子で構成されていて、こ
れ等の格子はY方向に異なった横方向の格子定数d2
3を有する。この場合、個々の格子の目盛線は測定方
向Xに平行に向いている。横方向にブレーズド位相格子
として形成された領域B2,3 は、更に入射したビーム
束がそれぞれ+1回折次数として偏向するように設定さ
れるか、あるいは最適化される。図5に模式的に示すよ
うに、コリメートされた光ビーム束が走査格子1に入射
すると、横方向に異なったパターンの領域B2,3 が入
射光ビーム束をほぼ各領域B2 またはB3 に付属する+
1横回折次数b2 またはb3 へ偏向する。領域B2,3
で種々選択された格子パラメータのため、回折した部分
ビーム束が他の角度に偏向する。そのため、領域B2,
3 は回折した部分ビーム束に対して格子定数d2,3
応じて異なる方向選択性を有する。
The second and third areas B 2, B 3 are in the measuring direction X
With respect to the lateral direction, these gratings have different lateral lattice constants d 2 and d 3 in the Y direction. In this case, the scale lines of the individual gratings are oriented parallel to the measuring direction X. Lateral regions B 2, which is formed as a blazed phase grating B 3 further or incident beam bundle is set to deflect the respective +1 diffraction order, or optimized. As schematically shown in FIG. 5, when a collimated light beam bundle is incident on the scanning grating 1, regions B 2 and B 3 having different patterns in the lateral direction make the incident light beam bundle substantially in each region B 2 or B. included with 3 +
Deflection to one transverse diffraction order b 2 or b 3 . Area B 2, B 3
Due to the variously selected grating parameters at 1, the diffracted partial beam bundle is deflected to another angle. Therefore, the areas B 2, B
3 has different directional selectivity with respect to the diffracted partial beam bundle depending on the lattice constants d 2 and d 3 .

【0012】検出器側には、光電素子として形成された
3つの検出器D0,1 およびD2 が設けてある。これ等
の検出器は測定方向Xに対して横方向に、つまりY方向
に配置されている。検出器の各々は、三つの領域B1,
2,3 の一つに付属し、各検出器が付属する領域から来
る信号成分によってのみ作動するようにY方向に配置さ
れている。
On the detector side, three detectors D 0, D 1 and D 2 formed as optoelectronic elements are provided. These detectors are arranged transverse to the measuring direction X, i.e. in the Y direction. Each of the detectors has three regions B 1, B
It is attached to one of the B 2 and B 3 and is arranged in the Y direction so that each detector is activated only by the signal component coming from the area to which it is attached.

【0013】第一領域B1 はこの発明による位置測定装
置の図示する実施例では透明に形成されている。つま
り、この領域B1 は通過する光ビーム束b1 を回折する
ことなく目盛格子2に入射させ、この目盛格子から光ビ
ーム束b1 が入射角に合わせて反射し、再び格子1を通
過する。他の二つの領域B2,3 が方向選択性となるよ
うに構成されているので、つまり+1回折次数に偏向が
行われるので、これ等の領域に対して領域B1 も方向選
択性となる。
The first region B 1 is made transparent in the illustrated embodiment of the position measuring device according to the invention. That is, the region B 1 makes the passing light beam bundle b 1 incident on the graduation grating 2 without diffracting, the light beam bundle b 1 is reflected from the graduation grating in accordance with the incident angle, and passes through the grating 1 again. . Since the other two regions B 2 and B 3 are configured to have direction selectivity, that is, since the deflection is performed in the +1 diffraction order, the region B 1 also has direction selectivity to these regions. Become.

【0014】目盛格子2から反射した光ビーム束b1
走査格子1の領域B1 を二回目に通過する時、横方向に
回折しないので、この光ビーム束を得られた0回折次数
1'と疑似的に見なされる。走査格子1を二回目に通過
した時に領域B2 とB3 から横方向に偏向する光ビーム
束b1 の光成分は、得られそれに応じて検出された0回
折次数b1'に対して寄与しない。
[0014] When the light beams b 1 reflected from the scale grating 2 which passes through the area B 1 of the scanning grating 1 the second time, since no diffraction laterally 0 diffraction order b 1 obtained the light beam bundle Is regarded as pseudo. The light component of the light beam bundle b 1 which is laterally deflected from the regions B 2 and B 3 when passing the scanning grating 1 a second time contributes to the 0 diffraction order b 1 ′ obtained and detected accordingly. do not do.

【0015】走査格子1は0次の横方向回折次数の方向
に振幅格子のように働く。0次の横方向回折次数の方向
に記録された光成分はただ領域B1 のみを通過するが、
走査格子1のパターン化された領域B2,3 を通過しな
い。この走査パターンは、それ故、検出方向に、透明領
域B1 と不透明な領域B2,3 を周期的に配置した振幅
目盛のように見える。
The scanning grating 1 acts like an amplitude grating in the direction of the 0th lateral diffraction order. The light component recorded in the direction of the 0th lateral diffraction order passes only the region B 1 ,
It does not pass through the patterned areas B 2, B 3 of the scanning grating 1. This scanning pattern therefore appears in the detection direction as an amplitude scale with periodic arrangement of transparent areas B 1 and opaque areas B 2, B 3 .

【0016】走査格子1の領域B1 を最初に通過すると
出て行き、走査格子1を二回目に通過すると+1回折次
数の方向に偏向する領域B2 のビーム束を考慮すると、
2'の方向に領域B2 とB3 からの信号成分が得られな
い。対応する検出器D1 により領域B2 からの光のみが
捕捉される。従って、この走査パターンは検出方向に不
透明領域B1,透明領域B2,不透明領域B3 を周期的に配
置した振幅目盛のように見える。
Considering the beam bundle in the region B 2 which exits when the region B 1 of the scanning grating 1 is first passed and is deflected in the direction of the +1 diffraction order when passing the scanning grating 1 the second time,
The signal components from the regions B 2 and B 3 cannot be obtained in the direction of b 2 '. Only the light from region B 2 is captured by the corresponding detector D 1 . Therefore, this scanning pattern looks like an amplitude scale in which the opaque area B 1, the transparent area B 2, and the opaque area B 3 are periodically arranged in the detection direction.

【0017】走査格子1の領域B1 を最初に通過すると
出て行き、走査格子1を二回目に通過すると+1次の横
方向回折次数の方向に偏向する領域B3 のビーム束を考
慮すると、b3'の方向に領域B1 とB2 から信号成分が
得られず、対応する検出器D 2 により領域B3 からの光
のみが検出される。従って、この走査パターンは検出方
向に不透明領域B1 とB2 および透明領域B3 を周期的
に配置した振幅目盛のように見える。
Area B of the scanning grating 11When you first pass
When exiting and passing the scanning grid 1 for the second time
Area B deflected in the direction of the direction diffraction orderThreeConsider the beam bundle of
If you think about it, bThreeArea B in the direction of '1And B2From the signal component
Not obtained, corresponding detector D 2Area BThreeLight from
Only detected. Therefore, this scanning pattern is
Opaque area B toward1And B2And transparent area BThreeThe periodic
It looks like an amplitude scale placed at.

【0018】走査格子1は目盛周期毎にそれぞれ三つの
そのような領域B1,2,3 を有するので、この観点の
下に三つの横回折方向の各々の検出方向に振幅格子とし
て働く。目盛周期に対する透明領域の比はそれぞれt=
1/3となる。図示する実施例では、各目盛周期には等し
い幅の三つの領域があるので、360°の1目盛周期をそ
れぞれ 120°の等しい成分に分割される。これは異なっ
た領域から得られる信号の間の3つの横回折方向に関し
てそれぞれ 120°の位相のずれを引き起こす。領域B1
は、この発明の図示する実施例の場合、 0°信号を供給
し、領域B2 とB3 は+ 120°信号と− 120°信号をそ
れぞれ供給する。
[0018] Since having a scanning grating 1 each three such regions B 1 per graduation period, B 2, B 3, acts as an amplitude grating under this point of view in the detection direction of each of the three lateral direction of diffraction . The ratio of the transparent area to the scale period is t =
It becomes 1/3. In the illustrated embodiment, each graduation period has three regions of equal width, so one 360 ° graduation period is divided into equal 120 ° components. This causes a phase shift of 120 ° in each of the three transverse diffraction directions between the signals obtained from different regions. Area B 1
In the illustrated embodiment of the invention provides a 0 ° signal and regions B 2 and B 3 provide + 120 ° and −120 ° signals, respectively.

【0019】1目盛周期を同じ幅の4つの領域に分割
し、これ等の領域が付属する検出器の方向にそれぞれ異
なった角度の偏向を誘起するなら、4つの横偏向方向で
同じように4つの信号を検出でき、これ等の信号は互い
にそれぞれ 90 °の位相のずれを有する。つまり、同じ
幅 D/4の4つの領域を設けることができる。これ等のう
ち2つの領域は2つの領域B2 とB3 と同じように構成
できる。それには、前記2つの領域に対して 180°ずら
して2つの領域B2'とB3'を配置し、これ等の領域を−
1回折次数への偏向になるように設計する。
If one graduation period is divided into four regions of the same width, and these regions induce deflections of different angles in the direction of the associated detector, then four lateral deflection directions are similarly used. Two signals can be detected, each of which is 90 ° out of phase with each other. That is, it is possible to provide four regions having the same width D / 4. Two of these areas can be constructed in the same way as the two areas B 2 and B 3 . To do this, place two regions B 2 'and B 3 ', offset by 180 ° with respect to the two regions, and these regions-
It is designed so that the deflection is one diffraction order.

【0020】位相格子として形成された走査格子とは異
なり、この発明による振幅走査格子では、得られた縦回
折次数が同相で重畳する。従って、一つの検出器で多数
の縦回折次数を加算するが、それでも十分高い変調度を
保証することができる。走査された目盛板の目盛周期
は、集光レンズの焦点距離が短くても比較的粗く選択で
きる。
In contrast to scanning gratings formed as phase gratings, in the amplitude scanning grating according to the invention the obtained longitudinal diffraction orders overlap in phase. Therefore, although one detector adds a large number of longitudinal diffraction orders, a sufficiently high degree of modulation can still be guaranteed. The graduation period of the scanned graduation plate can be selected relatively coarsely even if the focal length of the condenser lens is short.

【0021】図5には、この発明の説明した実施例での
ビーム通路がもう一度模式化して示してある。この場
合、走査格子1や目盛格子2もただ部分的に認識でき
る。走査格子1を一回目に通過すると、ビームb1,2,
3 が走査格子1の対応する領域B1,2,3 から発生
する。測定板の目盛2で反射と回折を行った後、ビーム
2 とb3 は横方向にパターン化された領域B2 とB3
による偏向により走査格子1に空間的に互いに分離した
位置で印加する。これ等の位置は走査格子1のビームb
1 の第二入射点によっても空間的に分離されている。走
査格子1上でのビームb1,2,3 の異なった入射位置
では、それぞれ異なった3つの空間方向への偏向がもう
一度行われる。従って、ビーム成分が検出器の方向に達
し、これ等のビーム成分は一回目の通過でもともと異な
った領域B1,2,3 を通過し、走査格子1の二回目の
通過で、異なった点でも偏向する。この場合には、3つ
の検出器の各々に所望の位相角の信号成分のみも互いに
生じることが保証されない。むしろ、検出器での位相の
分離が不可能になるように異なった位相の信号成分の非
干渉性重畳となる。
In FIG. 5, the beam path in the described embodiment of the invention is shown once more schematically. In this case, the scanning grid 1 and the scale grid 2 can also only be partially recognized. When passing the scanning grating 1 for the first time, the beams b 1, b 2,
b 3 is generated from the corresponding regions B 1, B 2, B 3 of the scanning grating 1. After reflection and diffraction on the scale 2 of the measuring plate, the beams b 2 and b 3 are laterally patterned in areas B 2 and B 3.
Is applied to the scanning grating 1 at positions spatially separated from each other. These positions are the beam b of the scanning grating 1.
It is also spatially separated by the second point of incidence of 1 . At different incident positions of the beams b 1, b 2 and b 3 on the scanning grating 1, deflections in three different spatial directions are performed again. Therefore, the beam components reach the direction of the detector, these beam components pass through different areas B 1, B 2, B 3 in the first pass and are different in the second pass of the scanning grating 1. The point is also deflected. In this case, it is not guaranteed that only the signal components of the desired phase angle will occur in each of the three detectors. Rather, it is an incoherent superposition of signal components of different phases such that phase separation at the detector is not possible.

【0022】即ち、例えば完全な信号の消失が生じる。
しかし、評価を行うため3つの検出器がそれぞれ 120°
位相のずれた出力信号、つまり 0°信号、+120°信号、
および - 120°信号を出力するようにされている。従っ
て、このことを確実にするため、干渉信号b1', b2',
3'のみが走査格子1のただ一つの領域を最初に通過し
た時に生じる走査信号を得ることに寄与するように、走
査格子1にY方向に振幅格子Aが重畳すると有利であ
る。図5の図面には、透明な領域B1 を最初に通過した
時に出るビームのみが検出されるように、振幅格子Aが
選択されている。図5の下部に破線で示す部分ビームは
それにより選択された振幅格子Aでフェードインされ
る。この場合、説明した実施例とは異なり、走査格子を
最初に通過した時に第二領域を通過して進む信号成分の
みが検出器に最終的に到達するように振幅構造の寸法を
決めることもできる。
That is, for example, complete signal loss occurs.
However, the three detectors are each 120 ° for evaluation.
Out-of-phase output signals, 0 ° signal, + 120 ° signal,
And-it is designed to output a 120 ° signal. Therefore, to ensure this, the interference signals b 1 ′, b 2 ′,
It is advantageous for the amplitude grating A to be superimposed on the scanning grating 1 in the Y direction so that only b 3 ′ contributes to obtaining the scanning signal which occurs when it first passes through only one region of the scanning grating 1. In the drawing of FIG. 5, the amplitude grating A is chosen so that only the beam that emerges when it first passes through the transparent area B 1 is detected. The partial beam shown in broken lines at the bottom of FIG. 5 is faded in with the amplitude grating A selected thereby. In this case, unlike the described embodiment, the amplitude structure can also be dimensioned so that only the signal components traveling through the second region when they first pass through the scanning grating eventually reach the detector. .

【0023】図3に図示する走査格子の実施例からも分
かるように、Y方向、即ち測定方向Xに直交する振幅構
造も同じように周期的に形成されている。符号Aを付け
た走査格子の領域は不透明あるいは吸収性となるように
形成され、走査越す非を最初に通過した時に方向選択性
のただ一つの領域により偏向された部分ビームのみが検
出器に到達するように互いに配置されている。
As can be seen from the embodiment of the scanning grating shown in FIG. 3, the amplitude structure orthogonal to the Y direction, that is, the measuring direction X, is similarly formed periodically. The area of the scanning grating labeled A is made opaque or absorptive so that only the partial beam deflected by the single direction-selective area reaches the detector when it first passes over the non-scan. Are arranged relative to each other.

【0024】図5に示す走査格子1の部分は、図3に示
す回折構造体の一つのストライプのみと隣接する絞りス
トライプAを示す。この発明の他の構成では、領域B1
は横方向にブレーズド格子としても形成されるが、その
パラメータは領域B2 とB3 内にある格子のパラメータ
とはずれている。従って、方向選択できるように作用す
る領域の一つを透明に形成することは必ずしも強いられ
るものでなく、大切なことはただ異なった領域が異なっ
た方向選択性を有することである。
The portion of the scanning grating 1 shown in FIG. 5 shows a diaphragm stripe A which adjoins only one stripe of the diffractive structure shown in FIG. In another configuration of the invention, the area B 1
Is also formed laterally as a blazed grating, the parameters of which deviate from those of the gratings in regions B 2 and B 3 . Therefore, it is not necessarily compulsory to form one of the regions that act in a directionally selectable manner transparently, what is important is that different regions have different directional selectivity.

【0025】更に、回折次数を検出器上に結像すること
を最適にするため、横格子を備えた領域の格子定数は横
方向に位置に依存して変化する。その結果、図示する実
施例の外に、この発明を構成する一連の他の可能性があ
る。これには、例えば、この発明による位置測定装置が
透過光装置の中にも実現できることが分かる。この場
合、第一走査格子、目盛格子、および他の合体格子が設
けてある。その結果、走査格子はこの実施例でこの発明
により形成されている。つまり、先に説明した方向選択
性の横構造で形成されている。
Furthermore, in order to optimize the imaging of the diffraction orders on the detector, the lattice constant of the region with the transverse grating varies laterally depending on the position. As a result, in addition to the illustrated embodiment, there are a series of other possibilities that make up the invention. It can be seen, for example, that the position measuring device according to the invention can also be realized in a transmitted light device. In this case, a first scanning grid, a scale grid, and other coalescing grids are provided. As a result, the scanning grating is formed according to the invention in this embodiment. That is, it is formed with the lateral structure having the direction selectivity described above.

【0026】[0026]

【発明の効果】以上説明したように、この発明による位
置測定装置の主要な利点は、簡単な方法で互いに位相の
ずれた走査信号を発生させ、その場合、得られた回折次
数を縦方向(つまり測定方向)に分離することはもはや
必要でない。これにより、使用する結像光学系に必要な
短い焦点距離が保証される。つまり、走査ヘッドのコン
パクトな構造が生じる。
As explained above, the main advantage of the position-measuring device according to the invention is that the scanning signals which are out of phase with each other are generated in a simple way, in which case the diffraction orders obtained are Separation in the measuring direction) is no longer necessary. This guarantees the short focal length required for the imaging optics used. That is, a compact structure of the scanning head results.

【0027】更に、この発明の位置測定装置の助けによ
り(準)単一場走査で、目盛板の汚れおよび/または目
盛の不良に対して鈍感な位置に依存する走査信号を発生
させるこができる点で有利である。これにより、目盛板
の目盛に比較的大きな許容公差が許され、価格的に有利
な作製が可能になる。その外、この発明による位置測定
装置は、目盛板の目盛と走査板の目盛との間に十分な間
隔不敏感性を保証する。
Furthermore, with the aid of the position-measuring device according to the invention, it is possible in a (quasi) single-field scan to generate a position-dependent scanning signal which is insensitive to dirt on the scale plate and / or defective scale. Is advantageous. As a result, a relatively large tolerance is allowed in the scale of the scale plate, and it is possible to manufacture the plate in a cost-effective manner. In addition, the position measuring device according to the invention ensures a sufficient spacing insensitivity between the scale of the scale plate and the scale of the scanning plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明による位置測定装置の模式的な全体
図、
FIG. 1 is a schematic overall view of a position measuring device according to the present invention,

【図2】 互いに干渉する信号を位置に依存する信号を
発生するために使用する位置測定装置の模式的なビーム
通路の図面、
2 is a schematic beam path drawing of a position-measuring device used to generate interdependent signals for generating position-dependent signals, FIG.

【図3】 この発明による位置測定装置の走査格子の可
能な実施例を示す平面図、
FIG. 3 is a plan view showing a possible embodiment of the scanning grating of the position measuring device according to the invention,

【図4】 図3の走査格子の一部を示す平面図、FIG. 4 is a plan view showing a part of the scanning grating of FIG. 3;

【図5】 図3と4の走査格子を使用する、この発明の
位置測定装置内部のビーム通路の模式図。
FIG. 5 is a schematic view of the beam path inside the position measuring device of the present invention using the scanning gratings of FIGS. 3 and 4.

【符号の説明】[Explanation of symbols]

1 走査格子 2 目盛板格子 B1,2,3 走査格子中のパターン化された
領域 d1,2,3 格子定数 D0,1,2 検出器 b1,2,3 光ビーム束 b1', b2', 3' 0次横回折次数、干渉信号 X 測定方向 Y 測定方向Xに垂直な方向 d 走査格子の目盛周期 L 光源 K コリメータレンズ
1 Scanning grating 2 Scale plate grating B 1, B 2, B 3 Patterned area in scanning grating d 1, d 2, d 3 Lattice constant D 0, D 1, D 2 detector b 1, b 2, b 3 light beam bundle b 1 ′, b 2, b 3 ′ 0th transverse diffraction order, interference signal X measurement direction Y direction perpendicular to measurement direction X d scanning grating scale period L light source K collimator lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ヴアルター・フーバー ドイツ連邦共和国、83278 トラウンシユ タイン、エッテンドルフアー・ヴエーク、 6 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Valter Hoover, Federal Republic of Germany, 83278 Traunstein, Ettendorfer Wück, 6

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一定の目盛周期を有し、測定方向(X)
に互いに相対的に移動する複数の格子(1,2)により
光源(L)の光を位置に応じて変調し、少なくとも一方
の格子で回折する光ビーム束が互いに干渉し、互いに位
相のずれた位置に依存する信号を検出する複数の光検出
器(D0,1,2 )を設け、少なくとも一つの格子
(1)が測定方向(X)に向いた目盛周期(d)の各々
の中に、測定方向(X)に順次配置され、測定方向
(X)にほぼ垂直に延びる少なくとも3つの領域(B1,
2,3 )を有し、これ等の領域(B1,2,3 )の各
々が異なった光選択特性を有し、これ等の領域(B1,
2,3 )から得られた信号ビーム束の各々が付属する光
検出器(D0,1,2 )に入射し、これ等の光検出器が
測定方向(X)に対してほぼ横方向に配置されているこ
とを特徴とする光電位置測定装置。
1. A measuring direction (X) having a constant scale period.
The light of the light source (L) is modulated according to the position by a plurality of gratings (1, 2) that move relative to each other, and the light beam bundles diffracted by at least one of the gratings interfere with each other and are out of phase with each other. A plurality of photodetectors (D 0, D 1, D 2 ) for detecting position-dependent signals are provided, and at least one grating (1) is arranged in each of the scale periods (d) oriented in the measurement direction (X). At least three regions (B 1, which are sequentially arranged in the measurement direction (X) and extend substantially perpendicular to the measurement direction (X)) .
B 2, B 3 ), each of these regions (B 1, B 2, B 3 ) has a different photoselective property, and these regions (B 1, B 3
Each of the signal beam bundles obtained from ( 2, B 3 ) is incident on the attached photodetector (D 0, D 1, D 2 ), and these photodetectors are almost in the measuring direction (X). A photoelectric position measuring device, which is arranged laterally.
【請求項2】 少なくとも二つの領域(B2,3 )はブ
レーズド位相格子として形成され、測定方向に対して横
方向に向いていることを特徴とする請求項1に記載の光
電位置測定装置。
2. Photoelectric position measuring device according to claim 1, characterized in that at least two regions (B 2, B 3 ) are formed as a blazed phase grating and are oriented transversely to the measuring direction. .
【請求項3】 少なくとも二つの領域(B2,3 )はそ
れぞれ測定方向(X)に対して横方向に向いた位相格子
を形成し、この格子のパラメータは0回折次数を抑制す
るように選択されていることを特徴とする請求項1に記
載の光電位置測定装置。
3. At least two regions (B 2, B 3 ) each form a phase grating oriented transversely to the measuring direction (X), the parameters of the grating being such that the zero diffraction order is suppressed. The photoelectric position measuring device according to claim 1, wherein the photoelectric position measuring device is selected.
【請求項4】 格子(1)の1目盛周期(d)内には測
定方向に同一な幅の3つの領域(B1,2,3 )が配置
され、それ等の中に透明な領域(B1 )もあり、領域
(B2 )からの部分ビーム束を検出する第一光検出器
(D1 )と、領域(B3 )からの部分ビーム束を検出す
る第一光検出器(D2 )とを設け、両方の光検出器(D
1,2 )の信号が 120°互いに位相がずれていて、透明
な領域(B 1 )からの部分ビーム束が第三光検出器(D
0 )に指向し、この検出器の出力信号が前記二つの信号
に対して同じように 120°の位相ずれを有することを特
徴とする請求項1〜3のいずれか1項に記載の光電位置
測定装置。
4. A measurement is made within one graduation period (d) of the grating (1).
Three areas of the same width in a fixed direction (B1,B2,BThree) Placed
Transparent areas (B1) Also, the area
(B2First photodetector for detecting the partial beam bundle from
(D1) And the area (BThree) From the partial beam bundle
First photodetector (D2) And, both photodetectors (D
1,D2) Signals are 120 ° out of phase with each other and are transparent
Area (B 1) From the third beam detector (D
0) And the output signal of this detector is
It has the same phase shift of 120 ° with respect to
The photoelectric position according to any one of claims 1 to 3,
measuring device.
【請求項5】 格子領域の格子定数は測定方向に対して
横要綱に位置に応じて可変することを特徴とする請求項
4に記載の光電位置測定装置。
5. The photoelectric position measuring device according to claim 4, wherein the lattice constant of the lattice region is variable according to the position in a horizontal line with respect to the measuring direction.
【請求項6】 光源の光はレンズにより異なった領域を
有する走査格子にコリメートされて入射し、走査格子の
次に目盛板格子を設け、この目盛板格子を通過した部分
ビーム束が合体格子を経由して他のレンズで複数の光検
出器に集束し、その場合、走査格子が前記請求項1〜5
のいずれか1項に従い形成されていることを特徴とする
請求項1に記載の光電位置測定装置。
6. Light from a light source is collimated and incident on a scanning grating having different regions by a lens, a scale plate grating is provided next to the scanning grating, and a partial beam bundle passing through this scale plate grating forms a united grating. Focusing on a plurality of photodetectors with another lens via, in which case a scanning grating is provided.
The photoelectric position measuring device according to claim 1, wherein the photoelectric position measuring device is formed according to any one of 1.
【請求項7】 光源(L)の光がレンズ(K)でコリメ
ートされて領域(B 1,2,3 )を有する走査格子
(1)に入射し、この走査格子(1)の次に反射性の目
盛板格子(2)を設け、反射した部分ビーム束が再び走
査格子(1)により回折し、レンズ(K)により複数の
光検出器(D0,1,2 )上に集束し、その場合、走査
格子が前記請求項1〜5のいずれか1項に従い形成され
ていることを特徴とする請求項1に記載の光電位置測定
装置。
7. The light from the light source (L) is collimated by the lens (K).
Area (B 1,B2,BThree) With scanning grating
Incident on (1) and next to this scanning grating (1) a reflective eye
The plate grating (2) is installed, and the reflected partial beam bundle runs again.
Diffracted by a check grating (1) and a plurality of lenses by a lens (K)
Photodetector (D0,D1,D2) Focus on and then scan
A grid is formed according to any one of the preceding claims 1-5
Photoelectric position measurement according to claim 1, characterized in that
apparatus.
【請求項8】 目盛板格子(2)と走査格子(1)は測
定方向(X)に同じ目盛周期(c=d)を有することを
特徴とする請求項6または7に記載の光電位置測定装
置。
8. Photoelectric position measurement according to claim 6 or 7, characterized in that the graduation plate grating (2) and the scanning grating (1) have the same graduation period (c = d) in the measuring direction (X). apparatus.
【請求項9】 目盛板格子(2)は位相格子であること
を特徴とする請求項6または7に記載の光電位置測定装
置。
9. Photoelectric position measuring device according to claim 6 or 7, characterized in that the scale plate grating (2) is a phase grating.
【請求項10】 走査格子(1)は、望ましくない信号
成分を遮蔽するため、走査方向(X)に対して横方向に
向いた絞り状の振幅構造体(A)を有することを特徴と
する請求項1に記載の光電位置測定装置。
10. The scanning grating (1) is characterized in that it has a diaphragm-like amplitude structure (A) oriented transversely to the scanning direction (X) in order to shield unwanted signal components. The photoelectric position measuring device according to claim 1.
【請求項11】 振幅構造体(A)は、最初の通過で入
射ビーム束がただ一つの領域(B1 )を通過する信号成
分(b1 )のみを検出器側で検出できるが、他の領域
(B2,3 )を通過する信号成分(b2,3 )を遮蔽す
るように構成されていることを特徴とする請求項10に
記載の光電位置測定装置。
11. The amplitude structure (A) is capable of detecting on the detector side only the signal component (b 1 ) in which the incident beam bundle passes through only one region (B 1 ) at the first passage, but other Photoelectric position measuring device according to claim 10, characterized in that it is arranged to block the signal components (b 2, b 3 ) passing through the regions (B 2, B 3 ).
【請求項12】 全体の領域は1目盛周期内でブレーズ
ド位相格子として形成され、測定方向に対して横方向に
向いていることを特徴とする請求項2に記載の光電位置
測定装置。
12. The photoelectric position measuring device according to claim 2, wherein the entire region is formed as a blazed phase grating within one graduation period and is oriented laterally with respect to the measuring direction.
JP8133795A 1995-06-10 1996-05-28 Photoelectric position measuring device Withdrawn JPH095026A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19521295A DE19521295C2 (en) 1995-06-10 1995-06-10 Photoelectric position measuring device
DE19521295:9 1995-06-10

Publications (1)

Publication Number Publication Date
JPH095026A true JPH095026A (en) 1997-01-10

Family

ID=7764151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8133795A Withdrawn JPH095026A (en) 1995-06-10 1996-05-28 Photoelectric position measuring device

Country Status (4)

Country Link
US (1) US5689336A (en)
EP (1) EP0747674B1 (en)
JP (1) JPH095026A (en)
DE (2) DE19521295C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182249A (en) * 2003-10-22 2008-08-07 Asml Netherlands Bv Method for manufacturing lithographic apparatus and device and measuring device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE212714T1 (en) * 1996-10-16 2002-02-15 Heidenhain Gmbh Dr Johannes OPTICAL POSITION MEASURING DEVICE
DE59912617D1 (en) * 1998-08-01 2006-02-16 Heidenhain Gmbh Dr Johannes Rotary position measuring device
EP1028309B1 (en) * 1999-02-04 2003-04-16 Dr. Johannes Heidenhain GmbH Optical encoder
EP1085291B1 (en) 1999-09-16 2009-11-11 Dr. Johannes Heidenhain GmbH Device for determination of positions and faults in guidance
DE19962278A1 (en) 1999-12-23 2001-08-02 Heidenhain Gmbh Dr Johannes Position measuring device
DE10333772A1 (en) * 2002-08-07 2004-02-26 Dr. Johannes Heidenhain Gmbh Interference-based position measurement instrument detects the relative movement of measurement and scanning gratings in that a periodic interference band pattern is generated from which phase shifts and positions are measured
WO2008110239A1 (en) * 2007-03-15 2008-09-18 Carl Zeiss Smt Ag Diffractive component, interferometer arrangement, method for qualifying a dual diffraction grating, method of manufacturing an optical element, and interferometric method
DE102007023300A1 (en) * 2007-05-16 2008-11-20 Dr. Johannes Heidenhain Gmbh Position measuring device and arrangement thereof
DE102008007319A1 (en) * 2008-02-02 2009-08-06 Dr. Johannes Heidenhain Gmbh Optical position measuring device
EP2264409B1 (en) * 2009-06-19 2015-10-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
CN104266590B (en) * 2014-09-12 2017-06-13 江苏仅一包装技术有限公司 Simple linear positioning system
US9871595B2 (en) 2016-04-27 2018-01-16 Industrial Technology Research Institute Decoding device and method for absolute positioning code

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132311A (en) * 1983-01-18 1984-07-30 Sony Magnescale Inc Optical scale
DE3334398C1 (en) * 1983-09-23 1984-11-22 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Measuring device
DE3416864C2 (en) * 1984-05-08 1986-04-10 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Photoelectric measuring device
GB8413955D0 (en) * 1984-05-31 1984-07-04 Pa Consulting Services Displacement measuring apparatus
NL8502679A (en) * 1985-10-01 1987-05-04 Philips Nv OPTICAL TURNOVER ELEMENT AND MOVEMENT METER EQUIPPED WITH THIS ELEMENT.
DE3834676A1 (en) * 1988-10-12 1990-04-19 Heidenhain Gmbh Dr Johannes PHOTOELECTRIC POSITION MEASURING DEVICE
US5260568A (en) * 1990-07-18 1993-11-09 Okuma Corporation Absolute position detector with diffraction grating windows and spot position detection
ATE108274T1 (en) * 1991-05-18 1994-07-15 Heidenhain Gmbh Dr Johannes INTERFERENTIAL POSITION SENSING DEVICE.
DE4212281A1 (en) * 1991-07-11 1993-10-14 Heidenhain Gmbh Dr Johannes Position-measuring appts. using spatially modulated gratings - produces different aperiodic waveforms from various functional dependences of local grating period on direction of modulation
DE4431899A1 (en) * 1994-02-23 1995-08-24 Heidenhain Gmbh Dr Johannes Measuring device
ATE192566T1 (en) * 1994-02-23 2000-05-15 Heidenhain Gmbh Dr Johannes POSITION MEASURING DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182249A (en) * 2003-10-22 2008-08-07 Asml Netherlands Bv Method for manufacturing lithographic apparatus and device and measuring device

Also Published As

Publication number Publication date
DE19521295A1 (en) 1996-12-12
DE19521295C2 (en) 2000-07-13
US5689336A (en) 1997-11-18
DE59609428D1 (en) 2002-08-14
EP0747674A3 (en) 1998-08-26
EP0747674B1 (en) 2002-07-10
EP0747674A2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JP2501714B2 (en) Interference position measuring device
US6198534B1 (en) Scanning unit for an optical position measuring system
US7471397B2 (en) Position-measuring device
US7348546B2 (en) Position measuring system with a scanning unit having a reference pulse signal detection unit
JP3121539B2 (en) Photoelectric position measuring device
JP5100266B2 (en) Encoder
US5214280A (en) Photoelectric position detector with offset phase grating scales
JP3390440B2 (en) Device for detecting relative movement
US7154609B2 (en) Interferential position measuring arrangement
US7872762B2 (en) Optical position measuring arrangement
US20080285058A1 (en) Optical position-measuring device
JP2818800B2 (en) Device for generating position-dependent signals
JPH0820275B2 (en) Position measuring device
JPH095026A (en) Photoelectric position measuring device
JPH0130089B2 (en)
US4025197A (en) Novel technique for spot position measurement
US6794637B1 (en) Optical device for measuring position
US7404259B2 (en) Optical position measuring instrument
JPH0812048B2 (en) Interferometer
KR20180071934A (en) Optical position measuring apparatus
US6552810B1 (en) Optical measuring system
US7161139B2 (en) Position-measuring system and method for operating a position-measuring system
JPH06174424A (en) Length measuring and angle measuring device
US9739598B2 (en) Device for interferential distance measurement
JPH09126818A (en) Device for photoelectric length measurement or angle measurement

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805